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Abstract

Multi-stable composites are a novel type of composites capable of adopting

multiple statically stable configurations. Due to the multi-stability property

this type of composite material has been considered for several applications,

particularly for morphing structures. The change of shape between stable

states is achieved by a nonlinear mechanism known as snap-through. Most

of the research done on these composites has focused on predicting the con-

figuration after manufacture, its static characteristics and static actuation

strategies to induce snap-through. However, these structures will operate

subject to dynamic loads. Yet, very little work has been carried out to ex-

amine the dynamic behaviour of bi-stable composites. This paper focuses on

the study of the cross-well dynamics of a bi-stable composite plate. A simple

model previously derived for the dynamics confined to a single stable state is
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extended to include cross-well dynamics. The rich dynamics are experimen-

tally investigated, focusing on cross-well oscillations and the key dynamic

features of snap-through. Numerical simulations are obtained and compared

to the experimental results showing good agreement. In particular, experi-

mentally observed characteristics suggesting chaotic oscillations for cross-well

dynamics are captured well by the proposed model. The results herein could

be used for implementing control strategies for both configuration morphing

and undesired snap-through suppression of bi-stable composites.

Keywords: bi-stable composites, morphing structures, snap-through,

chaotic oscillations

1. Introduction

Composite laminates are increasingly employed in a wide variety of en-

gineering applications. The ever growing need for better performance has

resulted in innovative solutions such as structures capable of adjusting prop-

erties to perform optimally under different operational conditions, known as

adaptive structures [1]. Within this context, the concepts of morphing mate-

rials and structures have emerged offering enhanced performance and adapt-

ability for several applications [2, 3]. A promising advance in this direction is

the development of curved composite laminates exhibiting multiple statically

stable shapes [4]. The multiple configurations arise from asymmetric residual

thermal stresses induced during the curing process due to an unsymmetric

stacking sequence [5]. The transition between the multiple statically stable

states is achieved by a snap-through mechanism which is strongly nonlin-

ear in nature [6]. The multi-stability property has led to these composites
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being considered for morphing aerospace structures, since energy is only re-

quired to shift between stable shapes [7]. Recently, techniques to produce a

wide range of desired stable configurations by designing the induced thermal

stresses have been developed [8]. In addition, conceptual morphing applica-

tions taking advantage of these capabilities have been proposed [9, 10].

Most of the studies on multi-stable composites have focused on plates

exhibiting two stable configurations, known as bi-stable composite plates.

Several papers presenting models predicting the shape after the manufac-

turing process and static characteristics of these composites have been pre-

sented [11, 12]. More specifically, these have focused on the identification

of the stiffness characteristics [13, 14] and the static load triggering snap-

through for bi-stable composites [15, 16, 17]. However, these laminate struc-

tures will inevitably be exposed to high levels of dynamic excitation partic-

ularly for morphing applications operating on an aeroelastic environment.

Early failure could be induced to the structures incorporating multi-stable

composites by high levels of vibration. Moreover, undesired snap-through

(sudden jumps between stable states) could be triggered by dynamic pertur-

bations. Yet, very little work on the dynamics of multi-stable composites

has been carried out to date. The nonlinear response confined to a single

stable shape of a bi-stable plate has been experimentally studied [18]. Based

on these observations a simple model capturing the complex nonlinear dy-

namics associated with subharmonic resonances was developed showing very

good agreement with experimental results. However, cross-well dynamics

were beyond the scope of this work.

A study on the theoretical dynamics of snap-through based on an approx-
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imation of the strain field was presented and validated using finite element

analysis [19]. Oscillations occurring after a snap-through induced by a quasi-

static load were studied showing good qualitative agreement. Simple one

degree-of-freedom models describing the dynamics of square bi-stable plates

have been presented [20, 21]. Good qualitative agreement was achieved and

evidence of complex dynamics for oscillations involving snap-through was

shown. Although relevant, these were only preliminary studies leaving open

many aspects of the dynamics of these structures, for instance the required

levels on dynamic forcing to trigger snap-through were not investigated.

The purpose of this paper is to account for cross-well dynamics extend-

ing the study for the dynamics of a bi-stable plate presented in Ref. [18].

A [04 − 904]T square bi-stable carbon-fibre epoxy plate similar to that used

in Ref. [18] is considered. Experimental tests are performed to study the

behaviour of the plate for dynamically induced snap-through. The condition

to trigger the snap-through phenomenon is modelled and experimentally val-

idated. The relationship between snap-through force and forcing frequency

is obtained in order to identify the minimum dynamic force to trigger the

jump phenomenon. Strong nonlinear oscillations showing characteristics of

chaotic behaviour are observed for constant changes between stable states,

this is for constant cross-well oscillations.

The experimental behaviour is modelled by extending the simple model

presented in Ref. [18], including piece-wise defined restoring forces in the

nonlinear modal equations. Numerical simulations using the proposed model

for time series of the transverse displacement are obtained and compared

to experimental results showing good agreement. In particular, the model

4



Figure 1: Statically stable states of a bi-stable composite

captures the experimental observations of chaotic behaviour for cross-well dy-

namics. Diagrams comparing experimentally observed dynamics with numer-

ical simulations are presented for the main parameter range of the bi-stable

plate considered herein. Boundaries separating regions in the parameter

space marking qualitative changes in the response of the plate are captured

accurately by the model. This information, concisely presented in these di-

agrams, can be potentially used to develop efficient strategies for morphing

actuation and stabilization avoiding undesired snap-through of structures

incorporating bi-stable composites.

2. Bi-stable composites and snap-through

Bi-stable composites are a type of composites capable of adopting two

statically stable shapes. A schematic diagram of the stable configurations

of a bi-stable composite plate is shown in Fig. 1. Ideally a bi-stable square

plate will exhibit equal curvatures in each of its stable states, this means

5



that each stable configuration would exhibit equal radii of curvature. The

curvature direction for each state is orthogonal to the other as shown in Fig. 1.

This property is defined as a perfect orthogonal symmetry between the stable

configurations of the plate. As a result of this property, the dynamic response

for oscillations confined to a stable state are also orthogonally symmetric, this

means that each state will exhibit identical dynamic behaviour only with a

rotation of the local frame of
π

2
with respect to the other. However, any real

specimen will show imperfections in the final shapes as the manufacturing

process has limited accuracy, breaking the perfect symmetry. In particular,

the static curvature of each state would have different values for any real

specimen. Nevertheless, the response of the stable configurations remains

qualitatively symmetric despite manufacturing imperfections.

The change between stable states is achieved via a jump phenomenon

known as snap-through [4]. The snap-through mechanism is a sudden event

where the structure undergoes large amplitude displacements [22]. This

mechanism has been conceptually studied using the schematic model shown

in Fig. 2. The underlying principle of the model states that the dynamic

response of a system which may undergo a snap-through is only affected by

it when a critical displacement is reached triggering the jump phenomenon.

Based on this, it is assumed that the oscillations confined to one stable state

are unaffected by the presence of the second stable state. Only when a criti-

cal displacement is reached the snap-through mechanism plays a part in the

dynamics of the bi-stable structure.

This critical displacement is straight forward to define for a lumped mass

system such as the one shown in Fig. 2. This is not the case for a contin-
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Figure 2: Double-hinge mechanism to model snap-through.

uum such as the bi-stable composites considered here, as each point on the

plate undergoes a different displacement when a snap-through is triggered.

However, it is assumed that the deflection shape of the bi-stable plate may

be modelled with linear mode shapes, such that the relative deflection at

any instant of the forcing period between points remains proportional. As a

result, once a point reaches its critical displacement a snap-through is trig-

gered as all the points in the plate must have also reached their particular

threshold due to the proportionality of mode shapes. This provides a simple

condition to define the forcing level required to trigger the snap-through phe-

nomenon. However, the behaviour during the snap-through phenomenon is

far more complex and the actual shape of the unstable equilibrium depends

on the frequency of excitation triggering the snap-through. Nevertheless, in
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a recent paper the saddle shape of the unstable static equilibrium has been

shown to be very close to a flat shape. More specifically, the farthest away

distance from a flat plane tangent to the bi-stable plate’s centre for the stable

shapes is one order of magnitude larger in comparison to that of the saddle

unstable shape [23]. In view of this to a first approximation, it is assumed

that the critical displacement for a point on the plate is given by the static

deflection required to reach this flat unstable plane as illustrated in Fig. 3. At

this point stable state 2 is defined as the configuration exhibiting a smaller

curvature, and stable state 1 having the larger one. The x-direction is chosen

to coincide with the curved direction of stable state 1, thus the curved direc-

tion of stable state 2 coincides with the y-direction, as can be seen in Fig. 3.

In the ideal case, i.e. for bi-stable plates with perfect orthogonal sym-

metry, the values for the critical displacement would be equal. However, as

mentioned above in reality is difficult to achieve. Furthermore, the more

general rectangular shape bi-stable plates are inherently asymmetric due to

different static curvatures and length dimensions showing only qualitative

symmetry in the response of each configuration. Thus, in general each stable

state will exhibit different critical displacement values. For the realistic case,

the critical displacement for each stable state is associated with the static

deflection of a point lying on a line perpendicular to the flat direction of each

configuration. These are defined here using the reference points Px and Py,

located at (225,150) and (150,225) respectively shown in Fig. 4, where the

associated critical displacements for each stable state are presented in Fig. 3.

The differences in the static curvature of any real bi-stable plate result in
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Figure 3: Critical displacements for a bi-stable composite. The flat squared surface ap-

proximates the critical deflection shape threshold marking onset of snap-through.
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Figure 4: Measured points on the bi-stable plate.

an asymmetric double well potential schematically shown in Fig. 5. It can

be seen that the energy required to pass the maximum (hilltop) depends on

which state the system is initially oscillating. Hence, the force required to

induce snap-through depends on the initial state of the plate, as the critical

displacement of one of the states will be smaller than for the other.

3. Cross-well dynamics model

The model for the cross-well dynamics of a bi-stable plate for the studied

frequency range is obtained extending that developed for oscillations confined

to a single stable configuration (single-well dynamics) presented in Ref. [18].

Here we recall the most relevant results leading to the development of the

single-well dynamics model for completeness. Three modes of vibration were

observed to characterise the response of the plate around the frequency range

where snap-through is most easily triggered. Subharmonic oscillations of

order 1/2 were found to be the dominant nonlinear feature for single-well
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Figure 5: Schematic diagram of a potential well for a bi-stable plate.

dynamics. These oscillations, associated with the dominant effect caused by

the static curvature of bi-stable plates, are modelled by including quadratic

terms in the time response nonlinear equations. Furthermore, the effects

leading to cubic terms in the equations of motion are overshadowed by the

dominance of the squared terms generated by the curvature effects. Thus,

the cubic terms are neglected as is conventional for curved structures such as

shells [24]. The nonlinear modal equations capturing the dynamic features

for single-well oscillations were written as [18]

Ẅ1 + 2ζw1
ωw1

Ẇ1 + ω2

w1
W1 + α11W

2

1
+ α13W1W3 = Q1 sin(Ωt), (1)

Ẅ2 + 2ζw2
ωw2

Ẇ2 + ω2

w2
W2 + α22W2

2 + α23W2W3 = Q2 sin(Ωt), (2)

Ẅ3 + 2ζw3
ωw3

Ẇ3 + ω2

w3
W3 = Q3 sin(Ωt), (3)
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where W1 is the time response coefficient of the transverse displacement for

mode w1, W2 is the time response coefficient of the transverse displacement

for mode w2, W3 is the time response coefficient of the transverse displace-

ment for mode w3, Ω is the forcing frequency, Qi is the modal participation

factor for mode (i), αij is the coefficient for the nonlinear quadratic term for

an interaction between modes (wi, wj). The total transverse displacement,

w(x, y, t), for an arbitrary point is given by adding the contribution of each

mode to the deflection as

w(x, y, t) = Θw1
(x, y)

Pi
W1(t) + Θw2

(x, y)
Pi
W2(t) + Θw3

(x, y)
Pi
W3(t), (4)

where Θw1
(x, y)

Pi
, Θw2

(x, y)
Pi

and Θw3
(x, y)

Pi
are the values of the mode

shapes associated with modes w1, w2 and w3 evaluated at point Pi.

In order for the model to account for cross-well dynamics, the discussion

given in section 2 is employed. As previously stated, only after reaching

a critical deflection threshold the snap-through phenomenon would be trig-

gered. This threshold needs to be incorporated in the set of modal equations

to account for the bi-stability of the plate. Thus, using the critical displace-

ment condition to mark the onset of snap-through, we introduce piece-wise

defined restoring forces into Equations (1)-(3) to obtain,

Ẅ10 + 2ζwsi
1

ωwsi
1

Ẇ1 + F1(w) = Q1 sin(Ωt), (5)

Ẅ01 + 2ζwsi
2

ωwsi
2

Ẇ2 + F2(w) = Q2 sin(Ωt), (6)

Ẅ11 + 2ζwsi
3

ωwsi
3

Ẇ3 + F3(w) = Q3 sin(Ωt), (7)
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where the restoring force for each mode is given by

F1(w) =


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ω2

ws2
1

(W1 + ws2
e ) + α11(W1 + ws2

e )2

+α13(W1 + ws2
e )(W3 + ws2

e ), for w(x, y, t) < 0

0, for w(x, y, t) = 0

ω2

ws1
1

(W1 − ws1
e ) + α11(W1 − ws1

e )2

+α13(W1 − ws1
e )(W3 − ws1

e ), for w(x, y, t) > 0

, (8)

F2(w) =


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e ) + α11(W2 + ws2

e )2

+α13(W2 + ws2
e )(W3 + ws2

e ), for w(x, y, t) < 0

0, for w(x, y, t) = 0

ω2

ws1
2

(W2 − ws1
e ) + α22(W2 − ws1

e )2

+α23(W2 − ws1
e )(W3 − ws1

e ), for w(x, y, t) > 0

, (9)

F3(w) =






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


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


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








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

ω2

ws2
3

(W3 + ws2
e ), for w(x, y, t) < 0

0, for w(x, y, t) = 0

ω2

ws1
3

(W3 − ws1
e ), for w(x, y, t) > 0

, (10)

where ω
w

sj
i
is the natural frequency of the i mode in the j state, for example

ωws1
3

is the natural frequency of mode w3 for stable state 1, and the time

response and nonlinear coupling coefficients, Wij and αij were defined above.

The equilibrium positions for state 1 and state 2, ws1
e and ws2

e respectively,
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Figure 6: Quadratic restoring force including snap-through nonlinearity for mode w1.

are assumed to be equal to the static critical displacements for state 1 and

state 2 respectively. The above definition gives a piece-wise quadratic restor-

ing force for modes w1 and w2, and a piece-wise linear restoring force for

mode w3. For illustration, the restoring force for mode w1 is schematically

shown in Fig. 6. For each mode the defined restoring force gives a dou-

ble well potential, exhibiting two stable equilibria separated by an unstable

equilibrium matching that shown in Fig. 5. By including piece-wise defined

restoring forces with a critical displacement condition the model is extended

to capture oscillations between stable configuration (cross-well dynamics).

Hence, a model for single-well and cross-well oscillations is obtained. These

two types of dynamic behaviour encompass the whole range of responses

shown by the bi-stable plate around the frequency range of interest.
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(a) (b)

Figure 7: Bi-stable plate mounted on a shaker used as external excitation source. (a)

Stable state 1. (b) Stable state 2. (Reproduced with the kind permission of the Journal

of Intelligent Material Systems and Structures [25])

4. Experimental dynamic response

In this section, the procedure to experimentally study the dynamic re-

sponse in the parameter range of interest for the bi-stable plate is presented.

The main objective of the experimental tests is to investigate the key dy-

namic features of cross-well oscillations and the role of snap-through in the

response.

4.1. Experimental assembly

A bi-stable plate with unsymmetric stacking sequence [04 − 904]T and

dimension 300 by 300 mm similar to that used in Ref. [18] is employed as test

specimen for this study. The two stable configurations of the specimen are

shown in Figs. 7(a) and 7(b). The experimental specimen is attached to an

electromechanical shaker used as external source of vibration. The external

forcing is applied at the mounting point coinciding with the centre of the bi-
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Figure 8: Schematic diagram of the experimental rig.

stable plate to simulate free edge boundary conditions. A load cell is located

between the shaker and the plate to measure the external force acting on the

specimen. The experimental specimen is mounted on a steel table of large

mass in order to avoid interaction between the plate and its surroundings. A

differential laser vibrometer is used to measure relative displacement between

the centre of the specimen and a given point on the plate in order to obtain

time series for the displacement response. The signals from the vibrometer

and the load cell are filtered and amplified using a signal conditioner. These

signals are then read using an analog-to-digital acquisition box and the data

is stored using a digital interface. A controller monitoring the amplitude

of the force sensed by the load cell is implemented to minimise the impact

of the shaker dynamics in the experiments. A schematic diagram of the
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experimental assembly is shown in Fig. 8 where labels can be found for all

the mentioned equipment. The experimental assembly used to perform the

experiments is shown in Fig. 9 and the material properties of the bi-stable

plate are listed in Table 1.

Property F ibrevol. P ly thickness Density ρ Exx Eyy Ga
xy νa

xy = νa
yx

[%] [mm] [kg/m3] [GPa] [GPa] [GPa]

V alue 57.7 0.131 1570 164 12 4.6 0.3

Table 1: Material properties for a ply of HexPly 8557 IM7 used to manufacture the bi-

stable plate experimental specimen.

4.2. Dynamic response confined to a stable state

The most relevant dynamic features of the response for each stable state

are recalled in this section, for details on the experimental study refer to

Ref. [18].

The nonlinear behaviour of the bi-stable plate is studied using Experi-

mental Frequency Response Diagrams, which can be thought of as combining

the concepts of Frequency Response Functions (FRF) and Poincaré maps

to provide information of modal properties and nonlinear oscillations as de-

scribed in Ref. [18]. These diagrams are obtained using a single harmonic (of

constant amplitude) force input for stepped frequency sweeps. Peak-to-peak

amplitudes of response are sampled over several consecutive forcing periods

of steady state motions and plotted using the forcing frequency as parame-

ter. For a linear response, a single amplitude value is sampled for consecutive

periods for a given forcing frequency. Conversely, several points for a given

17



Figure 9: Experimental Assembly. Ling shaker V405, vibrometer OFV-552. (Reproduced

with the kind permission of Nonlinear Dynamics [18])
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Figure 11: Experimental frequency response diagram for point Px in stable state 1. Fo=1.0

N , frequency range Ω=[15, 46].

frequency indicate the presence of multiple harmonics in the response sig-

nalling nonlinear oscillations. Results obtained for points Px and Py shown

in Fig. 4 are used to characterise the response of the bi-stable plate. The ex-

perimental frequency response diagram of point Px in stable state 1 obtained

for a low forcing amplitude of 1 N is shown in Fig. 11. Three modes dominate

the low amplitude response, mode ws1
1

at 17.6 Hz, mode ws1
2

at 19.4 Hz and

mode ws1
3

at 45.4 Hz. Figure 12 shows the diagram for a forcing amplitude

of 5 N of point Px for stable state 1. Nonlinear oscillations, signalled by

multiple points in the experimental frequency response diagrams [26], can be

seen at twice the frequency of modes ws1
1

and ws1
2
.

The same study is performed here for stable state 2. The low amplitude
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Figure 12: Experimental frequency response diagram for point Px in stable state 1. Fo=5.0

N, frequency range Ω=[13, 43].
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Figure 13: Experimental frequency response diagram for point Py in stable state 2. Fo=1.5

N, frequency range Ω=[15, 47].

experimental frequency response diagram of point Py in stable state 2 for a

forcing amplitude of 1.5 N is shown in Fig. 13. Modes ws2
2

and ws2
3
, at 17.8

Hz and 46.2 Hz appear in the response. Note that the response of point Py in

stable state 2 is qualitatively similar to that of point Px due to the orthogonal

symmetry of the response. However as orthogonal symmetry is broken due

to manufacturing imperfections, mode ws2
1

does not appear in Fig. 13 as for

stable state 2 the point Py lies on a nodal line of this mode. The natural

frequency of mode ws2
1

is identified to be at 16.9 Hz.

A comparison for the regions showing nonlinear response for point Px in

stable state 1 and point Py in stable state 2 is given in Fig. 14. When two

amplitude points appear for a given forcing frequency, the presence of two
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Figure 14: Subharmonic oscillations of modes w1 and w2 for a forcing amplitude Fo= 5 N,

for (a) point Px in state 1 and (b) point Py in state 2. Vertical lines show the regions of

subharmonic oscillations at twice the frequency of modes w1 and w2 in both stable states.

dominant harmonics in the response is signalled. This type of response coin-

cides with 1/2 subharmonic oscillations of modes w1 and w2 for both stable

states as shown in Ref. [18], matching well known results in the nonlinear

dynamics literature [27, 28]. For both frequency ranges, when comparing the

two stable states it can be seen that these is a small shift in the frequencies

where subharmonic oscillations for modes w1 and w2 occur, however the re-

sponse is qualitatively similar. The previous results confirm the assumption

of a qualitative orthogonally symmetric response for the stable states of the

plate, however due to the manufacturing imperfections it is not perfect.

4.3. Critical displacement condition

The critical displacements for points Px and Py are statically measured

giving 5 mm and 1.5 mm respectively. Thus, the deflection thresholds to

change from stable state 2 to stable state 1 is 1.5 mm, and 5 mm from stable
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state 1 to stable state 2. The radii of curvature are 0.6 m and 10 m for

stable state 1 and 2 respectively. These values represent static characteris-

tics of the plate, therefore we perform dynamic measurements of the critical

displacement to reveal any dynamic effects not captured by the critical dis-

placement condition. For practical reasons the deflection of point Ps located

at (180,150), which is closer to the centre of the plate on the same perpen-

dicular line as point Px, is measured. This is done as deflections underwent

by point Ps are smaller in comparison to those of point Px, ensuring that

the large displacements can be measured with the available laser vibrometer.

The defined deflection threshold would remain valid due to the proportion-

ality of the deflection shape assumed in section 2 for the plate, which implies

that when point Ps reaches its critical displacement point Px must also have

done so. The statically measured critical displacement for point Ps is 0.2

mm.

The displacement instants before a snap-through is triggered from stable

state 2 to stable state 1 for point Ps as a function of the forcing frequency is

presented in Fig. 15. As with the experimental frequency response diagrams

(Figs. 11-14), the displacement is measured over consecutive forcing periods

with the maximum displacement for each forcing period plotted. Multiple

displacement amplitudes are observed for some frequencies due to subhar-

monic behaviour. However the subharmonic response is small such that the

displacements are clustered around a mean value which indicates the critical

displacement threshold. It can be seen that away from the linear and sub-

harmonic resonances the dynamic critical displacement matches the static

critical displacement value for point Ps. The value of the critical displace-
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ment overshoots its static value around resonances as inertial forces dominate

the response for these frequencies. Thus, the elastic forces (stiffness) of the

plate dominate the snap-through phenomenon when the plate is driven at

frequencies away from resonance, whereas inertial effects become dominant

around both linear and nonlinear resonances. Therefore, the condition mark-

ing the onset of the snap-through phenomenon varies with the frequency of

the dynamic excitation. Hence, the threshold incorporating this dynamic

effect is redefined as a dynamic critical displacement in section 5.
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Figure 15: Experimental peak-to-peak displacement for point Ps instants before a dynam-

ically induced snap-through from state 2 to state 1 is triggered. This marks the critical

displacements as a functions of the forcing frequency for snap-through from state 2 to

state 1.
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4.4. Cross-well dynamic response

Having identified a dynamic condition marking the onset of snap-through

in section 4.3, the force required to achieve this deflection is also measured.

As for the dynamic critical displacement, the force required to induce snap-

through from state 2 to state 1 is measured over consecutive forcing periods,

the results are shown in Fig. 16. The force vs frequency relationship is

in good agreement with previous works on snap-through of shells, see for

example [29]. Once more, the results are clustered around a value showing

that the forcing level before snap-through remains almost constant. This

force threshold marks the boundary separating oscillations confined to stable

state 2 with those confined to stable state 1.

Due to the asymmetry of the potential wells of the system, seen in Fig. 5,

once a snap-through from the lower energy to the higher energy well is

triggered, the system remains oscillating confined to this state. It can be

seen that the regions requiring less forcing input to trigger snap-through are

around the linear and subharmonic resonances of the bi-stable plate in state

2, at 16.9, 17.8, 34, 36 and 46.2 Hz. This result shows that the characteristics

of the dynamic response, both linear and nonlinear, for oscillations confined

to a potential well, influence the snap-through dynamics. This fact has not

been highlighted in previous dynamic studies considering snap-through in

the of bi-stable plates [9, 20, 21].

To illustrate the process of snap-through from state 2 to state 1 the dis-

placement and force response for a forcing frequency of 35 Hz are shown in

Fig. 17. Inspecting Figs. 17(a) and 17(c) at around 1.2 s a very noticeable

spike appears in both the displacement and force time series, this marks the
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Figure 16: Experimental forcing amplitude required to dynamically induce snap-through

from state 2 to state 1. The vertical lines indicate the relationship between the modes and

subharmonic oscillations with the regions requiring less actuation input to dynamically

triggering snap-through.
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instant where the snap-through is dynamically triggered. An interesting ob-

servation is the difference between the DC shift of the displacement response

before and after the snap-through. This is approximately 0.27 mm which is

very close to the static out-of-plane displacement that point Ps undergoes to

reach the other stable configuration. The time series then settles down to zero

as laser vibrometers cannot measure DC components in the displacements.

As the forcing amplitude is further increased a dynamic snap-through

from state 1 to state 2 is induced. Due to the asymmetry in the shapes of the

stable configurations, the difference between the energy required to overcome

the unstable equilibrium separating the stable equilibria is different. As a

result, when a snap-through is induced from an initial condition lying in the

potential well of stable state 1, the energy given to the plate is sufficient to

trigger a snap-through back from stable state 2 to state 1 as shown in Fig. 18.

The first snap-through is induced at around 2.44 s, where a marked change

in both the displacement and force time responses is seen. In this limiting

case, after this event the plate returns to oscillate around stable state 1 for

a brief time followed by a second snap-through at 2.6 s.

If the energy of the input is increased the system immediately jumps

back to stable state 1, triggering a continuous steady state snapping be-

tween stable configurations (continuous cross-well oscillations) as shown in

Fig. 19(a). This response shows a very erratic non-repeating behaviour in

the displacement time series. Due to the high levels of energy involved in

this type of oscillations the forcing input interacted with the response of the

plate as can be seen in Fig. 19(b). The non-repeating character of the dis-

placement response and the observed peaks in the power spectrum presented
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Figure 17: Experimental response for a dynamically induced snap-through from state 2 to

state 1. Forcing frequency Ω=35.0 Hz.(a) Displacement time response. (b) Displacement

power spectrum. (c) Force time response. (d) Force power spectrum.
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Figure 18: Experimental response for a dynamically induced snap-through from state 1

to constant snap-through. Forcing frequency Ω=27.0 Hz.(a) Displacement time response.

(b) Force time response.
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in Fig. 19(c) at incommensurate frequencies of the modes, as well as at the

modal frequencies and their integer multiples, are indications of a chaotic re-

sponse [30]. Inspecting the spectrum with a logarithmic scale for the Power

Spectrum Density (PDS) of the displacement in Fig. 21, broadband peaks

are observed for the response reaffirming the case for a chaotic behaviour

of the plate for this dynamic regime. Figure 20 shows the forcing ampli-

tude required to trigger this behaviour as a function of the forcing frequency.

Similarly to Fig. 16, this force threshold marks the boundary separating os-

cillations confined to stable state 1 with the region of constant snap-through

between stable states.

5. Simulation results and model validation

To validate the proposed model, numerical simulations are obtained and

compared to the experimental results for the cross-well dynamics of the plate.

Initially, we introduce the unmodelled dynamic effect on the threshold mark-

ing the onset of the snap-through phenomenon. This is achieved by defining

the dynamic critical displacements as

ws1
crit

(Ω) =
2

(Ω− ωws1
1
)2 + d1Ω

+
2

(Ω− 2ωws1
1
)2 + d2Ω

+ ws1
static

, (11)

and for state 2 by

ws2
crit

(Ω) =
2

(Ω− ωws2
2
)2 + e1Ω

+
2

(Ω− 2ωws2
2
)2 + e2Ω

+ ws2
static

, (12)

where Ω is the forcing frequency, d1, d2, e1 and e2 are constants related to

the amplitude of the critical displacement around the resonances, which are

identified from the experiments. The static critical displacements are equal
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Figure 19: Experimental response for a constant snap-through between stable states.

Forcing frequency Ω=23.0 Hz.(a) Displacement time response. (b) Displacement power

spectrum. (c) Force time response. (d) Force power spectrum.
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Figure 20: Experimental forcing amplitude required to dynamically induce snap-through

from state 1 to constant snap-through oscillations as a functions of the forcing frequency.

33



10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Frequency [Hz]

P
S

D
 D

is
pl

ac
em

en
t [

m
m2 H

z−
1 ]

Figure 21: Experimental displacement PSD with logarithmic scale for continuous snap-

through between stable stares for a forcing frequency of Ω=23.0 Hz. Broadband peaks are

observed indicating a chaotic response.
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to the equilibrium position for each state, that is for state 1

ws1
static

= ws1
e , (13)

and for state 2,

ws2
static

= ws2
e , (14)

To validate the above definition given in Eqs. (11)-14, Fig. 22 shows

the comparison between the simulated dynamic critical displacement to the

experimental mean critical displacement calculated by averaging the consec-

utively sampled values plotted in Fig. 15. Averaging the values for a given

forcing frequency does not smooth out the underlying dynamic behaviour

and allows for clearer comparison with the simulated results. Good agree-

ment can be seen for the dynamic critical displacement ws2
crit

marking the

onset of snap-through from state 2 to state 1 with the proposed function. A

similar condition can be formulated for the snap-through from state 1 to the

steady state constant snap-through between stable states. However, due to

the chaotic nature of the response of the bi-stable plates before these oscil-

lations, it is impossible to obtain experimentally the critical displacement as

a function of the frequency with the available measuring equipment. Never-

theless, it is hypothesized that the mechanism is essentially the same as for

the snap-through from state 2 to state 1.

A simulated time series for a snap-through from stable state 2 to stable

state 1 is shown in Fig. 23 for a forcing frequency of 39 Hz and a forcing

amplitude of 5.5 N. Once the snap-through is triggered the resulting oscilla-

tions are restricted to state 1, as not enough energy is given to the system to

snap back to state 2 and into constant snap-through. A simulated time series
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Figure 22: Comparison between experimental (dots) and simulated (solid line) dynamic

critical displacement.
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showing oscillations involving constant snap-through between stable states is

given in Fig. 24(a) for a forcing frequency of 23 Hz. The time response shows

a non-repeating behaviour where non-periodic oscillations between the mini-

mum and maximum values appear to occur near a dominant frequency. The

power spectrum of the time series shows more than three peaks at incom-

mensurate frequencies, around 7, 13, 41 and 43 Hz in Fig. 24(b), matching

the results previously shown in Fig. 19(a). Furthermore, the simulated PSD

of the displacement plotted with logarithmic scale shows broadband peaks

in Fig. 25. This compares qualitatively with experimental results shown in

Fig. 21, matching the observed indications pointing to a chaotic behaviour

given in section 4.4.

To show the global validity of the model, the different regions of linear and

nonlinear responses using the forcing amplitude and frequency as parameters

are compared summarising the different dynamic behaviours exhibited by the

bi-stable plate. The comparison of the experimental and simulated dynamic

response for oscillations initially starting in state 2 is presented in Fig. 26.

Four distinctive regions are observed: linear oscillations confined to stable

state 2, subharmonic oscillations of modes ws2
1

and ws2
2
, linear oscillations

confined to stable state 1, and constant snap-through oscillations between

stable state 2 and stable state 1. The experimental boundary marking the

change from stable state 2 to stable state 1 (solid line with ♦ markers) is

compared to the simulated boundary (solid line) showing a good match. It

can be seen that the simulated results predict quite accurately the differ-

ent boundaries marking the onset of the subharmonic oscillations and the

jump from state 2 to state 1, except for the range between 19-25 Hz. An
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Figure 23: Simulated response for a dynamically induced snap-through from state 2 to

state 1. Forcing frequency Ω=39.0 Hz. Forcing amplitude Fo=15.6 N. Compare with

experimental data in Fig. 17(a).
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Figure 24: Simulated response for a dynamically induced snap-through from state 1 to

constant snap-through. Forcing frequency Ω=23.0 Hz. Forcing amplitude Fo=47.5 N. (a)

Displacement time response. (b) Displacement power spectrum. Compare with experi-

mental data in Figs. 19(a) and 19(b).

antiresonance lying in this frequency range is over predicted by the model.

Thus, the model shows a stiffer behaviour of the plate around this frequency

range resulting on a much higher level of forcing required to deflect the plate

past its critical displacement. In addition, a good match is achieved between

the simulated boundaries marking the onset of the subharmonic oscillations

for mode w1 (dashed line) and mode w2 of stable state 2 (doted line) with

the experimental results (shown with ∗ and ◦ markers respectively). As the

force parameter is increased the experimental boundary separating linear os-

cillations in stable state 1 from constant snap-through oscillations (solid line

with × markers) is reached, this is compared to the simulated results in the

following.

Figure 28 shows the comparison of the experimental and simulated dy-

namic response for oscillations initially starting in state 1. Three distinctive
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Figure 25: Simulated power spectrum for the displacement response of a dynamically

induced snap-through from state 1 to constant snap-through showing broadband peaks.

Forcing frequency Ω=23.0 Hz. Forcing amplitude Fo=47.5 N. Compare with experimental

data in Fig. 21.
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Figure 26: Different dynamic behaviours for oscillations with initial condition in stable

state 2. Four distinctive regions are observed: linear oscillations confined to stable state 2,

subharmonic oscillations of modes ws2

1
and ws2

2
, linear oscillations confined to stable state

1, and constant snap-through oscillation between stable state 2 and stable state 1. In addi-

tion three experimental and simulated force boundaries separating the regions are shown:

force for snap-through from stable state 2 to state 1 (solid line with ♦ markers and solid

line respectively), subhamornic oscillations of mode ws2

1
(∗ markers and dashed line re-

spectively), subhamornic oscillations of mode ws2

2
(◦ markers and dotted line respectively).

The force boundary between oscillations in stable state 1 and constant snap-through is

also included (solid line with × markers), however not compared to simulated results.
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behaviour for oscillations starting on stable state 2.
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regions are observed, linear oscillations confined to stable state 1, two regions

of subharmonic resonance of modes ws1
1

and ws1
2
, and constant snap-through

oscillation between stable state 1 and stable state 2. In this case, for the

experimental (solid line with × markers) and simulated boundaries (solid

line) marking the onset of constant snap-through between stable states only

a qualitative match was achieved. This might be a result of the strong in-

teraction between the plate and the shaker for these levels of excitation.

However, it still provides an indication of the boundary marking the onset of

this dynamic behaviour. As for oscillations starting in state 2, a good match

between the experimental (shown as ∗ and ◦ markers respectively) and sim-

ulated boundary (shown as dashed and dotted lines respectively) marking

the onset of subharmonic oscillations for modes ws1
1

and ws1
2

of stable state

1 is achieved. Figures 26-28 provide a detailed summary of the rich dynamic

behaviour exhibited by the studied bi-stable structure. As mentioned in sec-

tion 2, due to asymmetries in the bi-stable plates distinct levels of forcing

arise for triggering snap-through from each stable state. This is particularly

advantageous for morphing purposes as perfect orthogonal symmetry intro-

duces difficulties for configuration control, as for any given static or dynamic

actuation load both stable equilibria (each one associated to each state) have

almost the same likeliness to attract the motion of the plate triggering contin-

uous cross-well oscillations. However, for other applications such as energy

harvesting perfect symmetry can be exploited to achieve broadband large

amplitude energy conversion [31].
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Figure 28: Complete dynamic behaviour for oscillations starting in stable state 1. Three

distinctive behaviours are observed, linear oscillations confined to stable state 1, two re-

gions of subharmonic resonance of modes ws1

1
and ws1

2
, and constant snap-through os-

cillation between stable state 1 and stable state 2. In addition three experimental and

simulated force boundaries separating the regions are shown: force for snap-through from

stable state 1 to constant snap-through (solid line with × markers and solid line respec-

tively), subhamornic oscillations of mode ws1

1
(∗ markers and dashed line respectively),

subhamornic oscillations of mode ws1

2
(◦ markers and dotted line respectively).
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6. Conclusions

The dynamics for a bi-stable composite plate are experimentally investi-

gated and modelled focusing on oscillations between stable states or cross-

well dynamics. It is shown that the experimental condition to trigger a

snap-through is governed by a displacement threshold that is frequency de-

pendent, defined as the dynamic critical displacement. Experimental results

showed the force required to dynamically trigger snap-through is strongly

related to the linear and nonlinear resonances of the plate. This observation

shows that features of the dynamic response for oscillations confined to a

potential well influence the dynamic response leading to snap-through. This

fact has not been highlighted in previous studies on the dynamics of bi-stable

plates. Additionally, for oscillations involving snap-through between stable

states a complex nonlinear behaviour is observed. In particular, for steady

state oscillations between stable states evidence indicating the characteristics

of a chaotic response is observed.

A simple model extending the results from Ref. [18] including the critical

displacement conditions to account for cross-well dynamics of the bi-stable

plate is developed. A good qualitative match for the cross-well dynamics

of the bi-stable plate is obtained with the model. The snap-through phe-

nomenon is captured, in particular the snap-through force from stable state

2 to stable state 1 is closely matched. Moreover, the model captured the

experimentally observed complex continuous snap-through oscillations from

one state to the other, matching the characteristics of a chaotic response.

Figures 26-28 summarise the rich dynamic features of the response of the

bi-stable plate. This information could be used for selecting efficient con-
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trol and actuation strategies both to stabilize a desired state and to achieve

morphing configuration for applications implementing bi-stable composites.

Furthermore, asymmetries in the response of the bi-stable structures could

be designed in other to facilitate morphing and/or impede dynamic per-

turbations. Concerning the critical displacement condition, more research

is needed to shed light onto the actual shape of the unstable equilibrium

through which bi-stable composites dynamically. This is necessary for closer

approximations of the critical displacement condition.
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