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1. Introduction

Structures such as high-rise buildings benefit from shallow flooring systems since the floor-to-floor height

is a significant factor. The fact that a conventional composite (concrete slab sits on top of steel beam)

beam is deeper than a reinforced concrete beam is a strong disadvantage. Hence, in several situations it is

important to reduce the overall structural depth of the floor using partially encased composite beams [1].

These fully composite beams also have other advantages such as increased fire resistance, load carrying

capacity, local buckling stiffness and dramatic increase in the bending stiffness compared to conventional

beams. Moreover, a lower construction cost compared to the reinforced concrete is achieved by using

partially encased composite beams eliminating the construction time and amount of formwork and

scaffolding [2, 3, 4, 5].

Perforated steel beams are also widely used nowadays, replacing plain (solid-webbed) beams, while

integrating services such as electric wires and hydraulic pipes. Tests on short-span composite plate

girders with web openings were initially carried out by Narayanan et al. (1989) [6] and Roberts and Al-

Amery (1991) [7]. These tests showed that the shear strength of a composite plate girder is significantly

higher than that of a steel plate girder alone, if adequate shear connectors are provided in the composite

girder. In addition, the composite action under predominantly shear loading depends on the tensile or

pull-out strength of the shear connectors. Analytical models including a contribution from the slab were

proposed for determining the shear strength of composite plate girders. Experiments conducted by

Clawson and Darwin (1982) [8] and Donahey and Darwin (1988) [9] indicated that the behaviour of

composite beams with web openings is largely controlled by the shear-moment ratio at the web opening.

Darwin and Donahey (1988) [10] proposed an equation to express the ultimate shear-moment

relationship for composite beams with web openings.

In order to minimise the structural depth of the composite sections, steel perforated beams are designed

to act compositely with floor slabs lying within the steel flanges. The analysis that has been performed and

presented herein, together with the experimental programme carried out by Tsavdaridis (2010) [11], is

the first such work on shallow light-weight floor beams, and has resulted in a better understanding of the

failure mechanisms and the ultimate shear capacity.

Whilst numerous research papers were found in the literature review regarding conventional composite

flooring systems with the use of plane and perforated steel beams as well as partially encased composite

beams with the use of plain steel sections, only recently very limited study has been carried out on

partially encased composite beams with the use of various steel section profiles with web holes [12, 13].

Comparing conventional composite flooring systems and partially encased composite beams it is seen that

the concrete between flanges in the latter case increases the bending stiffness and reduces the vertical

displacements. Despite the advantages in terms of structural behaviour and cost, the behaviour of encased

perforated beam is not entirely understood yet.



2. New composite flooring system

For conventional composite floor beams or down stand composite beams, the thickness of the flanges

increases with the increase in span. Consequently, the steel sections are often heavier than needed [14].

The Ultra Shallow Floor Beam (USFB) is a new type of composite floor beam, which is fabricated by

welding two highly asymmetric cellular tee-sections together along the web. Profiled steel decking or

precast concrete floor units sit on the bottom flange, as shown in Fig. 1 and 2. The top and bottom tee-

sections are cut from different parent plain sections where the top tee-section is much smaller than the

bottom tee-section. This asymmetric section property reduces the weight of the beam and also increases

the moment capacity. The circular or elongated web openings provide a channel for reinforcing tie-bars,

building services and ducting through the structural depth of the beam, thus minimising the overall floor

depth. Transverse to the web reinforcing tie-bars can provide longitudinal shear strength by tying the

concrete on both sides of the web. Shear studs can be also used, welded horizontally on the web of the

steel beams. Full service integration can be achieved when deep profiled steel decking is employed, as

pipes or ducks pass through between the ribs of the steel decking, and typically every a few web openings

which are not filled by concrete. As the floors are cast, the in-situ concrete passes through most web

openings, which may or may not include a tie-bar or duct. In the case of ultra-shallow precast units, all

web openings are filled by in-situ concrete, hence service integration is not provided, as opposed to the

profile steel decking use. This concrete plug forms a unique mechanism for transferring longitudinal shear

force along the beam.

A comprehensive experimental study was carried out by the authors previous [15], conducting 16 push-

out tests on composite beams and investigating the behaviour of (i) the concrete-infill-only shear

connector, (ii) the tie-bar shear connector, (iii) the ducting shear connector and (iv) the horizontal shear-

stud connector. It is recommended that, because of the brittle failure mode, concrete-infill-only shear

connector should not be used as the sole means of providing the shear connection. However, it should be

used in conjunction with ductile shear connectors, such as tie-bar shear connector. It is worth to note that

only a few web openings are necessary to provide high longitudinal shear connection, therefore the

concept of providing free web openings for service integration can be applied successfully.

It is worth to emphasize that the current study investigates the percentage of contribution of the concrete

infill to the vertical shear capacity of the perforated steel sections. The results can be safely used in the

case of either tie-bar shear connectors or horizontal shear-stud connectors, leading to a somewhat

conservative design. �Arching� action is occurred through the concrete partial encasement, which is

resisted by the end plate connections. This method is used only when examining the vertical shear

capacity of the composite sections using isolated web openings, located away from the supports, as

opposed to the push-out tests performed in the complementary study [15], while investigating the

longitudinal shear. In case of using perforated steel beams with periodical web openings to study both the

longitudinal and vertical shear capacity due to the web opening existence, the bearing plate would not

have been used.

The common range of application for USFBs based is for slab depths of 180 to 300mm, in which the

concrete is placed flush with top flange. The nature of the choice of UC for the bottom tee-sections and UB

for the top tee-sections is that the asymmetry in flange areas can be over 3 to 1. Composite action reduces

this effective asymmetry and improves the bending resistance. In practice, the span to depth ratio of

USFBs is generally in the range of 25 to 30, which means that serviceability rather than bending or shear

resistance will control. A further study has been conducted by the authors on the derivation of dynamic

properties of USFBs through FEmodal analysis and experimental verification [16].



Fig. 1: USFB used with profiled steel decking (top) and with precast concrete unit (bottom) (adopted by

[17])

Fig. 2: Schematic representation of the USFB (example with the tie-bar shear connector)

3. Aim and objectives

The main purpose of this study was to compare the conventional composite beams using perforated

beams instead, hence allowing services to pass, with the use of the innovative USFB. Using USFB, the need

of shear connectors is limited, the structural depth is minimized and a light-weight is achieved.

Consequently, the span can be increased hence fewer columns are required and free of column areas can

be constructed as well as the concrete provides fire-resistance and some service integration is provide due

to use of perforated beams. In addition, the perforated beams do not fail neither under Vierendeel

mechanism, web-post buckling nor excessive local deformations in the vicinity of the web openings.

Therefore, USFB can successfully replace all current forms of composite flooring systems while the

advantages gained by using perforated beams at the same time are of great interest.

The aim is to investigate the contribution of concrete in perforated steel beams in resisting the vertical

shear when the concrete is cast between the flanges of the steel beam. It should be noted that this

experimental programme was intended to simulate a symmetric UB section without any mechanical shear

connectors, hence only the beam�s encasement is examined (i.e. steel ribbed deck with concrete is not



included). The percentage of the section enhancement and the additional shear capacity when the web

openings are in-filled with concrete-only was obtained. Therefore, the effect of the bond strength of the

interface between the steel and the concrete, as well as the bearing strength of the web opening area

together with the Vierendeel failure mechanism due to the confined concrete was explored and compared

against to the strength of the perforated bare steel beam. More analytical, the plastic hinges position and

the local buckling points were captured as well as the steel to concrete movement under bending was

clarified. Another important task was to validate the new approach and develop an elaborate model so it

could be used for further studies such as vibration, dynamic analysis, etc. Hence, the sub-objectives of this

research study are listed as follows:

 To demonstrate significant vertical shear enhancement due to the concrete infill.

 To provide a minimum concrete vertical shear contribution that can be applied in all cases of USFBs

based on the concrete encasement and the contact behaviour between the steel and the concrete.

 To establish FE models which are capable of predicting the structural behaviour of simply supported

USFBs with large isolated circular web openings.

 To examine both the load carrying capacities and the failure modes of the USFBs. Also, to study the

steel buckling behaviour, the concrete internal stresses (cracks), as well as the angles of the concrete

cracks, both experimentally and through the FE analyses.

 To perform a sensitivity FE study based on both concrete and steel material properties and their

constitutive relationships.

 To propose a simple design method of predicting the load carrying capacity of the particular steel-

concrete beam arrangement.

4. Experimental work

Four USFBs were tested in this research programme. The web opening diameter, do, is equal to 0.76h. For

small web opening diameters, for instance 30% of the beams depth, it is easy to show that a load path of

45o between flanges transfer the load across the web opening. However, for larger web openings the load

path is not so clear. All material and specimen tests are conducted in the Engineering Department

laboratories at City University, London.

4.1 Test specimen and measurement devices

A UB305x165x40 with material physical properties shown in Table 1 was used. For precautionary

reasons it was decided to test all the beams at the 14th day of curing, aiming for between 25 to 30MPa (to

be no greater than 35MPa) concrete strength on the day of the test. Early curing, without compromising

the concrete strength and quality, aims to control the construction time. This practice has also an impact

on the actual budget of a project.

A three-point bending load arrangement, with simply supported ends, results in a pure bending moment

distribution over the mid-span of the beams. The loading arrangement is shown in Fig. 3. The load was

applied through two hydraulic jacks and a spreader plate. The applied load and hence the bending

moments were obtained from the load cells connected to the jacks. High shear forces were generated in

the area of the web openings and so the existence of the concrete dramatically affected the results. The rig

set-up and test arrangement is shown in Fig. 4.

To measure vertical deflection three dial gauges were placed under the tension steel flange and aligned

with the edge of the hole. Two dial gauges were applied at the high moment side (HMS) of each web

opening (Dial Gauge 1 and 3) and one dial gauge at mid-span of the test beams (Dial Gauge 2) as depicted

in Fig. 3.



Fig. 3: Specimen (all dimensions are in mm)

Fig. 4: Experimental rig arrangement

4.2 Test cubes procedure

In this research programme a desirable maximum compressive strength was required to determine the

possible section enhancement at low concrete strengths. The strength was determined from the 14th day



of curing to also try and test at the minimum possible compressive strength used by the standards (i.e.

25MPa).

A mix design was necessary for this experimental programme. Compression tests were undertaken on

samples, removed from the forms and allowed to cure for predetermined periods such as 3, 7, 14 days etc..

The concrete strength tests are standardized and the method of making compressive specimens in the

field is covered under BS EN197:Part 1:2000 [18]. Based on the guidelines of BRE [19], the fourteen days

compressive strength is equal to 85% of the twenty-eight days compressive strength. Moreover, thirteen

days of air-cured concrete compressive strength is equal to 70% of the thirteen days water-cured concrete

compressive strength. The mix with the w/c ratio equal to 0.61 conformed to the requirements and this

was used for casting the composite beams.

4.3 Casting the USFBs

Four composite specimens were cast using Lafarge Blue Circle OPC CEM-I 42.5 N conforming to BS EN

197: Part 1 [20]. Sharp sand with a maximum size of 5mm was used as the fine aggregate. River gravel

with a maximum size of 10mm was used as the coarse aggregate to overcome the problems associated

with having to cast the specimen on one side (Fig. 5). Twenty-four hours (± 4 hours) later, the specimens

were de-moulded and left to air-cure in a storage room covered in sheeting for thirteen days. The storage

room�s temperature was 19 to 23oC at 50% to 60% relative humidity.

The casting of the composite beams was not routine because the bearing plates at the supports and the

web openings make the whole procedure more difficult. This was accomplished by casting the beams on

the floor and pouring the concrete through the web openings (Fig. 5). Vibrators were used to ensure that

the concrete was well compacted. The compaction of the concrete was also improved by the high water-

cement ratio (0.61). Silicon was used to avoid water leakage between the steel and the framework.

Fig. 5: Casting procedure of USFBs (i.e. USFB No. 1)

4.4 USFB with lower grade concrete

Three USFBs were cast with a w/c ratio equal to 0.61. Taking into consideration the usual uncertainties

caused by human (eg. poorly casted perforated beams due to the hole existence and the non-accessibility

of the vibrators) or climate interferences which occur when the beams are cast in-situ, another composite

section (USFB 4) was also cast with a slightly higher w/c ratio (and hence lower grade concrete).

Segregation was observed when the concrete cubes of the latter specimen were tested. An additional aim

of this test was to verify the percentage of the shear improvement and the failure mode due to concrete

infill (i.e. concrete is a path to the load), and to clarify whether it is the concrete strength or the concrete

itself that provides the enhancement to the perforated steel beam.



The compressive cube strength are shown in Fig. 6. USFB No.4 (i.e. Mix7) was tested after 52 days of

curing as it needed more time to gain the required concrete strength limit (25-30MPa).

Fig. 6: Concrete cube compressive strength

Specimen

Average Steel Yield

Stress

fy (MPa)

Average Steel

Tensile Strength

fult. (MPa)

14-Day Cube

Compressive

Strength of Concrete,

fcu (MPa)

USFB No.1

318.25 430.75

27.91

USFB No.2 26.77

USFB No.3 25.33

USFB No.4 25.60 (at 52nd Day)

Table 1:Material physical properties

4.5 Test procedure

After a preloading stage, the load was applied in steps at a low displacement rate and held at each step to

allow load relaxation. All test specimens were loaded past the ultimate load to obtain a significant part of

the post-failure curve. Concrete crack patterns were recorded throughout the tests.

Initially, the beams were loaded with approximately 10kN and the dial gauges zeroed. The load was then

released and reloaded gradually in 40 to 50kN increments. The loading increments were reduced after the

first diagonal cracking to approximately 20 to 30kN, up to the point of the beams� ultimate load carrying

capacity. In the post-elastic region there was a further reduction to approximately 5 to 10kN per step. The

tests were performed not only until the maximum load was reached, but also until a sufficient branch of

the descending post-failure load deformation curve was recorded. The general test-procedure is

summarised in the following four steps: (i) preloading, (ii) monotonic loading, (iii) gradual loading and

relaxation and (iv) unloading.

4.6 Load-deflection relationships

The load-deflection curve for the perforated bare steel section with circular web openings for Dial Gauge 2

is shown in Fig. 7. Up to the level of 176.2kN, which is the 64.2% of the ultimate carrying capacity of the



beam, linear behaviour is observed. At around 256kN, local buckling at the areas under compression in the

vicinity of the holes� edge as well as yielding of the compression flange above the web openings takes

place. This is due to the high Vierendeel bending forces in the section. The ultimate loading carrying

capacity is 274.4kN. The overall flexural failure mode and the locally distorted web and flanges of the steel

section as well as the elongation of the circular web opening shape are illustrated in Fig. 8.

First yielding at the edges of the circular web openings occurs at approximately 180kN. It was observed

that the yield load indicates that both the web and the flange sections will yield completely. The buckling

load (around 255kN) of the web and the flanges is determined from the records of the deflection gauges

underneath the tension flange located at the HMS of each web opening. The edges of the circular web

openings carry additional moments by Vierendeel action and longitudinal shear forces due full plastic

hinge formation following load re-distribution, in addition to the normal bending moment and vertical

shear force. Therefore, it appears that the local yielding of the edges is directly related to the ultimate

strength of the beam.

Virtually linear behaviour was observed in all USFB tests (Fig. 7) until around 500kN which is at

approximately 89% of the ultimate load carrying capacity of the composite beams. The ultimate load was

attained at around 600kN, after which unloading occurred. Failure occurred around 75%, 67%, 70% and

71% of the maximum load for USFB No.1, USFB No.2, USFB No.3 and USFB No.4, respectively. Generally, in

the post-elastic region a significant and sudden drop of load occurred directly after reaching the ultimate

load capacity. This is a result of large concrete cracks occurring in the vicinity of the web openings and

their rapid propagation, due to the steel yielding. The deflections were found to be higher in USFB No.1,

where the post-elastic behaviour is more gradual than the other tests. Finally, an unloading procedure was

conducted in all composite tests in order to record the plastic-permanent deformation. It should be noted

that all USFBs have the same steel section stiffness. A dissimilar proportion of cracks about the symmetry

of the beam were observed, with few cracks forming on one side as compared to the other side which was

totally crushed. Similarly, in the perforated bare steel beam asymmetrical behaviour was observed

between the left and right side.

Fig. 7: Load-deflection curves for non-composite and composite beams for (Dial Gauge 1, 2 and 3)



Fig. 8: Local highly distorted web - flanges and web opening elongated shape

4.7 Failure mechanism

Diagonal tension cracks occurred at around 200 to 250kN. At about 300kN cracks could be clearly seen.

The latter cracks were fully extended between the load spreader and the supports (e.g. lines C in Fig. 9

and 10). Also, at this point a few vertical flexural cracks were propagated in the region of maximum

moments, starting from the tension face and extending upwards to the mid-depth of the beams (e.g. lines B

Fig. 9 and 10). It is worth noting that this load was the ultimate load carrying capacity of the perforated

bare steel beam. At around 550kN the plasticity of the USFBs commenced. Full development of diagonal

cracks ensued at this point in all composite beams. Eventually, crushing of the concrete occurred in the

vicinity of the web openings as it is shown in Fig. 11 and 12. From the first load steps and during testing,

micro-cracking was heard, especially for the USFB No.4 with the lower grade concrete, as the chemical

bond of the concrete material was low (high w/c ratio). The position of the principle diagonal cracks was

not identical for all the USFBs. There is a slight variation of the angle of the cracks from 25o to 37o;

however the failure mechanism was the same. Around 600kN the ultimate load carrying capacity was

achieved followed by a post-elastic descending curve showing a considerable decrease of the load carrying

capacity. This was accompanied by large cracks in the vicinity of the web openings and concrete bursting.

This can be seen in Fig. 13 to 16 for the right half span of the USFBs, for both front and back face.

Following the formation of the large cracks there was some residual strength in the concrete and the load

carrying capacity was somewhat higher than that of the perforated bare steel beam.

Essentially, USFBs fail due to concrete crushing in the compression zone. Complete composite action up to

the ultimate load carrying capacity, was found. Therefore, the proposed system enables the development

of sufficient strength and consequently effective composite behaviour, without causing serviceability

problems. Moreover, the longitudinal shear strength of the proposed system consists of the frictional force

and the shear-bond strength between the steel and the concrete, as well as of the bearing strength of the

web opening area. In this experimental study the concrete is partially encased since the bearing plates at

the supports restrain the longitudinal movement of the concrete. In actual construction the end-plate

connections will play the same role. Also, it was observed that the plastic behaviour of the composite

sections is mainly due to the steel beam�s low stiffness and high deformation. It confirmed that the

concrete provides a load path from the top to the bottom steel flange, as well as an out-of-plane restraint

to the steel web.



Fig. 9: USFB No.2

Fig. 10: USFB No.3

Fig. 11: USFB No.2 (concrete crushing)

Fig. 12: USFB No.3 (concrete crushing)



Fig. 13: USFB No.1 (concrete bursting)

Fig. 14: USFB No.2 (concrete bursting)

Fig. 15: USFB No.3 (concrete bursting)

Fig. 16: USFB No.4 (concrete bursting)



4.8 Composite action due to partial encasement

The effect of partial encasement on overall flexural action is dependent on the mechanism of shear

transfer and the relative slip between the steel section and the concrete. These tests failed by high

Vierendeel bending actions in the vicinity of the openings, as shown in Fig. 17 and 18. However, it is

apparent that considerable �arching� action occurred through the concrete encasement, which is resisted

by the bearing plates at the supports of the relatively short span beams. Hence, the contribution of the

confined concrete between the steel flanges in resisting vertical shear is achieved.

Following the completion of the composite tests the crushed concrete was removed from the area around

the web openings. It is worth mentioning that the concrete was removed only by using a hammer and

manpower - no heavy equipment was used in trying to remove the crushed concrete. This helps to

visualize the size of the concrete area around the web opening that is strongly affected by the web opening

existence.

The steel beam was slightly in-plane deformed compared to the non-composite perforated bare steel

beam, while local web buckling is faintly observed on the diagonal line from the load spreader to the

supports. This implies a transfer of shear forces across the web openings after the concrete crushed while

loading was applied in the post-elastic region. The transfer of shear forces caused local bending moments

and therefore local web buckling.

At the web opening the concrete encasement acts as a strut in compression, which is confined between the

flanges and inclined diagonally across the web opening, as illustrated in Fig. 19. The magnitude of this

strut action depends on the ability of the flanges to resist the local compression forces by transverse

bending. The dimensions of the flanges contribute significantly to the bending and shear resistances of

USFBs. It is worth reminding that a symmetric section was used in the current research to simplify the

investigation, while highly asymmetric sections can be used in practice. The transverse bending moment is

shown in Fig. 20when the bearing force applies on the top flange. The horizontal forces act on the top and

bottom flanges with a combination of friction, due to the strut force and the shear-bond. The lower bound

of the shear-bond strength with the partially encased flange is given as 0.2MPa in BS EN1994-1-1:2004

[21]. A coefficient of friction of 0.6 for concrete on steel may be assumed for the local strut action.

Fig. 17: Failure mode for partially encased USFB No.1 at opening after removal of the damaged concrete



Fig. 18: Failure mode for partially encased USFB No.2 at opening after removal of the damaged concrete

Fig. 19: Compression force acting in the concrete encasement across the web openings

Fig. 20: Strut action in concrete causing flexural bending



A simple model for the vertical shear resistance of the concrete encasement is to consider the vertical

component of this strut force as a bearing force which causes transverse bending in the flanges. From the

above tests, also others conducted under the same research project at City University [22], it was

concluded that the shear force, Vc, that is resisted by the concrete encasement is dependent on the top

flange dimensions and may be taken as:

௖ܸ = ଴.଼ଷቆ ೏೚್೑,೘೔೙ቇ௧೑మ௙೤௖௢௦ఏ ൑ ͲǤʹ ௙ܾ,௠௜௡݀௢ ௖݂௨ (1)

Where bf, min is the lesser thickness of the top and bottom flanges. In using this formula, the ability of the

flanges to resist the horizontal component of the force is dependent on the frictional force and shear-bond

resistance, which is not critical, given the inclination Ʌ of the strut force to the vertical, where:Ʌ ൌ tan-ଵ(0.5d୭ hΤ ) (2)

The compression resistance of the concrete strut may govern for thick steel flanges. It is given by the limit

in the above equation, and it may govern when ௙ܾ ௙Τݐ < 7.

5. Sensitivity FE study of the USFBs

5.1 Introduction

For the computational approach to the problem, a three-dimensional FE model was developed, in which

contact elements were implemented at the interface of the concrete and steel. Several material model

parameters were varied, such as the steel and concrete strength, the constitutive relationships which

model the materials, as well as the steel and concrete contact capacity. Hence, the parameters that limit

the beams� load carrying capacity and their sensitivity to these changes are examined.

A FE model was developed in ANSYS v11.0 to further investigate the load-deflection behaviour and failure

modes of the composite USFBs. Due to the introduction of concrete in the FE models a complex non-linear

analysis was developed. Consequently, a detailed description of the techniques and tools used to apply the

boundary conditions and the material properties was also made. Apart from the geometrical and material

non-linearity, the contact surface between the steel and the concrete takes a decisive role in modelling the

friction between these two materials when no mechanical connectors are provided. The characteristics of

the contact elements were determined individually by shear-bond tests (i.e. push-out tests) between the

steel and concrete, conducted at City University laboratories [15].

5.2 FE model and boundary conditions

Since a principal objective of this work was to predict a correct failure mode, it was important to develop a

FE model as close to the physical system as possible. Therefore, a 3D model was developed with a fine

mesh of 20mm element size consisting of 68,569 elements. With regards to the concrete crack modelling

with FE software, several researchers have studied the effect of the element size in the non-linear analysis

of reinforced concrete structures [23, 24], and they have shown that the results are indeed dependent on

the mesh. Whilst considering symmetry, it was decided to develop the full model in terms of its length and

the half model in terms of its width, in order to accurately apply the support conditions. The load and the

supports were directly applied to the steel beam, hence early local concrete cracking was avoided. For

better stress distribution, the load was applied as a pressure on an area and the supports were modelled

as restrictions to the degrees of freedom on appropriate areas under the bearing plates. It should be noted



that in the analysis, no local buckling was allowed in the steel sections of the composite beams and hence

the steel section is either plastic or compact. The structural configuration (i.e. two web openings well

apart of each other) avoids failure of the beam by web-post buckling in anyway. This was confirmed by the

experimental study.

5.3 Contact element and contact algorithm

CONTA173 is a 4-node element that is intended for flexible-to-flexible contact analysis. In flexible-to-

flexible contact, both contact and target surfaces are associated with deformable bodies. CONTA173 is also

a surface-to-surface contact element. The contact detection points are the integration points and are

located at Gauss points. The contact elements are constrained against penetration into the target surface,

at its integration points.

A number of methods are available for modelling friction in contact analyses, but the most commonly used

methods are based on a �Coulomb� friction model. In this model the two contacting surfaces are permitted

to carry shear stresses across their interface up to a defined value, before they begin sliding. The

equivalent shear stress at which sliding begins is defined as:߬௦௟௜ௗ௘ = ߤ ஼ܲ௢௡ + (3)�����������ܴܵܥ
Contact elements offer two models for �Coulomb� friction: isotropic friction and orthotropic friction. The

isotropic friction model is incorporated in this study as it uses a single coefficient of friction, based on the

assumption of uniform stick-slip behaviour in all directions. When a penetrating node stays in contact

with the target surface, it may either stick to the surface or slip along the surface.

5.4 Element types and material models

Steel: Typical 8-node solid SOLID45 elements were used to model the steel perforated beam. Mainly

nominal, but also actual measured, material properties were used. This was for precautionary reasons, as

well as for the generalization of the FE results. The bi-linear stress-strain relationship for both

compression and tension with strain hardening used, show sufficient agreement with the previous

experimental study of the perforated steel beam. The Young�s Modulus, E, and the Poisson�s Ratio, v, of

steel are taken as 205GPa and 0.3 respectively. The yield strength, fy, as well as the ultimate strength, fult.,

varies as given in Table 3. The variation of the material strength applies to the sensitivity study of the

material properties. In most analyses, an ultimate strain of around 0.25 was assumed for the structural

steel [25], hence the Tangent Modulus, ET, was varied from 540 to 700MPa.

Concrete: 8-node solid iso-parametric SOLID65 elements with the integration points for the cracking and

crushing checks were used to model the concrete in ANSYS. SOLID65 models the non-linear response of

brittle materials and is based on a constitutive model for the tri-axial behaviour of concrete after Williams

and Warnke [26]. The element is capable of plastic deformation and cracking in three orthogonal

directions. Once the principal stresses at the integration points reach the tensile and compressive

strength, the cracking or crushing of concrete elements can be formed. These elements are also able to

predict the non-linear behaviour of concrete materials using a smeared approach, which depends on five

material parameters. Steel reinforcement was not present in the actual experiment in this research

programme; hence default values were kept for the smeared reinforcement capabilities of SOLID65

elements.

Cracking and crushing are determined by a failure surface. The tensile strength, ft, is typically 8-15% of the

compressive strength, fc [27]. Investigating the sensitivity of the results, the ultimate concrete compressive

and tensile strengths for every beam model were calculated using various constitutive relationships found



in the literature [26, 28, 29, 30, 31]. The concrete in compression was modelled as an elasto-plastic

material (Fig. 21) either with or without strain softening. The concrete plasticity (crushing) in the

compression zone was modelled using the multi-linear option from ANSYS with Von-Mises plasticity.

The compressive cylinder strength, fc, varied (eg. 20MPa, 21.12MPa: the average cylinder strength from

Table 1, 26.7MPa and 32MPa), whereas the other parameters such as Young�s Modulus, Ec, and tensile

strength of concrete, ft, are treated as generic data and evaluated by the applying constitutive relationships

(Table 2). In Table 2, fc is the stress at any strain ɂ, f1 is the stress at strain ɂ1 and ɂo is the strain at the
ultimate concrete cylinder compressive strength fc (fc = 0.8fcuwas always used).

Fig. 21:Material models of uni-axial loading: (a) Steel and (b) concrete
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(in SI)
Ec ft and ɂo f1 and ɂ1 fc Ⱦ coefficient 
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Table 2: Constitutive relationships modelling the concrete material from the literature

Concrete compressive strength was varied in order to examine the percentage of vertical shear

enhancement of the USFBs. The concrete tensile strength was also varied taking into consideration the

mesh size of the concrete elements and the value of fracture energy, Gf. It is worth noting that the



interfacial fracture energy is almost linearly related to the root of the tensile strength of concrete. In

addition, various values of concrete Poisson�s ratio, v, were examined, as they are related to the condition

(i.e. quality) of concrete and different values have been used by researchers.

Shear Transfer Coefficient for open/closed crack, Ⱦ1,2: These are also known as �shear retention factors�
and can vary between �0.0� for no aggregate interlock and 1.0 for full aggregate interlock. In the opening, Ⱦ1
or closing Ⱦ2 are assumed to take a value of 0.25 and 0.7 respectively for plain concrete of all grades.
Various shear transfer coefficients are used in this study for open cracks and closed cracks. High values

were taken for the closed crack (e.g. 0.9, 1.0) so as to prevent possible fictitious crushing of the concrete

before load transfer occurs through a closed crack. It was found that when the shear transfer coefficient

representing conditions of the crack face of reinforced concrete structures, varies between 0.05 and 0.25

[30, 31]. Moreover, it is worth to note that the lost shear resistance of cracked and/or crushed elements

cannot be transferred to the re-bar in case there is, which has no shear stiffness. In case the latter

phenomenon occurred, care should be taken to apply the load slowly and hence analysis time will

significantly increase. Consequently, as the shear capacity plays a significant role in this research study,

the smeared approach would more suitable.

Friction Coefficient, Ɋ: Various friction coefficients were used in order to compare the results. The results
showed an increase of the stiffness in the strain of the compressive top flange for beam with higher bond,

but in the tensile flange the stiffness is nearly the same. A reason for this behaviour is the cracking of

concrete in tensile zone, which starts from the first load steps. In the experiments the bond strength is also

different in the compressive zone from that in the tensile zone of the composite beam, and this could be

another reason for possible discrepancy between the experimental and the FE results. The local bond

strength and the corresponding slip are almost linearly related to the tensile strength of concrete.

Solution Method: The full Newton-Raphson procedure was used, even though this requires the stiffness of

the structure to be re-calculated for every iteration. A large-displacement and static analysis was

implemented with the maximum number of sub-steps in a load step being 1,000-10,000 in order to apply

the load increments very smoothly where it is necessary. Failure of the beam occurs when convergence

fails, with a very small load increment. This method is comparable with the experimental data from

Buckhouse [32]. The vertical deflection at mid-span of the composite beams and the FE divergence load

was monitored. The analysis was terminated due to cracking and/or crushing of the concrete through the

section as it was expected, due to instability of the stiffness matrices. The vertical deflection at mid-span of

the composite beams and the FE divergence load was always monitored.

5.5 FE results from sensitivity study

The failure loads obtained from this study are summarised in Table 3 and categorised mainly according to

the constitutive relationships used to model the material properties. Sub-categories are also indicated,

based on both the steel and concrete strengths.

It was observed that the numerical solutions are very sensitive to the steel strength in contrast to the

concrete strength and small changes lead to significantly different results. It is found that the USFBs with

steel yield strength of 265 to 285MPa compare well with the experimental behaviour, even though there is

a reduction of 16.8 to 10.5% in the average steel yield strength (i.e. fy=318.25MPa), as obtained from the

coupon tests. This applies to the increased stiffness of the 8-node 3D solid elements (SOLID45) as well as

the complex failure mechanism of the USFBs. Essentially, it was verified that the ultimate load carrying

capacity of the USFBs is governed by the steel strength and in particular when the concrete strength is

low.



Furthermore, it is apparent that apart from the steel and concrete strength, the shear transfer coefficients

and the coefficient of friction play a significant role in simulating the structural behaviour. It was found

that the most effective applicable factors for opened and closed cracks, Ⱦ1 and Ⱦ2, are 0.3 and 1.0,

respectively. Dramatic change of the divergence load is obtained when the coefficient of friction, µ, is

reduced significantly (eg. µ=0.4). For µ greater than 0.6 full cracks were recorded. Similarly, full cracks

were recorded when the yield strength of the steel is greater than 300MPa. It was also established that the

numerical solution is very sensitive to the steel constitutive non-linear modelling with 3D solid elements

and the small changes of steel material parameters. For example, employing a bi-linear elasto-plastic

model, a stiffer model was found. The discrepancy for the value of ultimate load obtained by means of the

numerical solution and experiment was about 22.5% using solid elements, while it was only 4.5% using

shell elements. Observing the real tests it was found that no slip occurred between the steel and the

concrete up to the yield point. Subsequently, a value of 1.0 (i.e. perfect bonding) was mainly used at the

contact surface. For υζͷǤͶ, a significant interlocking between the steel and the concrete exists after de-
bonding due to the non-uniform strain across the section of the member.

It is worth to note that the FE model B15 failed at a considerably low load and with small vertical mid-

span deflection. It was observed that flexural cracks were formed to the whole depth of the beam at the

mid-span and the stiffness was significantly reduced, as the shear retention factor for open cracks was

turned to 0.0 (i.e. no aggregate interlock). Therefore, the model was not able to support more load after

the first cracks and serious crack propagation was observed.



*MISO � Multi-linear Isotropic Hardening Plasticity is adopted

**BISO � Bi-linear Isotropic Hardening Plasticity is adopted

Steel Cont. Concrete Results

FE

Model
fy

(MPa)

fult.
(MPa) or

ETan.

Ɋ fc
(MPa)

ft

(MPa)
ɋ Ⱦ1,2

Refer.

Theory

Based

FFEA
(kN)

265* 410 1.0 26.70 1.86 0.20 0.3,1.0 [29] 627 59

265* 410 1.0 26.70 1.86 0.17 0.3,1.0 [29] 617 3

265* 410 0.8 26.70 1.86 0.17 0.3,1.0 [29] 611 7

265* 410 0.3 26.70 1.86 0.17 0.3,1.0 [29] 548 8

265* 410 1.0 26.70 1.86 0.15 0.3,1.0 [29] 547 58

265* 410 1.0 26.70 1.86 0.15 0.6,0.6 [29] 555 16

265* 410 1.0 26.70 1.86 0.15 0.1,0.9 [29] 607 18

265* 410 1.0 26.70 1.86 0.15 1.0,1.0 [29] 635 19

265*

275**

410

ETan.=200

1.0

0.8

26.70

26.70

1.86

1.86

0.00

0.15

1.0,1.0

0.1,0.9

[29]

[29]

648

618

20

25

355* 530 1.0 26.70 1.86 0.20 0.3,1.0 [29] 637 11

355* 530 1.0 26.70 1.86 0.17 0.3,1.0 [29] 633 12

355* 530 0.0 26.70 1.86 0.17 0.3,1.0 [29] 470 13

275* 410 0.9 20.00 2.786 0.2 0.3,1.0 [27] 577 B5

275* 410 0.6 20.00 2.786 0.2 0.3,1.0 [27] 563 B6

355* 499 0.9 20.00 2.786 0.2 0.3,1.0 [27] 730 B2

355* 530 0.9 20.00 2.786 0.2 0.3,1.0 [27] 733 B4

355** ETan.=20 0.9 20.00 2.786 0.2 0.3,1.0 [27] 734 B3

275* 410 1.0 21.12 2.863 0.2 0.3,1.0 [27] 591 B11

275* 410 0.9 21.12 2.863 0.2 0.3,1.0 [27] 584 B10

275* 410 0.7 21.12 2.863 0.2 0.3,1.0 [27] 578 B12

275* 410 0.4 21.12 2.863 0.2 0.3,1.0 [27] 508 C8

275* 410 1.0 21.12 2.863 0.2 1.0,1.0 [27] 599 B13

318.25* 430 1.0 21.12 2.863 0.2 0.3,1.0 [27] 630 D1

265* 410 0.9 32.00 3.524 0.2 0.3,1.0 [27] 588 C1

275* 410 0.9 32.00 3.524 0.2 0.3,1.0 [27] 611 C4

275* 410 0.6 32.00 3.524 0.2 0.3,1.0 [27] 574 C14

285** ETan.=20 0.9 32.00 3.524 0.2 0.3,1.0 [27] 622 C6

285* 350 0.9 32.00 3.524 0.2 0.3,1.0 [27] 641 C5

355* 499 0.9 32.00 3.524 0.2 0.3,1.0 [27] 742 B1

275* 410 0.9 21.12 1.839 0.3 0.3,1.0 [28] 545 B9

275* 410 0.9 32.00 2.260 0.3 0.3,1.0 [28] 621 C12

275* 410 0.6 32.00 2.260 0.3 0.3,1.0 [28] 597 C13

275* 410 0.7 21.12 2.505 0.15 0.3,1.0 [25] 571 C11

265* 410 1.0 32.00 3.083 0.15 0.3,1.0 [25] 629 31

265* 410 0.8 32.00 3.083 0.15 0.3,1.0 [25] 600 32

265*

275*

275*

410

410

410

0.5

0.9

0.9

32.00

32.00

32.00

3.083

3.083

3.083

0.15

0.15

0.15

0.3,1.0

0.3,1.0

0.0,1.0

[25]

[25]

[25]

565

615

243

33

B14

B15

PERFORATED BARE STEEL BEAM

265* 410 --- --- --- --- --- --- 331 60

318.25** 430 --- --- --- --- --- --- 352 75

355** ETan.=2000 --- --- --- --- --- --- 352 61



Table 3: Results of the FE parametric study

5.6 Load-deflection relationships

Various load-deflection curves at the mid-span are plotted against the results of the experimental test of

USFB No.1 (Fig. 22). In addition, the load-deflection curve of the non-composite perforated steel beam is

plotted for comparison.

Most of the FE results correlate satisfactorily with the experimental results, while up to the ultimate load

level insignificant steel deflection occurs. Thereafter, the steel yields following the large concrete strains

and the formation of large cracks, whilst the load capacity drops considerably. For the USFB with the

lower concrete compressive strength more cracks developed from an earlier stage even though the

capacity of the USFB remained the same. In the experimental tests large steel deflections ensue in the

post-elastic curve, followed by concrete crushing. In some cases, concrete parts were peeled off.

However, there are several effects that might cause the slight deviation of the stiffness between the FE and

the experimental beams. One reason could be the concrete micro-cracks in the experimental beams due to

drying shrinkage in the concrete. Additionally, cracks generated from different elastic modulus of

aggregate and cement, thermal effects, as well as human factors could cause reduction of the stiffness in

the experimental beams.

Fig. 22: Force-deflection curves comparison between experimental test (USFB No.1) and various

numerical solutions from �Table 2�

5.7 Post-elastic behaviour in FEA

The maximum load is recorded followed by the divergence of the FE analysis and it correlates well with

the experiments. The last descending branch of the load-deflection curve corresponds to the composite

beam behaviour as a �mechanism�. The load which the system can carry gradually decreases with

increasing deflection, while at some point no more loads can be resisted and the beam �fails�. In the

experimental work, the failure was accompanied by appearance of wide intensive diagonal concrete

crushing. In the finite element analysis, post-peak softening usually means a localisation of failure. Hence,

special techniques such as non-local mode, gradient or time dependent formulations (explicit solvers)

need to be employed. As some cracks need to open more and some should unload, convergence is very

difficult to reach. However, sometimes it helps to continue with the analysis even though the convergence

criteria may not be satisfied, while in later steps the FE solver may find a converged solution.



The Newton-Raphson method used in this research proved to be generally economical because much

larger incremental steps were possible. However, in the regions of peak loads on the load-deflection

response, numerical difficulties sometimes occurred and it is necessary to use the modified Newton-

Raphson iteration scheme under which the stiffness of the structure is calculated only at the beginning of

the increment, or the modified Riks (Arc-length) method in order to prevent local instabilities due to large

amounts of cracking.

To trace a post-peak response, either a quasi-static (transient), a stabilisation solver usually with an

energy dissipation factor, an arc-length method or a displacement load control is necessary. The most

widely utilised is the arc-length method in ANSYS, which controls the load level together with the length of

the displacement increment. This method permits to compute the post-critical load-deflection path.

Moreover, the post-critical behaviour could be studied in case of a further advantage of dynamic analysis

was considered. In that case, in the vicinity of a critical point; the inertia forces would stabilize the system

motion in the post-critical range where the load which the system can carry decreases with increasing

displacement. Hence, the post-critical behaviour after reaching the limit load is usually highly dynamic.

This is closer to reality than any static post-critical equilibrium path because failure process usually

happens suddenly. The problem of implicit solvers is the sudden loss of stiffness, if material failure is

taken into account [33]. However, the post-elastic descending curve was not modelled here, as the above

methods need significant computational effort and it is beyond the scope of this research study.

Consequently, only large deformation and elasticity with some plasticity is considered in this study.

5.8 Concrete crack patterns and failure modes

Thirty-nine numerical tests are presented simulating the particular USFB configuration using different

constitutive relationships and parameters. It is worth noting that in all cases the flexural and the diagonal

cracks were generated. Characteristic results of concrete cracks, slippage profiles and steel stresses at the

contact surface between the steel and the concrete are plotted. By examining the stress distribution, it was

seen that failure occurred due to substantial steel yielding, combined with concrete crushing.

In Fig. 23 the crack development is shown for four load steps. Non-linear numerical solutions are capable

of replicating the full range of cracks including the pure flexural, flexural shear and the critical shear crack.

Smeared cracks are spread over the high shear stress region (Fig. 23 (c)) and occur mostly at the ends of

the beam between the support and loading area. The path of shear cracks follows the trajectory of the

principal stresses, as can also be seen in the experimental study. Depending on the geometric as well as

the material properties of the USFB, the critical crack might extend to the top of the compression concrete

fibres and then stabilise, as shown in Fig. 23 (d). At the ultimate load carrying capacity the vertical beam

deflections were not large.

Analytically, diagonal shear failure begins with the development of a few vertical flexural cracks at the

mid-span, followed by a break of the bond between the bottom steel flange and the concrete. A critical

shear diagonal crack develops in the vicinity of the web openings of the steel perforated beam. Very small

flexural cracks appear from the beginning of the test, while shear diagonal cracks are not developed until

the load level of approximately 310 to 400kN. Similar behaviour was observed at around 250 to 300kN,

when the experimental tests were conducted. By looking at the inside view of the FE model (Fig. 24), it

was found that the cracks begin at the mid-width of the beam section (approx. at 310kN), where the

concrete passes through the web openings and more specific cracks are initiated as the steel web starts to

deflect and damages the concrete which is in touch. The steel areas which are under tension and

compression and the stress distribution in relation to the load are clearly shown in Fig. 24. These cracks

are fully developed at approximately 450kN, while cracks move outwards (i.e. transverse to the web).

Crack propagation and the steel stresses at the mid-width of a USFB can only be explored by a FEmodel.



A detailed study of the FE outcomes was carried out on the extent of the concrete cracks in such composite

beams and it was established that the major parameter which determines the number of cracks is the yield

strength of the steel. Higher steel grade results in greater load carrying capacities and hence the concrete

is fully cracked following the steel deformation. On the other hand, the friction coefficient slightly affects

the cracking of the FE model, as the concrete is partially confined and the concrete movement is relatively

small. However, the shear transfer coefficients, Ⱦ1,2, and especially the open shear crack transfer, could
dramatically affect the cracking model.

The vertical deflection, contact stresses and the contact surface condition for the particular USFB FE

model, when using a friction coefficient, µ, equal to 0.9, are presented in Fig. 25. The Von-Mises stresses of

the steel beam for the particular USFB model are presented in Fig. 26.



Fig. 23: Bending and shear crack development at the front side of the beam; (a) Purely flexural (bending)

vertical cracks, no yielding in steel, no concrete plasticity (b) Developed flexural cracks, developed

flexural/shear cracks, just before initiation of the critical shear cracks (c) Critical shear diagonal cracks are

clearly identified and (d) Full cracking state, yielding in steel, concrete plasticity, big displacements

increment just before divergence of the FE model, there are splitting cracks at the upper part of the beam

due to compression

a. Pure flexural

cracks (≈100kN) 

b. Flexural shear

cracks (≈290kN)

c. Critical shear

cracks (≈400kN) 

d. Tensile splitting

cracks (≈600kN)



Fig 24: Shear crack development (left) and Von-Mises stresses of the steel (right); in the vicinity of the

right web opening at the mid-width of a USFB
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Fig. 25: Vertical deflection (left), contact stresses (middle) and contact surface condition (right)

Fig. 26: Von-Mises stresses in the steel beam

6. Proposed design method evaluating vertical shear strength

The experimental programme and non-linear FE analyses showed that the concrete in-fill in the

perforated sections and the composite action enhance the vertical shear strength of the USFB. Liang et al.

[25] proposed a design method for the vertical shear strength of simply supported conventional un-

perforated composite beams (where the concrete slab sits on top of the plain steel beam) with any degree

of shear connection, Ⱦ. This method is modified herein to include USFB sections. Comparison is then made
amongst the different approaches for evaluating the vertical shear strength of the perforated sections.

The composite action as presented by Liang et al. [25] is as follows:

௨ܸ௢ = ௢ܸ൫1 + 1.295ඥߚ൯��(Ͳ ൑ ߚ ൑ ͳ) (4)

When Ⱦ ι ͷ, the vertical shear strength is not affected by the degree of shear connection and this indicates
that the composite beam exhibits full shear connection. According to the British Standards and the

Eurocodes, for symmetric beams with spans up to 6m and 5m respectively, the minimum degree of shear

connection is 0.4. In general, when no mechanical shear connection (i.e. reinforcement tie-bars, studs,

ducting, etc.) is provided between the steel beam and the concrete slab, the two components work

independently to resist vertical shear. However, in this particular FE study the degree of shear connection

is assumed equal to the friction coefficient between the steel and the concrete, simulating the frictional

force and shear-bond since no mechanical shear connection is provided.

Hence, the vertical shear strength of such a beam is expressed by:

௢ܸ = ௖ܸ + ௌܸ (5)

The contribution of the concrete is now taken as the shear strength of the concrete infill and it is proposed

that:
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௖ܸ = 1.16( ௖݂)ଵ ଷΤ ௘௖ܣ (6)

The effective shear area of concrete is evaluated as:ܣ௘௖ = ൫ ௙ܾ െ ௪൯൫݄ݐ െ ௙൯ݐʹ െ ͲǤͺ͸rଶ (7)

It should be mentioned that the concrete in the web opening, as well as the effect of longitudinal steel

reinforcement in the concrete slab, are not considered in the above equation.

In order to better correlate the theoretical approach with FE analyses and experiments, the shear capacity

of the steel beam is evaluated with various approaches such as the following:

1. The basic shear capacity from Chung et al. [34]:

ௌܸ = ௢ܸ,ோௗ = 0.577 ௬݂ߛெ௢ ቂቀ݄ݐ௪ + 2൫0.75ݐ௙ଶ൯ቁെ ݀௢ݐ௪ቃ (8)

2. Another approach for the shear resistance for perforated beams (Lawson and Hicks, 2006) is shown

below:

௢ܸ,௣௟,ோௗ = ቈ ௣ܸ௟,ோௗ െ ݀௢ݐ௪ ௬݂ௗξ3 ቉ (9)

Where the shear resistance, Vpl,Rd, for un-perforated beams EC3 EN1993-1-5 [35] is limited by either the

plastic shear resistance:

௣ܸ௟,ோௗ = ௩ܣ ቀ௙೤ξଷቁߛெ௢ (10)

Where Av is taken as ௩ܣ = ܣ െ ʹ ௙ܾݐ௙ + ௪ݐ) + ,௙ݐ(ݎ and the value of ெ௢ߛ is equal to 1.
Comparing the FE results with the results obtained from the theoretical formulae given above, it is found

that:

 The basic shear capacity approach given by Chung et al. [34] for steel perforated beams is the closest

approach to the FE analyses, with an average deviation (Ftheory/FFE) ratio of 0.93.

 The shear resistance approaches given by Lawson and Hicks [36] Eq. 7 and 8, slightly underestimate

the results compared to the FE analyses, with average deviation ratios of 0.90 and 0.86, respectively.

The most effective approach is when the shear resistance is limited by the plastic shear resistance for

the un-perforated section (Eq. 7).

The comparison leads to the following conclusions:

 The smaller the degree of shear connection, Ⱦ, used in the FE models, the greater the deviation ratio is.
 For steel grade S275, the FE results are closer to the theoretical design values. In contrast, when steel

grade S355 is used, the FE results obtained are overestimated because of the increased stiffness of the

FE model with solid elements.



7. Conclusions

Overall, the USFB offers lower structural depth inversely to conventional composite beams, where the

concrete slab sits on top of the plain (or perforated) steel beam. The decrease of the structural depth for

every floor, and the ease of construction for large spans, as heavy propping is not needed, makes USFBs

worth studying. Flexural tests were conducted to evaluate the structural behaviour of the proposed

composite beam using symmetric steel section with circular web openings. The perforated bare steel

beam was also examined for comparison. Although the capacity of the perforated beam is reduced by

using large web openings (do=0.76h), the designer can take advantage of the inherent double shear

strength provided by the confined concrete between the flanges and the bearing plates at the supports.

Hence, increased flexural strength of the composite beams, by contribution of both the vertical and the

longitudinal shear strength due to the concrete passing throughout the web openings is achieved. This

design concept enabled this innovative system to develop sufficient strength, ductility as well as effective

composite behaviour without causing serviceability problems.

The following conclusions can be drawn from this study:

 With the concrete in-fill, the ultimate vertical load carrying capacity of the USFB increases by up to

108% (i.e. double the capacity) compared to the corresponding non-composite perforated steel beam.

This percentage is higher when the friction coefficient is closer to 1.0 (i.e. fully bonded). It is assumed

that there will be a slightly lower concrete contribution if bearing plates are not provided at the

supports.

 All four experimentally tested USFBs showed consistent behaviour in terms of the failure mode,

stiffness and the ultimate load carrying capacity.

 The failure mode of the non-composite beam changes when there is in-filled concrete between the

flanges.

 The concrete failed first before any significant distortion of the steel web occurs.

 The last descending post-elastic branch of the load-deflection curve corresponds to the composite

beam behaviour as a �mechanism�. Failure is accompanied with the appearance of wide diagonal

concrete crushing.

 Following the formation of large diagonal cracks, there is some residual strength in the concrete

preventing local buckling of the perforated steel beams and the load carrying capacity is somewhat

higher than that on the non-composite beam.

 The shear resistance of the USFB, without using any mechanical shear connectors, is provided mainly

of contributions from the concrete confinement and the steel flange thickness.

 Strut action of the concrete confinement across the web openings reduces the Vierendeel bending

effects and improves the vertical shear transfer in the vicinity of the web openings. Hence, the vertical

shear force resisted by the concrete at a web opening is dependent on the flange dimensions.

 The horizontal component of the strut action is dependent on the frictional force, shear-bond

resistance and the bearing strength of the web opening area.

In order to study the parameters affecting the structural behaviour of simply supported USFBs with large

circular web openings, three-dimensional finite element models employing solid elements were

developed. The FE results are summarised below:

 The FE models accurately simulate the structural behaviour of the USFBs tested up to the ultimate

load carrying capacity level. Comparison between the measured and the predicted load carrying

capacities against the Vierendeel mechanismwas found to be close.



 Various constitutive relationships modelling the concrete material properties were found from the

sensitivity-parametric studies to affect the load carrying capacity of USFBs differently.

 As the composite beams examined did not contain confined reinforcement, the concrete tensile

strength played a major role in defining the divergence load.

 All cracks in the FE models develop at a somewhat higher load compared to those observed in the

experiments.

 A design method for simply supported conventional un-perforated composite beams presented by

Liang et al. [25] was modified for the shear resistance of the both perforated sections and simply

supported USFBs with any degree of shear connection between the steel and the concrete. The results

compared well with those from the FE analyses.

 Overall, it is shown that the FE models not only provide quantitative justification as to the structural

adequacy of the proposed design method, but also provide advanced computational-based analytical

and design tools for the detailed structural behaviour of USFBs.
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Abbreviations

Aec Effective shear area of concrete

bf Width of the top flange of steel beam

CSR Specification of the Cohesion Sliding Resistance

do Web opening diameter

h Overall depth of the steel beam

PCon Contact pressure

r Root radius of steel UB section

tf Flange thickness

tw Web thickness

Vc Nominal shear strength (contribution of the concrete to the vertical shear strength)

Vo Shear strength of the beam in pure shear (with zero degree of shear connection)

VS Shear capacity of the web of the steel beam to the vertical shear strength

Vuo Ultimate shear strength of the composite beam in pure shear

Ɋ Coefficient of friction

Ⱦ Degree of shear connection
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