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Abstract

A suboptimal dual adaptive system is developed for control of stochastic, nonlinear, discrete-
time plants that are affine in the control input. The nonlinear functions are assumed to be un-
known and neural networks are used to approximate them. Both Gaussian radial basis function
and sigmoidal multilayer perceptron neural networks are considered and parameter adjustment
is based on Kalman filtering techniques. The result is a control law that takes into consideration .
the uncertainty of the parameter estimates, thereby eliminating the need of performing prior
open-loop plant identification. The performance of the system is analyzed by simulation and
Monte Carlo analysis and the advantages of the scheme are clearly outlined.
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1 INTRODUCTION

The use of neural networks for adaptive control of the affine class of nonlinear systems in discrete
time has been recently investigated [9, 10, 11, 21, 22, 27]. The neural networks used are normally
the multilayer perceptron (MLP) with sigmoidal units [31] or the Gaussian radial basis function
(RBF) type [29]. They are included for modelling the system functionals which are assumed to be
unknown. Adaptive laws are used to adjust the network parameters so as to obtain good control
performance.

The approaches taken so far in neural adaptive control typically adopt a heuristic certainty
equivalence procedure. This implies that the network approximations are used in a control law as if
they were the true system functions, completely ignoring their uncertainty. When the uncertainty
is large, for example during start-up, this can lead to an inadequate transient response. To take
the uncertainty of the unknowns into consideration, a stochastic adaptive approach can be taken
[5, 33]. This leads to the so-called dual control principle [5, 14, 40, 41] introduced by Fel’dbaum in
the 1960’s [12, 13]. Dual adaptive control has been analyzed mainly for adaptive control of linear
systems with unknown parameters [4, 8, 15, 24, 30, 39] or for nonlinear systems having known
functionals but whose state must be estimated [34, 36]. Because of the advantages associated with
it there has been a recent resurgence of research on dual control [1, 15, 16, 30, 41]. However none
of these addresses the problem when the system is nonlinear and the functions are unknown.

Hence in this work we shall investigate the use of dual adaptive control for the affine class
of nonlinear, discrete-time systems when the nonlinear functions are unknown and a stochastic
additive disturbance is present at the output. Neural networks shall be used for modelling the
unknown functions.

The fundamental idea behind dual control is that it treats the unknown parameters as random
variables and the situation is cast as a stochastic adaptive optimal control problem; the control
law ensuring minimization of a cost function which ezplicitly includes information about parameter
uncertainty in addition to the usual information on tracking or regulation of the system output and
state variables. This concept is particularly appealing to adaptive control because the estimates to
the unknown parameters are uncertain due to both the measurement noise corrupting the signal
that drives the parameter estimation algorithm and also to the incomplete (a priori) information on
the value of the parameters. Because of the way that the cost function is formulated, dual control
leads to a closed-loop system having the dual features of (i) taking the system state optimally along
a desired trajectory, with due consideration given to the uncertainty of the parameter estimates and
(i) eliciting further information so as to reduce future parameter uncertainty, thereby improving
the estimation process. Effect (i) is called caution because, in providing the tracking function, the
controller does not use the estimated parameters blindly as if they were true. Effect (ii) is called
probing because the controller generates signals that encourage faster parameter convergence. Such
a controller is said to be actively adaptive. These two features are generally conflicting because
efficient parameter estimation demands a rich control input whilst, simultaneously, the control
input must be in a way so as to maintain optimal state tracking; the latter input not necessarily
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being rich. The balance between these two conflicting demands is determined via the cost function.

The dual cost function is based on optimizing the N-stage criterion

N-1

J@u=E{§:wu+1y—%a+1W|Y% o
t=0

where y.(t) is the system reference input, y(t) is the controlled output, E{-} denotes mathematical

expectation taken over all random variables, including the parameters, and ¥ denotes the infor-

mation state at time ¢, defined as Y* := {y(¢)...y(0) u(t—1)...w(0)}. It turns out that the

control input which minimizes Jg,q; must satisfy the so-called Bellman equation:

V(E®, ) =min E{(u(t) = ()" + V(g + 1,2+ 1) | Y1}
where £(t), known as the hyperstate, is the full conditional probability density function of the
unknown parameters given Y71,

Although, in principle, u(t) which optimizes the Bellman equation can be found by dynamic
programming techniques, in most practical situations this is impossible to implement because it
involves operations that are highly computationally and memory intensive [5]. For this reason
most practical adaptive controllers disregard completely the dual features proposed by Fel’dbaum
and they are referred to as non dual controllers. Two such examples are the Heuristic Certainty
Equivalence (HCE) and the Cautious controllers [7]. The HCE controller lacks caution because
the parameter estimates are simply “plugged” in a control law that was determined on the basis
that the true value of the parameters is known. In most cases, failure to take into consideration
the uncertainty of the parameter estimates often results in a suboptimal solution. Systems that
maintain optimality even when the uncertainty of the estimates is neglected are said to be certainty
equivalent. However such systems are rare, a well known example being the linear quadratic Gaus-
sian (LQG) problem which is certainty equivalent with respect to the state estimates. Controllers
based on a law that was derived under the assumption of certainty equivalence, when in fact it does
not hold, are called HCE controllers.

Note that most neural network adaptive control schemes adopt a HCE approach, ignoring com-
pletely the initial parameter uncertainty arising due to lack of prior knowledge of the parameters.
To avoid the serious problems in control caused by this, intensive open-loop off-line training is nor-
mally performed first to identify the plant and reduce the prior uncertainty of the parameters. Then
the control phase is started with the neural network parameters set to these pre-trained values,
which are substantially close to the actual values. In our case this pre-training phase is avoided and
the initial (large) parameter uncertainty is taken into consideration by compensating for it in the
control law derived from dual adaptive principles. This is more efficient and economical in practical
applications because the off-line training scheme can be time consuming and hence expensive.

The Cautious controller is based on optimization of the one-stage criterion
Jeautions = E{(y(t +1) - 4:(t+ 1) | Y}
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This results in a control law that does take into consideration parameter uncertainty but which, on
the other hand, lacks probing. The reason is that, being a one stage criterion, the control does not
influence the future parameter estimates. Hence it typically results in very small control signals
when the uncertainty is large and consequently tracking is slow and the parameters take a longer
time to converge. This often leads to a temporary switching-off of the control signal and an increase
in parameter uncertainty; a phenomenon called turn-off [5].

Another class of controllers attempts to solve the problem of complexity of Bellman‘s equation
by deriving control laws that are implementable but which, to a certain extent, retain the desireable
properties of the ideal dual controller, i.e. caution and probing. This class of controllers, called
suboptimal dual, can be broadly divided into two types:

1. the implicit type which attempts to find approximations to the exact solution of the Bellman
equation [30, 34, 35]. In general this approach still results in relatively computationally
complex solutions.

2. The ezplicit type which generally starts off from a cost function which explicitly includes
information regarding parameter estimation [8, 15, 25].

This investigation shall use an explicit type suboptimal dual approach based on that described
in references [8, 25] for suboptimal control of linear stochastic systems, but extended to the case
of stochastic discrete-time affine nonlinear systems. Gaussian radial basis function and sigmoidal
multilayer perceptron neural networks shall both be considered for modelling the unknown nonlinear
system functions.

2 CONTROLLER DESIGN

2.1 The control objective

The objective is to control the stochastic single-input single-output affine nonlinear system of the
general form:

y(t) = flx(t = 1)) + g[x(t = 1)]u(t = 1) + (1) (2)

where y(t) is the output, u(t) the control input, x(t—1) = [y(t—n)...y(t—1) u(t—-1-m)...u(t—
2)]7 is the system state vector, m < n are known system parameters, f[x(t— 1)] and g[x(t— 1)] are
the unknown nonlinear functions of the state vector, e(t) is independent and zero-mean Gaussian
noise with known variance o?. As explained in Chen and Khalil [11], for stability of the internal
dynamics, we assume that the system is minimum phase and also that g[x(¢ — 1)] is bounded away
from zero.
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If the nonlinear functions f[x(¢— 1)],g[x(¢ — 1)] were known, the control law
Y (t+1) — fx(t)]
u(t) = - 3
| v g[x(1)] .
results in y(¢+ 1) — y.(t+ 1) = e(t + 1), which minimizes Jz,,; because the term in the summation
of cost function (1) will then be e?(t + 1) which by assumption is independent of u(t) and Y* [5].

2.2 The Gaussian RBF neural network controller

We shall first develop the design of the suboptimal dual controller implemented via Gaussian radial
basis function neural networks.

2.2.1 Radial basis function networks

Two Gaussian radial basis function neural networks [29] are used to approximate the nonlinear
functions f[x(t — 1)], g[x(t — 1)] within a compact set x, C R™, where the state vector x(t — 1) is

known to be contained. x, thus represents the network approximation region. The output of the

neural networks is given by

Flx(t—1),%5(t)] = weT (t)@g[x(t - 1)]
gr[x(t = 1),wg(t)] = wgT(t)@g[x(t—1)] (4)

where Wy, Wg are vectors containing the linear coefficients (parameters) of the neural network and
@¢[x(t - 1)], @g[x(t — 1)] are the Gaussian basis function vectors, whose ith element is given by,

-[lx - mg|?
Pr; = exp {——22—’
o1

—|x = mg||*

where mg,, mg; are the coordinates of the centre of the ith basis function and 0%, o7 are the
variances for the networks approximating f[x(¢ — 1)] and g[x(t — 1)] respectively.

‘Gaussian RBF networks satisfy the Universal Approximation Property [28] stating that one
could always find a number of basis functions k*, variances and optimal parameter vectors Wi, Wg
such that within a closed and bounded region of the network input space, the function approx-
imation error could be reduced arbitrarily. In our case, the basis functions shall be centred on
points of a regular square sampling mesh inside x, so that the mesh spacing, the variance of the
basis functions and the network parameters directly affect the optimal approximation accuracy of
the neural networks inside x,. Sanner and Slotine [32] describe methods for determining x,, the
mesh spacing and the variance that will satisfy any desired accuracy assuming that bounds on the
smoothness and the magnitude of the spectrum of f[x(¢ — 1)], g[x(¢ — 1)] are known. The optimal

network parameters wi and wg are, however, unknown and so the actual parameter vectors g,
wg are adjusted recursively by estimation techniques.

4
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2.2.2 Parameter estimation

Assuming that inside xn the network approximation errors are negligibly small when the optimal
parameter vectors wg, wg are used, we could say that

flx(t-1)] ~ wiToelx(t—1)]
glx(t-1)] =~ wg T@g[x(t— 1)]

Realizing that the optimal parameter vectors Wg, Wg are constant and substituting the above
approximations in equation (2), we get:

wi(t+1) = w*(t)
y(t) = wrTB[x(t—1)] +e(t) (5)

where w* = [wi T i wy T]T, ®[x(t - 1)] = [®¢7[x(t — 1)] } @57 [x(t — 1)Ju(t — 1)]T.

Equation (5) shows the advantage of using Gaussian RBF networks because the parameters
to be estimated appear linearly in the output equation. Hence the well established estimation
techniques based on Kalman filtering [3, 18] can be used if we assume that the initial optimal
parameter vector w*(0) has a Gaussian distribution with mean m and covariance R,. Note that
in practice K, can be used to reflect the extent of prior knowledge of the parameters; larger values
indicating great uncertainty, and hence less confidence, in the initial parameter estimate w*(0)
[23, 38].

Using Kalman filter theory [3, 5] we obtain the following recursive parameter adjustment rules

K(t) = P()&[x(t-1)]/(o®+ T[x(t — 1IP(t)®[x(t - 1)])
w(t+1) = Ww(t)+ K()(y(t) - Wi (0)@[x(t—1)]), w(0) =m
P(t+1) = {I-K@®)@ [x(t- D]} P(t), P(0)= R, (6)

From the properties of Kalman filtering it follows that the conditional distribution of y(t+ 1) given
Y* is Gaussian with mean W7(t + 1)®[x(t)] and variance ®T[x(¢)]P(t + 1)®[x(t)] + 2.

2.2.3 The control law

We shall consider an explicit type cost function similar to the innovations dual controller developed
by Milito et al. for linear systems [25]. This cost function explicitly includes a term concerning
the prediction error (or innovations sequence) €(t + 1) := y(¢t + 1) — wT (¢ + 1)@[x(t)]. The idea
is to reward performance that encourages €2(¢ 4+ 1) to remain high, so that parameter updating in
equation (6) is driven by richer information. Hence the cost function has the form:

Jinn = E{[y(t +1) = yr(t + 1)) + qud(t) + rE(1 + 1) | vt} (7)

5
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where E{- | Y’} denotes mathematical expectation given information ¥*, y,(t) is the reference
input, ¢ > 0 and —1 < r < 0 are designer-chosen scalar weighting factors. Note that a higher
g induces larger penalty on high control energy and smaller r rewards higher variance of the
innovations.

Since the reference and control inputs are deterministic and y(¢+1) | Y* is Gaussian distributed,
then from the previously-mentioned properties of the Kalman filter it can be shown that:

Jinn = (r + 1)(@T[x(DIP(t + 1)@[x(1)] + %) + qu?(t) + (W (t + 1)@[x(2)] - g (t + 1))?

It is now relatively easy to optimize this cost function with respect to u(t) by differentiation
and equating to zero, avoiding the need to resort to a complex dynamic programming algorithm
that would have resulted from solution of the ideal optimal dual control problem. This results in
the optimal control law:

(r(t +1) = fo[x(t), We(t + 1)])g[x(8), We(t + 1)] = (1 + 1)vgg

u™(t) = G2[x(1), Wgl(t + )]+ g + (1 + 7)vgg (8)

where vy 1= @ET[x(t)]ng(t + 1)®¢[x(t)] and vy, := @ET[x(t)]ng(t + 1)®¢[x(t)] and matrix
P(t+ 1) has been repartitioned as:

Pg(t+1) ng(wr 1)

Per(t+1) : Pgg(t+1)

where Pg, Pgg are square (n,f X n.¢), (g X nrg) sub-matrices; n,f, n,, denoting the number of
basis functions in the f., §. networks respectively.

2.2.4 Analysis of the control law

From equation (8) it is clear that the controller can take into consideration the uncertainty of the
parameter estimates via inclusion of the terms v,s and vy, in the control law. Parameter r is acting
as a weighting factor where, at one extreme, the controller can completely ignore these parameter
uncertainty terms when 7 = —1 or, at the other extreme, it gives maximum attention to parameter
uncertainty when r = 0. For intermediate settings, —1 < r < 0, one obtains a balance between
these two extremes.

The case r = 0 is equivalent to optimization of Jigytions With the disadvantages normally
associated with this kind of suboptimal controller; namely turn-off and slowness of response. This
follows because strong emphasis is given to the uncertainty of the parameter estimates and the
controller is very cautious on using them. In fact very small control signals are applied when terms
Vg5 and vy, are large.
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The case r = —1, on the other hand, corresponds to a controller designed on a Heuristic Cer-
tainty Equivalence basis because it is effectively using the parameter estimates w(t) as if they were
the optimal parameters w*. This is equivalent to replacing the actual nonlinear system functions
in control law (3) with the network approximations, completely disregarding the approximation
uncertainty. Hence certainty equivalence is being assumed to hold when in fact it is not true,
because neither Jegutious and less so Jyya is optimized. This often results in excessively high peak
overshoot during the transient part of the response because no consideration is given to the fact
that the parameters have not yet achieved their optimal values and so quite large control signals
are applied, as evident by the absence of the uncertainty terms in the control law (8).

The case —1 < r < 0 provides the best compromise between these two extremes, being neither
" too cautious (and hence sluggish) nor too bold (and hence crude). This is the motivation behind
the design of Milito's innovation suboptimal dual controller, where the level of caution can be varied
between zero and a value which optimizes the one-stage criterion J gutious-

2.3 The sigmoidal MLP neural network controller

Another neural network that is more widely used than the radial basis function type is the sig-
moidal multilayer perceptron network. Unfortunately this neural network does not preserve the
advantage of linearity in the unknown parameters and so its parameter adjustment rules tend to
be more complex than for the RBF case. However, because the support of its basis functions
is not localized, one typically requires a relatively smaller number of neurons to achieve similar
function approximation accuracy. In fact it has been shown that given particular conditions on
the spectrum of the function to be approximated, the approximation error of a multilayer neural
network is independent of the dimensionality of the input space [6]. This consideration is more so
important for cases of high dimensional input, considering that RBF networks suffer from the curse
of dimensionality where the number of units increases exponentially with state dimension. Hence
we shall now adapt the design of the suboptimal dual controller to the case of implementation via
sigmoidal multilayer networks.

2.3.1 Sigmoidal MLP networks

Two sigmoidal MLP networks shall be used, each having one hidden layer and one summing output
node to approximate the unknown nonlinear functions f[x(t — 1)], g[x(t — 1)] respectively. The
outputs of the two neural networks are respectively given by

felx(t—1),é(1)] = &7 () @e[x(t - 1))
gslx(t—1),¢g(1)] = cgT(t)Pg[x(t - 1)] (9)

where ¢f,cg are vectors containing the parameters (weights) of the output layer neuron and ®¢[x(t—
1)],@g[x(t — 1)] are the sigmoidal activation function vectors, representing the output of the nodes

7
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in the hidden layer, whose ith element is given by:

@5, = 1/(1+ exp(—vgf xa(t - 1))
Pg; = 1/(1+exp(-wgixa(t —1)))

where “?fiT, “;g?.

i are the parameter vectors of the ith neuron in the hidden layer and Xa(t—1):=

[x(t—1)T : 1]7 denotes the system state vector augmented by an additional constant input serving
as a neuron bias input. The number of units in the hidden layers of the f, and gs networks is
denoted by n,y and n,, respectively.

Note that the (optimal) values of the network parameters required to ensure some desired ap-
proximation accuracy are unknown and hence require estimation. For convenience these parameters

shall be grouped in a single vector W := [¢p” wel ... wel ... c"gT “;51 wgf ..J%. In con-
' trast to the RBF network, not all of these parameters appear linearly in the network equations (9)

because of the parameters of the hidden layer neurons.

2.3.2 Parameter estimation

As in the previous case we shall a,ssume that there exist some 0pt1ma1 values of the parameter
i *T *«T »T T
vector w, denoted by w* := [c} Wfl CoWED L 81 ;s 81 ..]*, such that the network

approximation errors are a,rbltra,mly small in the space of interest. Hence from equations (9) and

W w

(2), the plant can be modelled by the equations

wit+1) = wi(t)

y(t) = h(t,w*,x(t—1),u(t— 1))+ e(t) (10)
where A(t,w*,x(t — 1),u(t - 1)) := Téf[wf, x(t —1)] + c”TQg[ Wgoo X(t— Du(t-=1) is a
. nonlinear function of the unknown optimal parameters w*. Since the parameters to be estimated

do not appear linearly in the system model, nonlinear estimation techniques have to be used. The
Extended Kalman Filter (EKF) [2, 18, 26] is the most widely used nonlinear estimator and for
our case it also represents a natural progression from the (linear) Kalman filter used in the RBF
network case. The EKF has also been applied in system identification using MLP networks [20, 37]
and shown to give better results than the back-propagation training algorithm [31] and also for
function estimation using Gaussian RBF networks [19].

The extended Kalman filter applied to the model of equation (10) gives
K(t) = PO)Va'(t)/(0® + Vu(1)P()VpT (1)

W(t+1) = w(t)+K(8)(y(t) - h(t, w(1), x(t— 1),u(t— 1)), w(0) =
P(t+1) = {I-K@)Vn(O)}P(t), P(0) = (11)

where Vy,(t) denotes the transpose of the gradient vector of A(t) with respect to w* evaluated
at w* = W(t), for which a closed form expression can be found directly by differentiation of h(t)

8
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resulting in

Vh(t) = [V (): Vag (t)u(t — 1)] (12)
where
1 ( é5, exp(—wl Xa) o | .
hf(t)_ 1 .~ T 5 | Xa© .- ,z:l...nsf
+ exp(—Wrj Xa) (1 + eXP(—V}f;fxa))
1 &g, exp(—wWgi x
hg() 1 - T = ( £ a)2 xaT i 8= L Ty
+ exp(—Wgj Xa) (l +.exp(—wg?xa))

To be able to proceed in a similar manner to the Gaussian RBF case, we shall assume that the
' initial optimal parameter vector w*(0) has a Gaussian distribution with mean m and covariance
R, and that the conditional distribution of w*(¢ + 1) given Y* is approximately Gaussian with
mean W(t + 1) and covariance matrix P(¢ 4+ 1) as given by the EKF equations (11) [17]. It should
be emphasized that the latter is only an approximation and does not follow naturally as in the
linear Kalman filter. Even so, this assumption still does not lead to straight forward conclusions
regarding the conditional distribution of y(t + 1) given Y, because of the nonlinear relationship
between y and w* as seen in equation (10). Hence we shall linearize y(t + 1) about w(¢t + 1) by a
first order Taylor series expansion to get

y(t+1) & h(t+1,W(t+1),x(1),u(t) + Vu(t+ 1)(W(t+1) = W(t + 1)) + e(t + 1)
Vn(t+ L)w(t + 1) + h(t + 1,%( + 1), x(8), u(t))

—Via(t+ 1wt +1) +e(t +1) (13)

i

where Vi, (2 + 1) is the same as V() but evaluated at w(t + 1), u(¢) and x(2).

. Hence from the assumed Gaussian conditional distribution of w*(¢ + 1), mentioned before, and
equation(13) it follows that the conditional distrubution of y(¢ + 1) given Y'* is also approximately
Gaussian with mean h(t 4+ 1,W(t 4+ 1),x(t),u(t)) and variance Vy(t + 1)P(t + 1)V T (t + 1) + o2.

2.3.3 The control law

We shall consider the same cost function as before, based on Milito‘s innovations dual controller
given by equation (7), where in this case the innovations sequence €(¢ + 1) is defined as €(t + 1) :=
y(t+1) = h(t + 1, W(t + 1), x(), u(t)).

Proceeding exactly as for the RBF case and using the approximations on the conditional dis-
tribution of y(¢ + 1) outlined in the previous section, the optimal control law is obtained as:

(yr(.t -+ 1) - fs[X(t).,VGf(t + 1)])§S[X(t)!vaf(t + 1)] - (1 + T‘),U.g_f
G2[x(1), Wg(t+ 1)1+ g+ (1 + r)g,

u*(t) = (14)

9
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where p.¢ 1= th(t + 1)Pgr(t + 1)Vth(t + 1) and pgy = th(t + 1)Pgg(t + 1)thT(t +1)
represent the uncertainty terms for this case and P(t 4+ 1) has been partitioned as before, but in
this case Pg, Pgg are square (n,f(n+m+2) X ngs(n+m+2)), (nsg(n4+m+2) X ngg(n+m+2))
sub-matrices respectively.

Note that the result is a control law which is identical in structure to that of the RBF network
controller, except that the Gaussian basis function vectors appearing in the uncertainty terms are
replaced by the corresponding gradient vector of A evaluated at w. This reflects the principle behind
the extended Kalman filter which was used for estimation; namely that it linearizes a nonlinear
system about the most recent parameter estimate and consequently the statistical properties of its
estimates are calculated on this basis. Hence, as far as controller performance is concerned, similar
comments to the RBF dual adaptive controller apply in the case of the MLP controller.

3 SIMULATION RESULTS

The performance of the system was tested by simulation of two example plants. Note that the plants
were not subjected to an initial open loop system identification phase and closed loop control was
activated immediately, with the initial parameter estimates selected at random and not having been
pre-trained.

3.1 Simulation 1

The plant of the first simulation is given by:
y(t+1) = sin(z(t)) + cos(3z(t)) + (2 + cos(z(t)))u(t) + e(t + 1) (15)

where state z(t) = y(t) and the noise variance 0% = 0.001. f(z) = sin(z(t)) + cos(3z(t)) and
9(z) = 2 + cos(z(t)) represent the unknown nonlinear dynamics. The reference input is obtained
by sampling a unit amplitude, 0.1 H z square wave filtered by a network of transfer function 1/(s+1).
A Gaussian RBF controller is implemented in this system. The network approximation region is
chosen as Xn = [~2,2] and two RBF networks are used to approximate f(z) and g(z ) respectively.
The f network is chosen to have Gaussian basis functions of variance 1 placed on a mesh of spacing
0.5, whilst the § network basis functions have variance of 3.6 and a mesh spacing of 2. The Kalman
filter initial parameter covariance was set to P(0) = 10001I.

Trials were conducted with three different controllers corresponding to the heuristic certainty
equivalence (HCE) (r = —1), cautious (r = 0) and innovation dual (=1 < r < 0) controller. The
same noise sequence, initial conditions and reference input were used in each case. A typical output
is shown in figure 1. Note that, as expected, the HCE controller initially responds violently because
it is not taking into consideration the inaccuracy of the parameter estimates. Only after the initial
period, when the parameters converge, does the control assume good tracking. On the contrary

10
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the cautious controller is slow to respond during the initial period, knowing that the parameter
estimates are still inaccurate. Hence although no violent response is exhibited, the controller
is practically turned off during the initial part of the response. The innovation dual controller
reaches a compromise between these two extremes, clearly showing no particularly unacceptable
peak overshoot whilst tracking the reference input earlier than the cautious contoller. Hence,
even qualitatively, it is clear that the performance of the innovation dual controller is the better
one. To quantify the performance a Monte Carlo analysis involving 500 trials was performed.
A fresh realization of the noise sequence was generated at each trial and the accumulated cost
V(T) = TF (v-(t) — y(t))® was calculated over the whole simulation interval time T at each trial.
The results are shown in figure 1. '

The average of the accumulated cost over 500 trials is shown in table 1 where it is seen that
the innovations dual controller shows the best performance; although the improvement over the
cautious controller is marginal. This is due to the fact that the nonlinear functions considered in
this example are time invariant and hence the optimal parameters of the network are constant.
In case of time-varying nonlinearities, the improvement of the dual controller over the cautious
is expected to be greater because the uncertainty of the estimates would not be pronounced only
during the initial period of the response but also when the parameters change appreciably. Hence,
under time-variant conditions, the cautious controller is bound to turn off more frequently during
operation.

In order to reduce the overshoot of the HCE controller it is tempting to increase the cost
function weight g associated with u(t). Although this does reduce overshoot, in some cases it can
cause a general deterioration of the tracking capabilities as shown in figure 2, where ¢ was set to
1 for the HCE controller and 0.0001 for the other two. Although the HCE accumulated cost is
reduced drastically to around 15, it is still higher than 6, the order of magnitude of the cautious
and dual controllers. The reason is that g tends to limit the amplitude of the control at all times
and not only during those periods when parameter uncertainty is large.

3.2 Simulation 2

The plant of the second simulation is similar to that used in reference [11], namely:

L5y(t)y(t = 1)
1+ y2(t) +y2(t - 1)

y(t+1) = + 0.35sin(y(t) + y(t — 1)) + L.2u(t) + e(t + 1) (16)

where x(t) = [y(t — 1) y(t)]T, g(x) = 1.2 and f(x) = (L5y(t)y(t — 1)/(1 + ¢*(t) + ¥*(t — 1)) +
0.35sin(y(t)+ y(t — 1)) represent the unknown nonlinear dynamics and the noise €(t) has variance
0% = (0.01. The reference input is obtained by sampling a unit amplitude, 0.1 Hz square wave
filtered by 1/(s+ 1). Both a RBF and a MLP controller shall be tested on this plant. For the RBF
network, the approximation region is chosen as xn = [—2,2] X [-2, 2] for the f network and [-2,2]
for the § network. The f network has Gaussian basis functions of variance 0.64 placed on a mesh
of spacing 0.5, whilst the § network has a variance of 9 and a mesh spacing of 1.5. The Kalman
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filter initial parameter covariance was set to P(0) = I. As before, trials were conducted using the
three different controllers with ¢ set to 0.0001 in all cases. A typical output is shown in figure 3.
Note that the same comments as before apply in this case, with the innovations dual controller
performing better. Figure 3 also shows the results of the accumulated cost following Monte Carlo
analysis. The average of the accumulated cost over 100 trials can also be seen in table 1 where it
is clear that the innovations dual controller shows best performance.

3.3 Simulation 3

The same plant of simulation 2 is used for testing the MLP controller. The noise e(t) had a variance
of 0.05 and the f and § networks were structured with 10 and 5 hidden unit neurons respectively.
The initial parameter estimates were chosen at random and the initial covariance matrix P(0) had
a diagonal structure with the terms corresponding to f and § set to 50 and 10 respectively. Figure
4 shows a typical output for the three different controllers. Once again it is noted that, compared
with the innovations dual controller, the HCE controller exhibits higher peak overshoot whilst the '
cautious controller is slower to respond. The results of the Monte Carlo analysis are shown in figure
4 and table 1. Note that the same comments as for the RBF controller apply, with the innovations
dual controller having best performance. An important observation is that the MLP controller has
resulted in a similar performance as the RBF controller but with an appreciably smaller number
- of neurons: 10 as opposed to 64 for the f network. This follows because the f network has a two
dimensional input space and so the number of nodes required in the RBF network starts to increase
reasonably with dimensionality.

Simulation No. | HCE | CAUTIOUS | DUAL
1 1434 6.7 8.7
2 273 T2 5.96
3 500 48 42

Table 1: Mean accumulated cost

4 CONCLUSION

A neural network adaptive dual control approach has been investigated for the affine class of
nonlinear systems under stochastic conditions when the nonlinearities are unknown. The controller
developed is based on the explicit type suboptimal dual criterion as originally proposed by Milito
et al. [25] for linear systems. It was shown that the advantages of Milito s design, namely superior
performance over non-dual controllers and a relatively simple control law, also hold for the more
complex case of adaptive control of stochastic affine nonlinear systems. Moreover, because the
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suboptimal dual controller takes into consideration parameter uncertainty by introducing caution-
like effects, control and estimation are performed simultaneously and it is not necessary to preceed
the control phase with an off-line, open-loop system identification phase, as is typically the case
with adaptive HCE neural network control schemes.

Both Gaussian RBF and sigmoidal MLP neural networks have been tested for learning the
unknown nonlinearities. The network training algorithms were derived using Kalman filters for
the RBF case and extended Kalman filter theory for the MLP case. Simulation results have been
presented and the advantage of utilising a suboptimal dual approach has been confirmed by Monte
Carlo analysis. Evaluation of the conditions under which the assumptions taken in the derivation of
the MLP control law are justified is open to further reseach; together with analysis of the stability

. properties of the closed loop system.
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