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Abstract

This paper presents the derivation and validation of a low order model for

the nonlinear dynamics of cross-ply bi-stable composite plates focusing on

the response of one stable state. The Rayleigh-Ritz method is used to solve

the associated linear problem to obtain valuable theoretical insight into how

to formulate an approximate nonlinear dynamic model. This allows us to

follow a Galerkin approach projecting the solution of the nonlinear problem

onto the mode shapes of the linear problem. The order of the nonlinear

model is reduced using theoretical results from the linear solution yielding

the low order model. The dynamic response of a bi-stable plate specimen is

studied to simplify further the model by only keeping the nonlinear terms

leading to observed oscillations. Simulations for the dynamic response using

the derived model are presented showing excellent agreement with the exper-
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imentally observed behaviour. Furthermore deflection shapes are measured

and compared to the calculated mode shapes, showing good agreement.

Key words: Bi-stable composites, Morphing structures, Low order

modelling, Mode shapes

1. Introduction

Structures made from composite laminates are becoming increasingly

important in a wide variety of applications including adaptive structures.

Promising developments in this field relate to curved composite laminates

which have multiple statically stable shapes [1]. These shapes result from

an unsymmetric stacking sequence leading to asymmetric residual thermal

stresses being induced during the curing process [2]. The transition between

stable states is achieved by a snap-through mechanism which is strongly non-

linear in nature [3]. Due to the property of multi-stability, these materials

have been considered for use in a range of adaptive structures, particularly

for morphing aerospace structures [4]. Recently, techniques to design the in-

duced thermal stresses have allowed the production of a wide range of desired

stable shapes [5], and aerospace applications using the designed morphing ca-

pabilities have been proposed [6].

Most of the studies on bi-stable composite laminates for morphing appli-

cations have focused on modelling the shape after the manufacturing process

and their static characteristics [8, 9]. More specifically, these studies have

focused on the identification of the stiffness characteristics [10, 11], and the

static load required to induce snap-through [12, 13, 14]. However, the op-

erating conditions of aerospace morphing applications will inevitably expose
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these composite structures to high levels of dynamic excitation, for example

in an aeroelastic environment. Potentially, dynamic excitations could induce

undesired sudden jumps between stable states or even early fatigue failure

to the structure. However, to date, very little work has been carried out to

examine the dynamics of bi-stable composites. A theoretical study of the

dynamics of snap-through in bi-stable composites has been conducted [15].

It compared a semi-analytical model for the deflection of bi-stable compos-

ites based on a strain energy approximation with Finite Element Analysis re-

sults, showing good agreement for the force required to trigger snap-through.

Experimentally, high amplitude oscillations of a bi-stable plate, showing in-

dications of chaotic oscillations across the snap-through region, have been

presented [16]. In addition, the nonlinear dynamic response of a single stable

state of a bi-stable composite plate was experimentally studied showing the

response is dominated by 1/2 subharmonic oscillations [17].

The purpose of this paper is to derive a simple low order model for

the dynamic response of cross-ply bi-stable composite plates confined to

one stable state. Important dynamic features include subharmonic reso-

nances, which have previously been observed in nonlinear vibration of flat

composite plates [23], as they can lead to catastrophic failure of aerospace

structures [24, 25], and the transverse vibration mode shapes. Modal fre-

quencies and mode shapes are obtained following a Rayleigh-Ritz approach

for the associated linear problem showing good agreement with experimental

results. The Rayleigh-Ritz method has been employed to obtain analytical

expressions for the mode shapes in previous theoretical studies on cylindrical

isotropic shells [18], point supported plates [19], and orthotropic plates [20].
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Experimental studies on the deflection of circular [21] and spherical isotropic

plates [22] can be found in the literature. However, few studies comparing

experimental deflection shapes to theoretical mode shapes were found in the

literature [22]. To the knowledge of the authors no comparison between the-

oretical mode shapes and experimental deflection shapes for bi-stable com-

posites has been presented. A good understanding of the deflection shape

of such structures is paramount in the successful implementation of morph-

ing and vibration suppression control for structures incorporating bi-stable

composite. The nonlinear problem is approximated by following a Galerkin

procedure projecting the solution onto the mode shapes of the linear problem

obtaining a set of nonlinear modal equations. Theoretical observations from

the linear solution show close agreement between the chosen shape functions

and the mode shapes obtained for the associated linear problem allowing to

reduce the order of the nonlinear model. An experimental characterisation

is conducted for the linear and nonlinear response of a square carbon-fibre

epoxy bi-stable plate [04− 904]T test specimen showing very close agreement

with the theoretical observations. In addition, this characterisation is used

to retain the relevant nonlinear terms in the modal nonlinear equations of the

low order model. A validation of the model is conducted by comparing simu-

lated results for the key dynamic features of the response with experimental

results.

The layout of the paper is as follows. In section 2, the Rayleigh-Ritz

method is employed to obtain modal frequencies and mode shapes for the

associated linear undamped shell vibration problem. Then, equations of mo-

tion for transverse displacement vibrations for bi-stable plates are derived
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using Love’s equations of motion for a shell including the von Kármán non-

linearity in strain-displacement relations to account for geometric nonlinear-

ities [26]. The Galerkin approach is followed to obtain a set of nonlinear

ordinary differential equations using the shape functions employed in sec-

tion 2 as a base for the expansion of the transverse displacement nonlinear

solution. In section 3, the dynamic response of a test specimen is studied.

Theoretical results are used to reduce the number of degrees-of-freedom and

the required nonlinear terms to be kept in the equations to obtain a good

low-order approximation for the dynamics of the plate, as described in section

4. In section 5, simulations for frequency response diagrams and displace-

ment time series are conducted using the derived model showing good match

with the experimental results. In section 6 of this paper, the mode shapes

obtained in section 2 are compared to deflection shapes for the bi-stable

plate specimen, showing good agreement. In addition, the deflection shapes

for subharmonic oscillations are studied revealing a nonlinear behaviour in

the spatial response. Finally, conclusions are presented and future research

directions are discussed.

2. Model derivation

Classical nonlinear shell theory is employed to study the dynamics of bi-

stable composites. Typical bi-stable composites are thin-walled shells having

a small rise to span ratio, thus the principal curvatures are small as shown

in Fig. 1. Practically, this implies that Cartesian coordinates x and y may

be selected as the curvilinear coordinates for the middle surface of bi-stable

composites, thus shallow shell theory is adopted [27]. In the derivation of
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Figure 1: Curvilinear coordinates (x, y) and shell displacements u(x, y, t), y(x, y, t) and

w(x, y, t).

the model, first the associated linear problem is solved with the Rayleigh-

Ritz method, allowing us to obtain mode shapes for the reduced nonlinear

problem, as well as for comparison with experimentally measured deflection

shapes. Secondly, a Galerkin procedure to approximate the solution of the

nonlinear problem is conducted, using the same shape functions as for the

Rayleigh-Ritz method to obtain nonlinear modal equations for the time re-

sponse of cross-ply bi-stable composites.

2.1. Linear formulation

The Rayleigh-Ritz method is employed to solve the undamped linear

problem [28]. These results provide valuable theoretical insight used to ap-

proximate the solution of the more complex nonlinear problem. Following a

variational formulation, the total mechanical energy for an undamped, un-
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symmetrically laminated shell is given by

L = V − T , (1)

where L is the Lagrangian of the system. The strain (potential) energy is

written as

Vs =

∫ Lx

−Lx

∫ Ly

−Ly

[

Nxxǫ
o
xx +Nyyǫ

o
yy +Nxyǫ

o
xy +Mxxkxx +Myykyy +Mxykxy

]

dydx,

(2)

where Nij and Mij are the membrane forces and bending moments respec-

tively, and Lx and Ly are the dimensions of the shell (see Fig. 1). The

membrane and bending strains, ǫo and k respectively, are given by

ǫoxx =
∂u

∂x
+

w

Rx

, (3a)

ǫoyy =
∂v

∂y
+

w

Ry

, (3b)

ǫoxy =
∂u

∂y
+

∂v

∂x
, (3c)

(3d)

and

kxx = −
∂2w

∂x2
, (4a)

kyy = −
∂2w

∂y2
, (4b)

kxy = −2
∂2w

∂x∂y
. (4c)

The membrane and bending strains are related to membrane forces and bend-

ing moments by the constitutive relations for an unsymetrically laminated
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shallow composite shell [29], as

Nxx = A11ǫ
o
xx + A12ǫyy +B11kxx,

Nyy = A21ǫ
o
xx + A22ǫyy +B22kyy,

Nxy = A33ǫ
o
xy,

Mxx = B11ǫ
o
xx +D11kxx +D12kyy,

Myy = B22ǫ
o
yy +D21kxx +D22kyy,

Mxy = D33kxy, (5a)

where Aij , Bij and Dij represent the membrane stiffnesses, coupling moduli

and the bending stiffnesses of coordinate i acting on the direction j respec-

tively, and u(x, y, t), v(x, y, t) and w(x, y, t) are the displacements in the x,

y and z coordinate directions. An additional term in the strain energy is

introduced to account for an elastic support to which the bi-stable plate may

be attached to, given by

Vb =
1

2

∫ Lx

−Lx

∫ Ly

−Ly

[

kxu
2 + kyv

2 + kzw
2
]

dxdy, (6)

where kx, ky and kz are the elastic constants of the support in x, y and z

directions [19]. The total strain energy is thus

V = Vs + Vb. (7)

The kinetic energy may be written as

T =
1

2
ρh

∫ Lx

−Lx

∫ Ly

−Ly

[

u̇2 + v̇2 + ẇ2
]

dxdy, (8)

where ρ is the density and h is the thickness of the shell, and the overdot ˙

symbol implies differentiation with respect to rime.
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The types of shells studied herein have unrestricted edges, i.e. free bound-

ary conditions. Thus, no restrictions are placed on the admissible functions

(shape functions) for the Rayleigh-Ritz procedure, as no geometric bound-

ary conditions need to be satisfied. The solutions for the displacements along

each coordinate direction are represented by the expansions

u(x, y, t) =

M
∑

i=0

N
∑

j=0

Uij(t)uij(x, y),

=
I

∑

i=0

J
∑

j=0

Uij(t) cos

(

πxi

Lx

)

cos

(

πyj

Ly

)

+

2I+1
∑

i=I+1

2J
∑

j=J+1

Uij(t) cos

(

πx(i− (I + 1))

Lx

)

sin

(

πy(j − J)

Ly

)

+
3I+1
∑

i=2I+2

3J+1
∑

j=2J+1

Uij(t) sin

(

πx(i− (2I + 1))

Lx

)

cos

(

πy(j − (2J + 1))

Ly

)

+
4I+1
∑

i=3I+2

4J+1
∑

j=3J+2

Uij(t) sin

(

πx(i− (3I + 1))

Lx

)

sin

(

πy(j − (3J + 1))

Ly

)

,

(9)
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v(x, y, t) =
M
∑

i=0

N
∑

j=0

Vij(t)vij(x, y),

=
I

∑

i=0

J
∑

j=0

Vij(t) cos

(

πxi

Lx

)

cos

(

πyj

Ly

)

+

2I+1
∑

i=I+1

2J
∑

j=J+1

Vij(t) cos

(

πx(i− (I + 1))

Lx

)

sin

(

πy(j − J)

Ly

)

+

3I+1
∑

i=2I+2

3J+1
∑

j=2J+1

Vij(t) sin

(

πx(i− (2I + 1))

Lx

)

cos

(

πy(j − (2J + 1))

Ly

)

+
4I+1
∑

i=3I+2

4J+1
∑

j=3J+2

Vij(t) sin

(

πx(i− (3I + 1))

Lx

)

sin

(

πy(j − (3J + 1))

Ly

)

,

(10)

w(x, y, t) =
M
∑

i=0

N
∑

j=0

Wij(t)wij(x, y),

=
I

∑

i=0

J
∑

j=0

Wij(t) cos

(

πxi

Lx

)

cos

(

πyj

Ly

)

+

2I+1
∑

i=I+1

2J
∑

j=J+1

Wij(t) cos

(

πx(i− (I + 1))

Lx

)

sin

(

πy(j − J)

Ly

)

+
3I+1
∑

i=2I+2

3J+1
∑

j=2J+1

Wij(t) sin

(

πx(i− (2I + 1))

Lx

)

cos

(

πy(j − (2J + 1))

Ly

)

+
4I+1
∑

i=3I+2

4J+1
∑

j=3J+2

Wij(t) sin

(

πx(i− (3I + 1))

Lx

)

sin

(

πy(j − (3J + 1))

Ly

)

,

(11)

where Uij(t), Vij(t) andWij(t) are time response coefficients to be determined,

uij(x, y), vij(x, y) and wij(x, y) are the shape functions on each coordinate

direction, and, M = 4I + 2 and N = 4J + 2 give the total number of shape
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functions on each expansion as M × N . Notice that the above given shape

functions used to represent the displacements are all the possible non-zero

combinations of sinusoidal functions. In addition to the constant term given

by subscripts i = 0 j = 0, the two added terms inM = 4I+2 and N = 4J+2

account for the constants obtained from the cosine terms cos (0) multiplied

by all the possible sine functions in each displacement direction.

Substituting Eqs. (9)-(11) into Eq. (1), and using Lagrange’s equations [30]

d

dt

(

∂L

q̇i

)

−
∂L

qi
= 0, (12)

where the generalized coordinates qi are the time responses forming the vector

q = [Uij(t), Vij(t),Wij(t)]
T , the equations of motion for the linear problem

are obtained by substituting q = keiωt in Eq. (12), written as

(

K− ω2M
)

k = 0. (13)

The elements of the matrices M andK are given in Appendix A. Eigenvalues

and eigenvectors of Eq. (13) are used for comparison to experimentally mea-

sured modal frequencies and deflection shapes. Furthermore, the eigenvalues

of Eq. (13) serve as upper bounds for the modal frequencies in the design of

bi-stable composites. Table 1 gives the modal frequencies of the first modes

obtained from Eq. (13) for the case where a square bi-stable composite plate

is not attached to an elastic support. The associated mode shapes (deformed

shapes) are shown with respect to the undeformed shape (green) in Fig. 2.

The first six modes shown are rigid body modes, three rotations with respect

to the coordinate direction given as subscript, and three translations in each

displacement direction, are shown in Figs. 2(a)-2(c) and Figs. 2(d)-2(f) re-

spectively. These rigid body modes are important for the case where the shell
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is attached to an elastic support, as is the case for any real specimen with

free boundary conditions, for which the corresponding natural frequencies

are non zero. Figs. 2(g)-2(l) show the first six flexible modes of the compos-

ite plate. Each are either symmetric (S) or antisymmetric (A) with respect

to the (x,y) axes of the shell, thus the notation for the first out-of-plane

mode having symmetry with respect to the x-direction and antisymmetry

with respect to the y-direction is (S,A)w1 . The corresponding mode shape for

mode (S,A)w1 is w(S,A)1 . The theoretical results obtained from Eq. (13) are

further exploited in section 4 to obtain a low order model for the dynamics

of bi-stable composites.

2.2. Nonlinear analysis

To study the nonlinear response of bi-stable composites the classical shal-

low shell nonlinear vibration theory is followed. This takes into account the

effect due to the curvature and the stretching of the middle surface cap-

tured by the von-Kármán geometric nonlinearity in the strain-displacement

relations [31], given by

ǫoxx =
∂u

∂x
+

w

Rx

+
1

2

(

∂w

∂x

)2

, (14a)

ǫoyy =
∂v

∂y
+

w

Ry

+
1

2

(

∂w

∂y

)2

, (14b)

ǫoxy =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
. (14c)

The focus of the model is on the transverse deflection of bi-stable plates,

thus the in-plane inertias are neglected in the derivation following the shal-

low shell theory [32]. The system of nonlinear partial differential equations is

then simplified from three equations, one for each coordinate direction, to two
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Mode Modal Frequency [Hz]

(0, 0)x 0

(0, 0)y 0

(0, 0)z 0

(S, S)u0 0

(S, S)v0 0

(S, S)w0 0

(A,A)w1 19.8

(S, S)w1 45.7

(A, S)w1 61.6

(S, S)w2 128.1

(S,A)w1 130.9

(S,A)w2 138.8

Table 1: Modal frequencies for the first 12 modes. Notice that the first 6 modes are rigid

body modes.
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(a) (0, 0)x(x, y) (b) (0, 0)y(x, y) (c) (0, 0)z(x, y) (d) u(S,S)0(x, y)

(e) v(S,S)0(x, y) (f) w(S,S)0(x, y) (g) w(A,A)1(x, y) (h) w(S,S)1(x, y)

(i) w(A,S)1(x, y) (j) w(S,S)2(x, y) (k) w(S,A)1(x, y) (l) w(S,A)2(x, y)

Figure 2: Mode shapes (deformed shapes) for the first 12 modes of a square cross-ply

bi-stable composite plate with unsymmetrical stacking sequence obtained with Eq. (13).

Figures 2(a)-2(c) show the rotational rigid body modes in the x-, y- and z-directions, and

Figs. 2(d)-Fig. 2(f) show the translational rigid body modes in the x-, y- and z-directions.

Flexural modes are shown in Figs. 2(g)-2(l) where the subscripts refer to the symmetry

class and the modal number for each mode shape, e.g. w(S,A)1 refers to the first out-of-

plane mode shape of the symmetric-antisymmetric symmetry class.

equations, one for the transverse displacement and one obtained from a com-

patibility equation. Based on the constitutive relations given in Eq. (5) and

the above mentioned simplifications, the governing equation for the trans-

verse displacement for a cross-ply unsymmetrically laminated bi-stable com-
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posite is given by [35]

(D11 − P11B
2
11)

∂4w

∂x4
+ 2(D12 + P12B11B22 + 2D33)

∂4w

∂x2∂y2
+ (D22 − P22B

2
22)

∂4w

∂y4

+
1

Rx

∂2φ

∂y2
+

1

Ry

∂2φ

∂x2
−

∂2φ

∂y2
∂2w

∂x2
−

∂2φ

∂x2

∂2w

∂y2
+ 2

∂2w

∂x∂y

∂2φ

∂x∂y

+P12B11
∂4φ

∂y4
+ P12B22

∂4φ

∂x4
− (P11B11 + P22B22)

∂4φ

∂x2∂y2
+ Cẇ + ρhẅ =

p(x, y, t)− kzw(xs, ys, t),

(15)

where Rx and Ry are the radii of curvature in the x- and y-directions re-

spectively, C is the viscous damping, h is the thickness, ρ the density of the

plate, kz is the stiffness of a support to which the plate may be attached,

and p(x, y, t) is the external excitation. For a detailed derivation see for

example [33]. The coefficients Pij are given by

(P11, P12, P22) =
(A22, A12, A11)

A11A22 −A2
12

, (16)

P33 =
1

A66
. (17)

The compatibility equation is obtained from the elasticity relations for a

body subject to a state of plane stress [26], and may be written as

P11
∂4φ

∂y4
+ P22

∂4φ

∂x4
+ (P33 − 2P12)

∂4φ

∂x2∂y2
= P12B11

∂4w

∂x4
+ P12B22

∂4w

∂y4

−(P11B11 + P22B22)
∂4w

∂x2∂y2
+

1

Rx

∂2w

∂y2
+

1

Ry

∂2w

∂x2
+ (

∂2w

∂x∂y
)2 −

∂2w

∂x2

∂2w

∂y2
,

(18)

where Airy’s stress function φ(x, y, t) is defined as

Nxx =
∂2φ

∂y2
, Nyy =

∂2φ

∂x2
, Nxy = −

∂2φ

∂x∂y
, (19)
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(see for example [34]).

Equations (15) and (18) govern the dynamics of the transverse displace-

ment of the bi-stable composite confined to one stable state, thus no changes

between stable states or snap-through are accounted for. These equations

are solved using a Galerkin approach, as outlined in [35]. Both the trans-

verse displacement w(x, y, t) and the stress function φ(x, y, t) are defined in

the same domain and therefore it is assumed that they can be expanded in

the same shape functions w(i,j)(x, y). This is exact, for the case of a simply

supported plate with homogeneous material properties subject to small de-

flections [36]. For the case being considered here, this is an approximation

due to the coupling between in-plane and transverse deflections caused by

the curvature and unsymmetrical lamination. However, for shallow shells

this approximation yields very good results [41]. Therefore, the solution for

the transverse displacement and stress functions are written as

w(x, y, t) =

N
∑

i=0

N
∑

j=0

w(i,j)(x, y)Wij(t), (20)

φ(x, y, t) =

N
∑

m=0

N
∑

n=0

w(m,n)(x, y)Fij(t), (21)

where wij(x, y) are the shape functions given in Eq. (11), and, W(i,j)(t) and

F(m,n)(t) are the displacement and stress function time response coefficients

for shape function (i, j) and (m,n), the parenthesis in the equations for

time responses W(i,j)(t) and F(m,n)(t) are dropped for clarity. Note that the

first term in Eq. (20), i, j = 0, corresponds to a purely rigid body transla-

tion of the bi-stable plate in the out-of-plane direction, given by the term

cos
(

πx0
Lx

)

cos
(

πy0
Ly

)

in Eq. (11). In addition to this rigid body mode, rota-
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tional rigid body modes with respect to the in-plane directions also result

in out-of-plane displacements of the bi-stable plate. For the case where the

studied composite is attached to an elastic support as the one described in

Eq. (6), these rigid body modes will have a non-zero modal frequency. It

is assumed that the torsional rigidity of the support is large, thus only the

translational mode (S, S)w0 is considered in the derivation neglecting the ro-

tational modes (0, 0)x, (0, 0)y and (0, 0)z.

In order to obtain a solution for the transverse displacement the expan-

sions for the transverse displacement and the stress function, Eqs. (20) and

(21), are substituted in the governing equations given by Eqs. (15) and (18)
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to obtain

N
∑

i=0

N
∑

j=0

[

(D11 − P11B
2
11)w

′′′′

ij (x, y) + (D22 − P22B
2
22)w

∗∗∗∗

ij (x, y)
]

Wij(t)

+
N
∑

i=0

N
∑

j=0

2(D12 + P12B11B22 + 2D33)w
′′
∗∗

ij (x, y)Wij(t)

+

N
∑

m=0

N
∑

n=0

[

1

Ry

w
′′

mn(x, y) +
1

Rx

w∗∗

mn(x, y)

]

Fmn(t)

+
N
∑

m=0

N
∑

n=0

[

P12B11w
′′′′

mn(x, y) + P12B22w
∗∗∗∗

mn (x, y)
]

Fmn(t)

−

N
∑

m=0

N
∑

n=0

(P11B11 + P22B22)w
′′
∗∗

mn (x, y)Fmn(t)−

N
∑

i=0

N
∑

j=0

N
∑

m=0

N
∑

n=0

[

(w
′′

ij(x, y)w
∗∗

mn(x, y) + w∗∗

ij (x, y)w
′′

mn(x, y)
]

Wij(t)Fmn(t)

+

N
∑

i=0

N
∑

j=0

N
∑

m=0

N
∑

n=0

[

2w
′
∗

ij (x, y)w
′
∗

mn(x, y)
]

Wij(t)Fmn(t)

+
N
∑

i=0

N
∑

j=0

wij(x, y)CijẆij +
N
∑

i=0

N
∑

j=0

wij(x, y)ρhẄij = p(x, y, t)−
N
∑

i=0

N
∑

j=0

kzwij(x, y)Wij

(22)
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and

N
∑

m=0

N
∑

n=0

[

P22w
′′′′

mn(x, y) + P11w
∗∗∗∗

mn (x, y) + (P33 − 2P12)w
′′
∗∗

mn (x, y)
]

Fmn(t)

=

N
∑

i=0

N
∑

j=0

[

1

Ry

w
′′

ij(x, y) +
1

Rx

w∗∗

ij (x, y)

]

Wij(t)

+
N
∑

i=0

N
∑

j=0

[

P12B11w
′′′′

ij (x, y) + P12B22w
∗∗∗∗

ij (x, y)
]

Wij(t)

−
N
∑

i=0

N
∑

j=0

[

(P11B11 + P22B22)w
′′
∗∗

ij (x, y)
]

Wij(t)

+

N
∑

i=0

N
∑

j=0

N
∑

p=0

N
∑

q=0

[

w
′
∗

ij (x, y)w
′
∗

pq(y)− w
′′

ij(x, y)w
∗∗

pq(x, y)
]

Wij(t)Wpq(t),

(23)

where {}∗ and {}′ indicate differentiation with respect to x and y respectively

and the summation indices m,n have been used for φ, and, i, j and p, q for

the cases where w is multiplied by another w term. Following the Galerkin

procedure a set of modal nonlinear equations is obtained by projecting the

solution onto shape functions given in Eq. (11), leading to a system of two

coupled nonlinear equations of dimension 2(N × N) each. This is achieved

by multiplying Eq. (22) by arbitrary shape functions w(a,b), and Eq. (23)

by arbitrary shape functions w(m,n), integrating over the surface of the shell

and using the orthogonality conditions of the shape functions, given in Ap-

pendix B, to obtain

Ẅab + 2ζab,plateωab,plateẆab + ω2
ab,plateWab + ([Γab] + [Ξab])Fab

+

N
∑

k=0

N
∑

l=0

N
∑

p=0

N
∑

q=0

[

Πklpq
ab

]

WklFpq = Qab −Kz
abWab (24)
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and

Fmn = [Gmn]
−1 ([Hmn] + [Nmn])Wmn +

N
∑

i=0

N
∑

j=0

N
∑

p=0

N
∑

q=0

[Gmn]
−1 [T ijpq

mn

]

WijWpq,

(25)

where [G], [H ], [N ], [T ], [Γ], [Π] and [Ξ] are coefficients depending on the

mode shapes, Qab is the modal participation factor for mode (a, b) due to the

external forcing, Kz
ab is the stiffness term due to the elastic support in the

z-direction, and, ωab,plate and ζab,plate are the natural frequency and damping

ratio without including the curvature effect for mode (a, b). The definition of

the coefficients multiplying the time response functions for the deflection W

and stress function F in Eqs. (22) and (23) are given in Appendix B. Notice

that since the shape functions for both the transverse displacement and the

stress functions are sinusoidal functions, the stress function time response is

decoupled from the transverse displacement in Eq. (25). This allows us to

decouple the system of equations and write the governing equation of motion

for the transverse displacement by substituting the expressions for F(m,n) in

Eq. (24) as

Ẅab + 2ζabωabẆab + ω2
abWab

+
N
∑

i=0

N
∑

j=0

N
∑

p=0

N
∑

q=0

(

[Gab]
−1 ([Γab] + [Ξab])

[

T ijpq
ab

])

WijWpq

+

N
∑

i=0

N
∑

j=0

N
∑

m=0

N
∑

n=0

([

[Gab]
−1 ([Hab] + [Nab]) Π

ijpq
ab

])

WijWab

+

N
∑

i=0

N
∑

j=0

N
∑

p=0

N
∑

q=0

N
∑

m=0

N
∑

n=0

[Gab]
−1 [T ijpq

ab

] [

Πijmn
ab

]

WijWpqWab = Qab −Kz
abWab,

(26)
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where ωab and ζab are the natural frequency and damping ratio including the

curvature effects, accounted by term [Gab]
−1 ([Γab] + [Ξab]) ([Hab] + [Nab]), for

mode (a, b). Equation (26) gives the modal equation for the time response

Wab of mode (a, b), including all possible modal interactions. The solution

for the time response coefficients along with the corresponding mode shapes,

are substituted in Eq. (20) to obtain the solution for the transverse nonlinear

vibration of a bi-stable composite.

3. Dynamic response

The dynamics of a test specimen are experimentally studied to identify

the existence of important nonlinear phenomena in the response of the bi-

stable plate following the procedure detailed in Ref. [17]. These results allow

for identifying nonlinear oscillations of the tested plate as well as to validate

the derived model, as detailed in section 5. A bi-stable composite plate with

unsymmetric stacking sequence [04 − 904]T and dimension 300 by 300 mm is

used as the specimen for this study. The radii of curvature of the specimen

Rx and Ry are 0.9 m and 10 m, respectively. The material properties of

the specimen are given in Table 2. A schematic diagram of the plate in the

stable configuration studied throughout this paper is shown in Fig. 3. In this

state, the x-direction and y-direction are aligned with the larger and smaller

curvatures of the plate, i.e. with the directions of principal curvature. The

measured points Px and Py lie just off lines crossing at centre of the plate

parallel to the x- and y-directions, as shown in Fig. 3. The experimental

assembly showing both stable states of the bi-stable plate are shown in Fig. 4.

The plate is mounted to an electromechanical shaker from its centre point and
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Property V alue

F ibrevol. [%] 57.7

P ly thickness [mm] 0.131

Density ρ [kg/m3] 1570

Exx [GPa] 164

Eyy [GPa] 12

Ga
xy [GPa] 4.6

νa
xy = νa

yx 0.3

Table 2: Material properties for a ply of HexPly 8557 IM7 used to manufacture the bi-

stable plate experimental specimen.

the edges are unrestrained, resulting in a plate with free boundary conditions

attached to an elastic support.

Figure 3: Measured points to study the out-of-plane displacement of the bi-stable plate.

Frequency response functions (FRF) [38] are obtained to study the low

22



(a) (b)

Figure 4: Bi-stable plate mounted on Ling shaker, which is used as external excitation

source. (a) Stable state 1. (b) Stable state 2. (Reproduced with the kind permission of

the Journal of Intelligent Material Systems and Structures [39])

amplitude response of the specimen in the frequency range of interest for

this work. This is chosen so it contains the frequencies for which snap-

through is achieved with less actuation effort [39]. The FRF for point Px for

a low forcing amplitude of 1 N shows a linear response for this low level of

excitation in Fig. 5. Three modes dominate the response of the specimen in

this frequency range: mode w1 at 17.6 Hz, mode w2 at 19.4 Hz and mode

w3 at 45.4 Hz. Comparing the obtained theoretical modal frequencies with

the experimental results it is observed that mode w2 and w3 correspond

to theoretical modes (A,A)w1 and (S, S)w1 , respectively. A distinct notation

between theoretical modes (e.g. (S, S)w0 ) and experimental modes (e.g. w1),

will be used throughout the paper for differentiation. Mode w1 does not

relate to theoretical flexible modes, however inspecting its deflection shape,

shown in Fig. 9(a), it corresponds to the rigid body translational mode in

the out-of plate direction (S, S)w0 , given in Fig. 2(f). In this case the modal
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frequency is not zero as the plate is attached to an elastic support. This effect

is taken into account by introducing a non-zero stiffness in the out-of-plane

direction, kz, in Eq. (6), the remaining elastic constants kx and ky are zero.
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Figure 5: Experimental receptance (Displacement/Force) FRF for point Px. Forcing am-

plitude Fo = 1.0 N , frequency range Ω=[13, 49]

In order to identify nonlinear oscillations, the forcing amplitude is in-

creased and experimental frequency response diagrams are obtained using a

stroboscopic sampling procedure detailed in Ref. [17]. These diagrams are

obtained with single harmonic constant force stepped input sweeps. Peak-

to-peak amplitudes of response are sampled over several consecutive forcing

periods of steady state motions and plotted using the forcing frequency as

parameter. For a linear response, a single amplitude value is sampled for con-

secutive periods for a given forcing frequency. Conversely, several points for

a given frequency indicate the presence of multiple harmonics in the response
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signalling nonlinear oscillations. The experimental frequency response dia-

gram measured at point Px for an input force amplitude of 5 N is shown

in Fig. 6. The response is qualitatively similar to that observed in the lin-

ear FRF in Fig. 5, except for the regions around 35 Hz and 39 Hz. The

multiple points shown in the experimental frequency response diagram in

Fig. 6 indicate the appearance of nonlinear oscillations for these frequency

ranges. Inspecting the time series for the deflection of point Px presented

in Fig. 7(a) for a forcing frequency of 34.4 Hz, we observe a non-sinusoidal

response to a harmonic excitation of the plate. The power spectrum of this

time response is presented in Fig. 7(b). It shows that most of the energy

transmitted by the external forcing at 34.4 Hz, is transferred to a lower fre-

quency at around 17.6 Hz. This frequency is very close to the experimentally

identified modal frequency for mode w1. The experimental observations for

this nonlinear response show that as the forcing frequency is increased, the

expected linear type response at the forcing frequency loses its stability. A

completely different solution showing harmonics at the modal frequency and

at twice the modal frequency (coinciding with the forcing frequency) appear

around these frequency ranges. These characteristics match those of 1/2

subharmonic oscillations of mode w1 [17, 40].

A similar behaviour can be seen for the experimental frequency response

diagram measured at point Py for the response of mode w2, shown in Fig. 8. A

dominant nonlinear response is seen around 39 Hz, this is at twice the modal

frequency of mode w2. This response was previously observed in Fig. 6, how-

ever its dominance is revealed in Fig. 8, showing an amplitude of response

three times larger than the linear modal response of mode w2. Once more,
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Figure 6: Experimental frequency response diagram for point Px. Fo=5.0 N , frequency

range Ω=[13, 43]

the experimental results agree with the characteristics of a 1/2 subharmonic

response of mode w2. Although other sub- and super- harmonics were exper-

imentally searched for, both at lower and higher frequencies, no others could

be found for the chosen levels of forcing and the current plate configuration.

4. Low order model formulation

The main focus of this work is to develop a low order model for the trans-

verse nonlinear dynamics of bi-stable composites confined to a stable state.

Inspecting results from the associated linear eigenvalue problem, Eq. (13), it

is noticed that very few shape functions are required to almost completely

span the subspace of the first few transverse displacement eigenvectors. In

particular, for the transverse displacement modes (A,A)w1 , and (S, S)w1 vir-
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Figure 7: Experimental and simulated dynamic response for point Px. Forcing amplitude

Fo=5 N , forcing frequency Ω=34.4Hz. (a) Experimental displacement time response. (b)

Experimental displacement power spectrum. (c) Simulated displacement time response.

(d) Simulated displacement power spectrum.

tually no coupling exists between in-plane and transverse terms. Further-

more, for these modes it is possible to closely approximate each mode shapes

with only one shape function. Therefore, it is possible to treat these shape

functions as eigenvectors of transverse displacement for modes (A,A)w1 , and

(S, S)w1 . Furthermore, the rigid body translational mode (S, S)w0 , shown in
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Figure 8: Experimental frequency response diagram for point Py. Measured using strobo-

scopic sampling for a forcing amplitude of Fo = 5.0 N , frequency range Ω=[13, 43]

Fig. 2(f), is also closely approximated by a constant given by cosines terms

in Eq. (11) and the shape function w(S,S)1 . These theoretical results allow for

truncating the number of terms used in the nonlinear problem solution, keep-

ing only the relevant terms giving the eigenvectors of modes (S, S)w0 , (A,A)
w
1 ,

and (S, S)w1 , i.e shape functions w(S,S)0, w(A,A)1 , and w(S,S)1 . Moreover, the

previous discussion leading to an order reduction of the derived nonlinear

model corresponds closely to the results from the dynamic characterisation

presented in section 3. Thus, the solution for the transverse displacement

w given by Eq. (20) can be truncated keeping only the first three shape

functions in the expansion, i.e. w(0,0), w(1,1) and w(1,0) corresponding to theo-

retical modes shapes w(S,S)0 , w(A,A)1 , and w(S,S)1 respectively. The truncated
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solution for the transverse displacement is thus written as

w(x, y, t) =
N
∑

i=0

N
∑

j=0

(

(w(0,0) + w(1,0))W00(t) + w(1,1)W11(t) + w(1,0)W10(t)
)

wij(x, y)Wij(t),

(27)

where W(0,0)(t), W(1,1)(t) and W(1,0)(t), and, w(0,0)(x, y), w(1,1)(x, y), and

w(1,0)(x, y) are the time response coefficients and mode shapes for theoreti-

cal modes (S, S)w0 , (A,A)
w
1 , and (S, S)w1 respectively. Following the Galerkin

procedure by substituting Eq. (27) into Eq. (26), integrating over the shell

domain, and dropping vanishing coefficients, the following nonlinear ordinary

differential equations are obtained

Ẅ00 + 2ζ00wω00wẆ00 + ω2
00wW00 + Φ00w

1110W11W10 + Φ00
0000W00W00 +

Φ00
1100W11W00 + Φ00

0010W00W10 + Φ00
1111W11W11 + Φ00

100110W10W01W10 +

Φ00
110110W11W01W10 + Φ00

110110W11W01W10 + Φ00
111110W11W11W10 = Q00 sin (Ωt),

(28)

Ẅ11 + 2ζw11
ωw11

Ẇ11 + ω2
w11

W11 + Φ11
1001W10W01 + Φ01

1011W10W11 +

Φ11
1101W11W01 + Φ11

1111W11W11 + Φ11
100111W10W01W11 + Φ11

110111W11W01W11 +

Φ10
101111W10W11W11 + Φ11

111111W11W11W11 = Q11 sin (Ωt),

(29)

Ẅ10 + 2ζw10
ωw10

Ẇ10 + ω2
w10

W10 + Φ10
1110W11W10 + Φ10

1001W10W01 +

Φ10
1101W11W01 + Φ10

1010W10W10 + Φ10
1111W11W11 + Φ10

100110W10W01W10 +

Φ10
110110W11W01W10 + Φ10

110110W11W01W10 + Φ10
111110W11W11W10 = Q10 sin (Ωt),

(30)
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where the coefficients Φ are calculated using Eq. (26) and the relations given

in Appendix B, and ωw00
, ωw11

and ωw10
are the theoretical modal frequencies

of modes (S, S)w0 , (A,A)
w
1 , and (S, S)w1 respectively.

To reduce the nonlinear terms in Eqs. (28)-(30), the experimental obser-

vations for the response of the plate are employed. First, only interactions

between experimental modes w1 and w3, and modes w2 and w3, which cor-

respond to theoretical modes (S, S)w0 and (A,A)w1 , with mode (S, S)w1 are

experimentally observed. Thus, all terms leading to other modal interactions

are dropped. Second, only 1/2 subharmonic oscillations of modes w1 and w2

were observed in the response. Therefore, quadratic terms alone are kept in

the equations to account for this dominant nonlinear response [42, 43, 44], al-

lowing us to neglect cubic terms which lead to 1/3 sub- and super-harmonic

oscillations not observed for the current configuration. This last simplifi-

cation agrees with previous theoretical and experimental studies of shells,

where cubic terms have been neglected as the quadratic terms arising from

the curvature dominate the response of such structures [22]. Finally, the

values of the nonlinear coefficients remaining in the governing equations are

identified from the experimental frequency response diagrams.

Now we can rewrite equation Eqs. (28)-(30) for a sinusoidal forcing in the

centre of the plate to obtain the reduced set nonlinear modal equations as

Ẅ00 + 2ζw1
ωw1

Ẇ00 + ω2
w1
W00 + α11W

2
00 + α13W00W10 = Q00 sin(Ωt), (31)

Ẅ11 + 2ζw2
ωw2

Ẇ11 + ω2
w2
W11 + α22W11

2 + α23W11W10 = Q11 sin(Ωt), (32)

Ẅ10 + 2ζw3
ωw3

Ẇ10 + ω2
w3
W10 = Q10 sin(Ωt), (33)

where W(0,0)(t) is the time response coefficient of the transverse displacement
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for mode w1 with natural frequency ωw1
= 17.6 Hz, W(1,1)(t) is the time

response coefficient of the transverse displacement for mode w2 with natural

frequency ωw2
= 19.4 Hz, W(1,0)(t) is the time response coefficient of the

transverse displacement for mode w3 with natural frequency ωw3
= 45.4 Hz,

Ω is the forcing frequency, Qij is the modal participation factor for mode

wi given in Appendix B, αij is the coefficient for the nonlinear quadratic

term for an interaction between modes (wi, wj). The system of reduced

Eqs. (31)-(33) gives the time response for the set of modes kept in the low

order model. These equations are solved numerically to obtain simulated

modal time functions for the transverse deflection. The complete solution is

obtained by substituting the modal time functions along with the associated

mode shapes obtained from Eq. (13), into Eq. (20).

5. Simulations and model validation

The reduced set of nonlinear equations for the modal time responses given

by Eqs. (31)-(33) are solved using a Runge-Kutta type solver. The coeffi-

cients for the equations of motion are identified using experimental frequency

response diagrams obtained as detailed in section 3. The parameters used

in the simulations for equations Eqs. (31)-(33) are given in Table 3. The

numerical solution for the reduced set of equations in the derived model is

used to calculate the simulated dynamic response of the bi-stable plate and

compared to the experimental results. The simulated frequency response di-

agram for point Px is presented in Fig. 6 in a solid line and compared with

the experimental results shown by dots. It can be seen that the simulated

results are in good agreement with the experimental results. Furthermore,
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Parameter V alue

ωw1
[Hz] 17.6

ωw2
[Hz] 19.4

ωw3
[Hz] 45.4

ζw1
0.01

ζw2
0.01

ζw3
0.03

α11 300000

α13 680000

α22 680000

α23 700000

Q10 0.088

Q01 0.0035

Q11 1.02

Table 3: Parameters used in numerical simulations.

comparing the displacement and power spectrum graphs of point Px for a

forcing frequency Ω of 34.4 Hz, given in Figs. 7(c)-7(d), with the experimen-

tal results, shown in Figs. 7(a)-7(b), the ability of the model to capture even

detailed dynamic features is highlighted. In addition, a comparison between

the experimental and simulated frequency response diagrams for point Py is

shown in Fig. 8. As for point Px, a close quantitative and qualitative match

is achieved.

32



6. Spatial response comparison

Experimental deflection shapes are obtained and compared to theoretical

mode shapes. The experimental deflection shapes are obtained by exciting

the plate with sinusoidal inputs for a forcing frequency equal to the frequency

of the relevant modes. Additionally, deflection shapes for the ranges of sub-

harmonic oscillations are also obtained. The measurements are performed

for a range of forcing amplitudes between [0.5, 5] N in both stable states for

each of the dominant modes and subharmonic oscillations in order to detect

possible amplitude dependent deflection shapes. The experimental results

for both stable states are virtually identical, and for illustration we use those

obtained for state one. A Polytec OFV056/3001 scanning laser vibrometer

is used to acquire instant displacement for a grid of point on the bi-stable

plate surface. The software provided by the laser vibrometer manufacturer

is used to construct the deflection shapes. The algorithm obtains amplitude

and phase information for each point on the grid. The displacement in space

of these points is measured with respect to a plane (shown as a squared

grid in Figs. 9(a), 9(b), 10(a), 10(b), 11(a), 11(b), 12 and 13), from which

the deflected shapes can be inferred based on the assumption that the static

curvature is small (see section 2 and Fig. 1).

Figures 9(a) and 9(b) show the experimental and simulated mode shapes

for mode w1. Comparing the measured deflection shape shown in Figs. 9(a)

and 9(b) with the simulated mode shape in Figs. 9(c) and 9(d), a good qual-

itative match is achieved using the mode shapes from the linear associated

problem. As in Fig. 2, the simulated mode shapes (deformed shapes) in

Figs. 9(c), 9(d), 10(c), 10(d), 11(c) and 11(d) are shown with respect to
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(a) (b)

(c) (d)

Figure 9: Comparison between experimental deflections shapes for mode w1 and mode

shapes obtained from Eq. (13) for mode (S, S)w0 . (a) 3-D view of the experimental deflec-

tion shape for mode w1. (b) Lateral view (ZX plane) of the experimental deflection shape

for mode w1. (c) 3-D view of simulated mode shape (deformed shapes) w(S,S)0(x, y). (d)

Lateral (ZX plane) view of simulated mode shape (deformed shapes) w(S,S)0(x, y).

the undeformed shape of the bi-stable plate plotted in green. Experimental

deflection shapes for higher levels of forcing for the dominant modes are ob-
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tained, however no amplitude dependent behaviour is observed, hence these

images are omitted. The mode shapes and the experimental deflection shapes

for modes w2 and w3 are also compared in Figs. 10 and 11, respectively. For

mode w2 the experimental deflection shape differs from the calculated mode

shape. The observed mismatch may be explained by the effects added by

the non perfect support and small geometrical imperfections in the shape of

shells, as a non-uniform curvature, which can largely alter the actual shape

of the deflection [22, 31]. For mode w3 very good agreement between the

measured deflection shape and calculated mode shape is achieved as seen in

Fig. 11. This is a very relevant result since this mode dominates the dy-

namic behaviour in the frequency range of interest, which potentially allows

us to use the model for morphing shape and vibration suppression control of

bi-stable composites.

The deflection shapes for the subharmonic oscillations are also studied.

Figure 12 shows the deflection shape for a forcing amplitude of 1 N and

a forcing frequency of 34.8 Hz. For this level of forcing no subharmonic

response is observed (see Fig. 12), thus the measured shape matches that

observed for mode w3 as it dominates the linear response in this range of

frequencies. As the forcing amplitude is increased and the subharmonic in-

stability is triggered, the plate response shows two dominant harmonics, at

the forcing frequency and at half the forcing frequency. The corresponding

deflection shapes are shown in Figs. 13(a) and 13(b). In view of this, the

actual deflection shape for the subharmonic response is assumed to be the

sum of the linear response dominated by mode w3, and the response due

to the subharmonic resonance of mode w1. Inspecting Figs. 12 and 13(b),
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(a) (b)

(c) (d)

Figure 10: Comparison between experimental deflections shapes for mode w2 and mode

shapes obtained from Eq. (13) for mode (A,A)w1 . (a) 3-D view of the experimental de-

flection shape for mode w2. (b) Lateral view (ZY plane) of the experimental deflection

shape for mode w2. (c) 3-D view of simulated mode shape w(A,A)1(x, y). (d) Lateral (ZY

plane) view of simulated mode shape w(A,A)1(x, y).

the deflection shape due to the response of the harmonic at the forcing fre-

quency of the subharmonic oscillations shows the same shape as mode w3.
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(a) (b)

(c) (d)

Figure 11: Comparison between experimental deflections shapes for mode w3 and mode

shapes obtained from Eq. (13) for mode (S, S)w1 . (a) 3-D view of the experimental deflec-

tion shape for mode w3. (b) Lateral view (ZX plane) of the experimental deflection shape

for mode w3. (c) 3-D view of simulated mode shape w(S,S)1(x, y). (d) Lateral (ZX plane)

view of simulated mode shape w(S,S)1(x, y).

On the other hand, the deflection shape due to the response of the harmonic

at half the forcing frequency, is slightly different showing no curvature with

37



Figure 12: Experimental deflection shape for a forcing frequency of 34.8 Hz

respect to the x-direction deviating from the deflection shape of w1, as can

be seen by comparing Figs. 9(a) and 13(a). Hence, as the subharmonic oscil-

lations are triggered, the deflection shape of the plate varies, resulting in an

amplitude dependent behaviour of the spatial response. In spite of this, the

measured nonlinear deflection shape behaviour is approximated by the model

with the chosen mode shapes obtained from the associated linear problem,

as explained in the following.

The time response of mode W(0,0) when the subharmonic oscillations are

triggered is non-zero, this condition can be written as



















W(0,0) = 0, for F0 < Fsubw1

W(0,0) 6= 0, for F0 ≥ Fsubw1

(34)

where F0 is the forcing amplitude, and Fsubw1
is the forcing amplitude re-

quired to trigger the subharmonic oscillations for mode w1 previously calcu-

lated in Ref. [17]. Thus, for F0 ≥ Fsubw1
the total response for the subhar-
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monic oscillations associated to mode w1 is given by

w1sub(x, y, t) = (w(0,0) + w(1,0))W00(t) + w(1,0)W10(t), (35)

as the response for W(1,1) is negligible for this frequency range. The total

response for the subharmonic oscillations associated to mode w2 can be ob-

tained following a similar procedure using the results for Fsubw2
given in [17].

Equation (35) shows the ability of the derived model to qualitatively approx-

imate the observed nonlinear deflection shape behaviour.

(a) (b)

Figure 13: Experimental deflection shape for a subharmonic response. Forcing amplitude

Fo=4 N , forcing frequency Ω=34.8 Hz. (a) Experimental deflection shape due to the

response content at 17.6 Hz. forcing frequency of 34.8 Hz. (b) Experimental deflection

shape due to the response content at 34.8 Hz.

7. Conclusions

A mathematical model to capture the dynamic response of bi-stable com-

posite plates is derived using classical nonlinear shell theory. Modal equations

for the time response and associated mode shapes are combined to obtain
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the full response for the transverse displacement following a Rayleigh-Ritz-

Galerkin approach. The number of modes in the general model is reduced

based on theoretical results from the associated linear problem to obtain

a low order model for the dynamics of bi-stable composites. The reduced

model is validated comparing simulated results to the experimental response

of a bi-stable plate test specimen. The experimentally observed subharmonic

oscillations are modelled accurately with the nonlinearities kept in the low

order model. In addition, the calculated modal frequencies from the asso-

ciated linear problem are in good agreement with the experimental results

providing an upper frequency bound for each mode.

Experimental deflection shapes are measured for the relevant modes of the

plate and compared to theoretical mode shapes achieving good qualitative

results. The deflection shapes for the subharmonic response ranges are also

studied, revealing a quantitative change in deflection shape of the plate as

these oscillations are triggered. The experimentally observed behaviour con-

stitutes a rare bifurcation of the spatial response of a structure that deserves

further investigation. This nonlinear behaviour in the shape of the deflection

is approximately captured by the model. In addition, the frequency range of

interest for morphing applications may be identified with the derived model

by studying the symmetry of mode shapes with respect to the flat direction

of bi-stable composites, since this yields the modes requiring less actuation

effort to trigger snap-through. This is an important design feature to be

exploited for developing efficient morphing strategies and stability control to

prevent undesired snap-through for bi-stable composite applications.
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A. Components of the mass and stiffness matrices

The mass matrix M in Eq. (13) is given by











Maijmn [0] [0]

[0] Mbijmn [0]

[0] [0] Mcijmn











, (A.1)

where the coefficients are

Maijmn = ρh

∫ Lx

0

∫ Ly

0

(uijumn) dydx, (A.2)

Mbijmn = ρh

∫ Lx

0

∫ Ly

0

(vijvmn) dydx, (A.3)

Mcijmn = ρh

∫ Lx

0

∫ Ly

0

(wijwmn) dydx. (A.4)

The stiffness matrix K in Eq. (13) is given by











Ku
aijmn Ku

bijmn Ku
cijmn

Ku
bijmn Kv

bijmn Kv
cijmn

Ku
cijmn Kv

cijmn Kw
cijmn











(A.5)
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where the coefficients are written as

Ku
aijmn =

∫ Lx

0

∫ Ly

0

(

A11(u
∗

iju
∗

mn) + A33(u
′

iju
′

mn)
)

dxdy, (A.6)

Ku
bijmn =

∫ Lx

0

∫ Ly

0

(

A12(u
∗

ijv
∗

mn) + A33(u
′

ijv
∗

mn)
)

dxdy, (A.7)

Ku
cijmn =

∫ Lx

0

∫ Ly

0

(

A11

(

u∗

ij

wmn

Rx

)

+ A12

(

u∗

ij

wmn

Ry

)

−B11

(

u∗

ijw
∗∗

mn

)

)

dxdy

(A.8)

Kv
bijmn =

∫ Lx

0

∫ Ly

0

(

A22(v
′

iju
′

mn) + A33(v
∗

ijv
∗

mn)
)

dxdy, (A.9)

Kv
cijmn =

∫ Lx

0

∫ Ly

0

(

A22

(

v′ij
wmn

Ry

)

+ A12

(

v′ij
wmn

Rx

)

− B22

(

v′ijw
′′

mn

)

)

dxdy

(A.10)

Kw
cijmn =

∫ Lx

0

∫ Ly

0

(A11

(

wij

wmn

Rx

)

+ A22

(

wij

wmn

Ry

)

+ 2A12

(

wijwmn

RxRy

)

−B11

(

wijw
∗∗

mn

Ry

)

− B22

(

wijw
∗∗

mn

Ry

)

+D11

(

w∗∗

ij w
∗∗

mn

)

+D22

(

w′′

ijw
′′

mn

)

+ 2D12

(

w∗∗

ij w
′′

mn

)

+ 4D33

(

w∗
′

ijw
∗
′

mn

)

+ kzwijwmn)dxdy.(A.11)

B. Orthogonality conditions and coeffients

The orthogonality conditions for sinusoidal functions used in Eqs. (25)-

(26) are given by

∫ L

0

sin(αmx) sin(αnx) =



















0, for m 6= n

L
2
, for m = n

(B.1)

∫ L

0

cos(αmx) cos(αnx) =



















0, for m 6= n

L
2
, for m = n

(B.2)
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∫ L

0

sin(αmx) cos(αnx) = 0. (B.3)

The coefficients used in Eqs. (25)-(26) are given by

Kz
ab =

kz
ω2
ab,plateρh

, (B.4)

ω2
ab,plate =

1

ρh

(

λ4
xa

(

D11 − P11B
2
11

)

+ λ4
yb

(

D22 − P22B
2
22

))

+
1

ρh
2λ2

xa
λ2
xb
(D12 + P12B11B22 + 2D33), (B.5)

ω2
ab = ω2

ab,plate +Kz
ab + [Gab]

−1 ([Γab] + [Ξab]) ([Hab] + [Nab]) (B.6)

ζab,plate =
Cab

ω2
ab,plateρh

, (B.7)

ζab =
Cab

ω2
abρh

, (B.8)

Γab =
1

ρh

(

1

Rx

γ2
yb
+

1

Ry

γ2
xa

)

, (B.9)

Ξab =
1

ρh

(

γ4
yb
P12B11 + γ4

xa
P12B22 + γ2

xa
γ2
yb
(P11B11 + P22B22)

)

,

(B.10)

Πijmn
ab =

1

LxLyρh

(

−λ2
xa
γ2
yn
Φijmn

ab − γ2
xa
λ2
yn
Φijmn

ab + 2λxi
λyjγxm

γynΦ
ijmn
ab

)

,

(B.11)

Gab =
LxLy

4

(

γ4
xa
P11 + γ4

yb
P22 + γ2

xa
γ2
yb
(P33 − 2P12)

)

, (B.12)

Hab =
LxLy

4

(

1

Rx

λ2
xa

+
1

Ry

λ2
ya

)

, (B.13)
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Nab =
LxLy

4

(

λ4
xa
P12B11 + λ4

yb
P12B22 − λ2

x1
λ2
xb
(P11B11 + P22B22)

)

, (B.14)

T ijmn
ab =

(

λxi
λyjγxm

γynΦ
ijmn
ab + λ2

xi
γ2
yn
Φijmn

ab

)

, (B.15)

Qab =
4

LxLyρh

∫ Lx

0

∫ Ly

0

p(x, y, t)Xa(x)Yb(y)dydx, (B.16)

λxa
=

(

πxa

Lx

)

, (B.17)

γxa
=

(

πxa

Lx

)

, (B.18)

where the coefficients Φ is defined as

Φijmn
ab =

∫ Lx

0

∫ Ly

0

w(a,b)(x, y)w(i,j)(x, y)w(m,n)(x, y)dydx, (B.19)
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