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a b s t r a c t

PEX5 acts as a cycling receptor for import of PTS1 proteins into peroxisomes and as a co-receptor for

PEX7, the PTS2 receptor, but the mechanism of cargo unloading has remained obscure. Using

recombinant protein domains we show PEX5 binding to the PEX14N-terminal domain (PEX14N)

has no effect on the affinity of PEX5 for a PTS1 containing peptide. PEX5 can form a complex con-

taining both recombinant PTS1 cargo and endogenous PEX7-thiolase simultaneously but isolation

of the complex via the PEX14 construct resulted in an absence of thiolase, suggesting a possible role

for PEX14 in the unloading of PTS2 cargos.

Structured summary of protein interactions:

pMDH1 physically interacts with PEX5 by pull down (View interaction)

PEX5C binds to PEX14N by filter binding (View interaction)

PEX14N binds to PEX5C by pull down (View interaction)

PEX14N physically interacts with PEX7 by pull down (View interaction)

PEX5 physically interacts with PEX7 by pull down (View interaction)

DCI1 physically interacts with PEX5 by pull down (View interaction)

PEX5 physically interacts with thiolase PTS2-cargo by pull down (View interaction)

pMDH1 physically interacts with PEX7 by pull down (View interaction)

DCI1 physically interacts with thiolase PTS2-cargo by pull down (View interaction)

DCI1 physically interacts with PEX7 by pull down (View interaction)

PEX14N physically interacts with PEX5 by pull down (View interaction)

� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical

Societies. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/3.0/).

1. Introduction

Peroxisomal matrix proteins are post-translationally imported

from the cytosol via a Peroxisomal Targeting Signal (PTS) encoded

in the primary structure (reviewed in [1,2]). The majority of matrix

proteins possess a PTS1, a C-terminal tripeptide of consensus

sequence [S/A/C]-[K/R/H]-[L/M] [3,4], which is recognised by the

cytosolic receptor PEX5. Some matrix proteins possess a PTS2, a

nonapeptide of consensus sequence [R/K]-[L/V/I]-X5-[H/Q]-[L/A]

located near the N-terminus [5], which is recognised by the cyto-

solic receptor PEX7. PEX7 does not function autonomously and

import requires co-receptors that vary in a species dependent

manner [6]. In Saccharomyces cerevisiae Pex18p and Pex21p func-

tion as the co-receptor, while Pex20p performs this function in

other fungi. Recent structural studies show that Pex21p covers

the hydrophobic faces of the PTS2 signal and Pex7p to form a stable

hydrophobic core [7]. In Arabidopsis the co-receptor is PEX5 [8,9],

and in mammals a long splice variant of PEX5 (termed PEX5L) [10].

Newly synthesised peroxisomal matrix proteins bind their

respective receptors in the cytosol and the complex docks with pro-

tein machinery (the ‘importomer’) at the peroxisomal membrane.

The receptor docking site consists of the membrane proteins

PEX13 and PEX14 (and Pex17p in S. cerevisiae) [11]. The N terminus
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of HsPEX5 binds the N terminus of PEX14 via multiple WX3F/Y

motifs [12] as well as a newly discovered LVXEF motif [13]. While

AtPEX5 contains nineWX3F/Ymotifs it lacks an obvious counterpart

to LVXEF PEX5 inserts into the peroxisomal membrane by a poorly

understoodmechanismwhichmay involve interactions withmem-

brane lipids [14] as well as with PEX14 [15]. The docking and inser-

tion of PEX5 into the peroxisomal membrane is proposed to be

driven solely by favourable thermodynamic interactions [16,17].

The cargo is released into the peroxisome, and the receptor is ubiq-

uitinated by the RING peroxins (PEX2, PEX10, PEX12) [18]. Mono-

ubiquitination of a cysteine residue close to the terminal of PEX5

targets the receptor for release from the peroxisome by the ATPase

peroxins PEX1 and PEX6 to begin another round of import [19].

PEX5 and PEX14 have been shown to form a dynamic ligand-

gated channel capable of opening to a diameter of 9 nm [15],

explaining the ability of peroxisomes to translocate folded proteins

without compromising membrane integrity. Binding of PEX5 to its

PTS1 cargo has been shown to be unaffected by either interaction of

PEX5 with the RING domain of PEX12 [20] or by ubiquitination of

PEX5 [21]. The PTS2 protein thiolase has been shown to be released

from PEX5 prior to release of the receptor from the peroxisome or

ubiquitination of PEX5 [22]. Recent results implicate the redox state

of Pex5p and binding Pex8p, an intraperoxisomal protein found

only in yeast, in unloading of PTS1 cargo [23]. Pichia pastoris Pex5p

forms homooligomers through disulfide links at cysteine 10 which

results in increased PTS1 binding affinity. Reduction of the disul-

phide link triggers partial cargo release which is enhanced in the

presence of Pex8p. In mammals the PEX5-catalase complex can

be dissociated through binding of the N-terminal domain of

PEX14 to the N-terminus of PEX5 [24]. Catalase binds through an

atypical PTS1 motif [25,26] and additionally has been shown to

form interactions with the PEX5N-terminal [24,27]. Disruption of

the PEX5–catalase interaction by PEX14 may therefore result from

disruption of catalase interactions with the either the PEX5 N-ter-

minal or the TPR domain. Leishmania donovani PEX5 shows a

decreased affinity for PTS1 cargo in the presence of the PEX14 N-

terminus [28]. Attempts to isolate a recombinant Arabidopsis PTS1

cargo–PEX5–PEX14 complex have also been unsuccessful, although

the corresponding PEX5–PEX14 complex was successfully isolated

[29]. This therefore raised the question as to whether the N-termi-

nal domain of PEX14 may function as a general PTS1-cargo unload-

ing species in higher eukaryotes.

In an effort to understand the ordering and function of early

stage interactions in the plant peroxisomal import cycle, and to

address the question of how cargo is unloaded, we characterised

the interactions between PTS1 cargo, PEX5, and the N terminal

domain of PEX14 (PEX14N) in assays using defined purified recom-

binant Arabidopsis proteins. To gain insight into the PTS2 pathway

we performed pull-downs using a cytosolic extracts of Arabidopsis

cells as a source of PTS2 pathway components.

2. Materials and methods

2.1. HRP conjugate binding overlay assays

HRP-maleimide (Sigma) was conjugated to sulfhydryl com-

pounds following the manufacturer’s instructions. Unconjugated

sulfhydryls were removed by dialysis into PBS, the HRP-conjugate

diluted with glycerol (50% v/v) and stored �20 �C in the dark.

Purified PEX5 (25 pmol) or HRP conjugates (2.5 pmol) were

pipetted onto a nitrocellulose membrane, dried, blocked 1 h in

3% BSA PBS-T, then incubated with either peptide-HRP (200 nM)

or PEX14N-HRP (50 nM) in blocking buffer for 1 h. Blots were

washed 3 times for 10 min in PBS-T. HRP conjugates were visual-

ised using ECL. To assess unloading of HRP-YQSKL from PEX5C by

PEX14N, blots were washed 3 times for 10 min in PBS-T, then

incubated with PEX14N (0.2 lM) in blocking buffer for 1 h, before

washing and visualisation. The process was then repeated with

PEX14 N (2 lM) in blocking buffer at 4 �C for 16 h.

2.2. Pull-down assays

PEX14N, PEX5C, PEX5, and lissamine-YQSKL (5 lM) in PBS were

mixed on ice, adjusted to 1 mL with PBS and incubated with gentle

agitation (4 �C, 1 h). The mixture was added to Strep-Tactin resin

(500 lL), incubated with gentle agitation (4 �C, 1 h), loaded into a

column, drained and washed with PBS (10 � 1.5 mL). Bound com-

plexes were eluted in PBS containing 7.5 mM desthiobiotin

(6 � 0.5 mL).

Arabidopsis cytosolic fractions (25000�g supernatant fraction)

were prepared from cell cultures as described previously [30]

The cytosolic fraction (�6 mg/mL, 500 lL) was pre-incubated with

Ni–NTA (50 lL) resin 4 �C, 1 h, then the unbound fraction added to

the recombinant protein binding partner (33 lM) in PBS (50 lL),
and incubated with gentle agitation (4 �C, 1 h). Ni–NTA resin

(50 lL) was added and the mixture incubated with gentle agitation

(4 �C, 1 h), loaded into a column, and washed with PBS

(3 � 0.5 mL). Bound complexes were eluted in PBS containing

1 M imidazole (3 � 50 lL).
Immunoblotting was as described [30] using anti-Arabidopsis

PEX5 [29] at 1:10000 dilution, anti-Arabidopsis PEX7 [31] at

1:1000 dilution, and anti-thiolase [32] at 1:180000 dilution.

2.3. Fluorescence measurement-

Fluorescence studies used an Envision™ 2103 multilabel plate

reader (PerkinElmer), Black Optiplate™ F plates (PerkinElmer),

excitation filter: 531 (25) nm, dichroic mirror: 555 nm, emission

filter: 595 (60) nm. Anisotropy measurements used the equivalent

polarised optics and the g-factor was set to 1. For Anisotropy mea-

surements wells were pre-treated with FA buffer (HEPES (20 mM),

NaCl (150 mM), pH 7.5) containing 0.32 mg/mL gelatine. To deter-

mine the binding affinity of PTS1 peptides, the anisotropy of a dilu-

tion series of PEX5C (1 lM–0.04 nM) containing lissamine-YQSKL

(100 nM) (final volume 40 lL) was measured before and after addi-

tion of 10 lL PEX14N (5 lM) to the wells. To determine the effect

of PEX14N concentration on the PTS1–PEX5C complex the aniso-

tropies of solutions containing PEX14N (10 lM–1 nM), PEX5C

(100 nM) and lissamine-YQSKL (100 nM) (40 lL final volume) were

recorded.

3. Results

3.1. PEX5 and PEX14N form complexes in the presence or absence

of PTS1 cargo

To determine the ability of PEX5 to form complexes with

PEX14N and PTS1 cargo, pull-down experiments were performed

utilising purified soluble recombinant constructs (Figs. S1 and S2)

and a fluorescently labelled PTS1 peptide. PEX5C bound liss-

amine-YQSKL (detected using fluorescence) and could be isolated

using Ni–NTA resin (Fig. 1A, lane 1). No fluorescence was detected

in the absence of PEX5C (Fig. 1A, lane 2). PEX5C contains six of the

nine W-X3-F/Y motifs that bind the PEX14 N-terminal region. To

isolate the ternary complex, a pull-down experiment was per-

formed utilising the StrepII tag of the soluble PEX14N construct

(Fig. S1). Controls showed that PEX5C did not bind Strep-Tactin

resin (Fig. 1B, lane 6); although minor non-specific interaction

between Lissamine-YQSKL (PTS1) and Strep-Tactin was observed

(lane 7), which was reduced by the presence of either recombinant

protein (Fig. 1B, lanes 3 and 4). A stable ternary PTS1–PEX5C–

PEX14N complex was isolated (Fig. 1B, lane 1), and PEX14N could
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also co-isolate PEX5C in the absence of lissamine-PTS1 cargo

(Fig. 1B, lane 2). The pull-down experiments were repeated utilis-

ing full-length PEX5. These experiments demonstrated that PEX5

was also capable of forming a stable ternary complex, or binding

PEX14N in the absence of PTS1 cargo (Fig. 1C, lanes 1 and 2).

The ability of PEX14N to interact with PEX5 in a cargo-indepen-

dent manner was confirmed through a binding overlay assay.

PEX14N was covalently linked via an unique engineered cysteine

to HRP-maleimide. PEX5 constructs were pipetted onto a nitrocel-

lulose membrane, which was blocked, probed with 50 nM

PEX14N–HRP and detected via chemiluminesence. The PEX14N–

HRP was capable of forming complexes with both PEX5C and

PEX5 in the absence of PTS1 cargo (Fig. 1D).

3.2. PEX14N does not release cannonical PTS1 cargo from PEX5C

To assess whether PEX14N was capable of releasing a generic

PTS1 cargo peptide from PEX5, CGGGYQSKL and a non-binding

control PTS1 CGGGYQSEL were chemically synthesised and cou-

pled to HRP–maleimide. The peptide–HRP conjugates were used

in binding-overlay assays showing that PEX5 bound HRP-SKL, but

not HRP–SEL (Fig. 2A). The nitrocellulose bound HRP–SKL–PEX5C

complex was incubated for 1 h with 0.2 lM PEX14N, 4 times the

concentration used to show PEX14N:PEX5 binding in Fig. 1D, and

HRP–SKL was not dissociated. The complex remained even when

incubation for a further 16 h with 2 lM PEX14N was performed

(Fig. 2A).

A fluorescence anisotropy (FA) binding assay was employed to

quantitatively assess the binding interactions [33]. Titration of

PEX5C against a constant concentration of lissamine-YQSKL gener-

ated a binding curve. Fitting of the data to a 1:1 binding model

gave a Kd for the PEX5C–(lissamine-PTS1) interaction of

8.6 ± 4.0 nM [34]. A constant concentration of PEX14N (1 lM)

was then added and the anisotropy measured (Fig. 2B, black

squares). Overlay of the datasets indicated identical binding char-

acteristics (Kd 11.5 ± 3.4 nM) showing that PEX14N does not alter

the PEX5C–PTS1 affinity.

To assess if higher molar excesses of PEX14N were required to

affect PEX5C–PTS1 interaction, an FA assay was performed titrating

PEX14N against a constant concentration of lissamine-YQSKL

(100 nM) and PEX5C (100 nM). PEX14N was titrated from 3 lM
to 1 nM and the anisotropy measured (Fig. 2C). The anisotropy

showed the PTS1–PEX5C binding affinity was unaffected by even

a 30-fold molar excess of PEX14N.

3.3. PEX5 residues 1–339 are required for co-isolation of PEX7

and thiolase

Attempts to isolate sufficient soluble recombinant AtPEX7 for

binding interaction studies were unsuccessful (data not shown)

thus preventing application of the experimental approach pre-

sented above to determine the effect of PEX14N on the PEX7–

PTS2 interaction. In order to gain insight into the PTS2 pathway,

an Arabidopsis cytosolic fraction was utilised to allow isolation of

PEX7 containing complexes via pull-down with hexahistidine

tagged recombinant proteins. Prior to use the cytosol was depleted

of endogenous nickel binding proteins via incubation with Ni–NTA

resin. Immunoblotting against PEX5, PEX7 and thiolase (a PTS2

cargo) was used to detect the presence of proteins of interest.

Pull-down from depleted cytosolic fractions using the recombi-

nant PEX5 construct isolated PEX7 and thiolase PTS2-cargo

(Fig. 3A, anti-PEX7 and anti-thiolase panels). The PEX5 N-terminal

is sensitive to proteolysis [23,35–37] and during pull down exper-

iments some degradation occurred which was detected as multiple
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Fig. 1. PEX14N binds PEX5 in cargo bound and cargo free form. (A) Lissamine-YQSKL was incubated with Ni–NTA in the presence or absence of PEX5C and bound complexes

were eluted. 10 lL of the peak elution fraction (fraction 2) was analysed by anti-polyhistidine immunoblotting to detect PEX5C, 100 lL was analysed by FI at 595 nm to detect

Lissamine-YQSKL. PEX5C indicated by open arrow. (B) PEX14N, PEX5C, lissamine-YQSKL were incubated with Strep-Tactin resin as indicated. 10 lL of the peak elution

fraction (fraction 2) was analysed by anti-polyhistidine immunoblotting to detect PEX5C and PEX14N, 100 lL was analysed by FI at 595 nm to detect Lissamine-YQSKL. PEX5C

indicated by open arrow, PEX14N indicated by solid arrow. (C) PEX14N, PEX5, lissamine-YQSKL were incubated with Strep-Tactin resin as indicated. 10 lL of the peak elution

fraction (fraction 2) was analysed by anti-polyhistidine immunoblotting to detect PEX5 and PEX14N, 100 lL was analysed by FI at 595 nm to detect Lissamine-YQSKL. PEX5

indicated by open arrow, PEX14N indicated by solid arrow. (D) PEX5 constructs (2.5 pmol) were pipetted onto nitrocellulose and probed with PEX14-HRP (50 nM).
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bands by the anti-PEX5 antibody raised against the N-terminal

region [29] (Figs. 3 and 4, anti-PEX5 panel). The PEX5C terminal

construct lacks residues 314–334 which are required for function

as the PEX7 co-receptor [9]. As predicted, pull-down from the

depleted cytosol with recombinant PEX5C did not co-isolate either

PEX7 or thiolase cargo (Fig. 3B, anti-PEX7 and anti-thiolase panels).

3.4. Recombinant PTS1 and PTS2 cargo-proteins, or PEX14N, co-isolate

cytosolic PEX5 and PEX7

D3,5,D2,4-Dienoyl-coenzyme A isomerase (DCI1) is targeted to

the peroxisome via a PTS1 sequence [38]. Pull-down from the cyto-

solic fraction using recombinant DCI1 co-isolated PEX7 and thio-

lase PTS2-cargo, along with the degradation pattern of PEX5

(Fig. 4A) Isolation of an import complex containing both DCI1

and thiolase cargos indicates that the PEX5 receptor is capable of

functioning in both PTS1 and PTS2 pathways simultaneously,

either by directly binding both cargoes or by forming mixed

PEX5 oligomers containing both cargoes Peroxisomal NAD+-malate

dehydrogenase (pMDH1) is targeted to the peroxisome via a PTS2

sequence [39]. Pull-down from the depleted cytosolic fraction

using recombinant pMDH1 co-isolated PEX7 but not thiolase, along

with the degradation pattern of PEX5 (Fig. 4B). The lack of thiolase

co-isolation in this complex presumably results from the recombi-

nant pMDH1 out-competing thiolase for PEX7 binding. Utilisation

of the recombinant PEX14N construct for pull-down from cytosolic

fraction co-isolated PEX7 and the degradation pattern of PEX5, but

not thiolase PTS2 cargo-protein (Fig. 4C). This result is representa-

tive of five independent experiments.

4. Discussion

In this study the formation of ternary complexes representative

of different steps of receptor recognition and docking was studied

using recombinant Arabidopsis proteins and domains.

Binding of PTS1-cargo to PEX5 is required for initiation of an

import cycle [40], and it has been proposed that a conformational

shift in the PEX5 N-terminal region upon PTS1-cargo binding

activates PEX14 binding [41]. However, pull-down and binding-

overlay studies presented here suggest Arabidopsis PEX5 can

interact with PEX14 in a PTS1-cargo independent manner. Our

observations are in agreement with other studies showing the

PEX5–PEX14 interaction can occur in the absence of PTS1-cargo

[29,42], and structural studies indicating no major structural rear-

rangements in the PEX5 N-terminus upon PTS1-cargo binding [43].

Cargo-binding dependent initiation of an import cycle is therefore

not mediated through initiation of the PEX5–PEX14 interaction.

Given the high affinity of many PTS1–PEX5 interactions which

can be low nanomolar, [44], similar to that reported here for

AtPEX5C and lissamine YQSKL, the majority of cytosolic PEX5 will

exist in cargo loaded state meaning that cargo-free PEX14 com-

plexes are unlikely to form in vivo. Import may be initiated

through a PTS1-binding induced conformational shift in the TPR

domain [45] which facilitates opening of the PEX5–PEX14

transient pore [15].

Recent studies demonstrate that docking complex components

have additional functions [22,24,46]. Binding of the PEX14 N-ter-

minal to the most C-terminal W-X3-F/Y motifs has been shown

to trigger unloading of the atypical PTS1-cargo catalase from

PEX5 [24]. In light of this evidence and the previously reported

inability to isolate a PTS1 cargo with an Arabidopsis PEX5–PEX14

N-terminus complex [29], the ability of PEX14N to disrupt the

PTS1–PEX5 interaction was examined. The 1:1:1 molar ratio of

components in pull-down assays that allowed successful isolation

of the ternary complex may have contained insufficient PEX14N to

trigger unloading due to the higher PEX14N affinity of the N-termi-

nal W-X3-F/Y motif of PEX5 [12]. However, in both binding-overlay

and FA assays even substantial molar excesses of PEX41N did not

trigger release of PTS1-cargo from PEX5 or affect the binding affin-

ity. However, this system differs in important ways from the

in vivo situation where interactions take place within the context

of the membrane and complete cargo proteins may make addi-

tional interactions with PEX5 that could, as in the case of catalase,

be PEX14 sensitive. Nevertheless our data indicate that in vitro

PEX14N binding to PEX5 is not sufficient to disrupt interactions

between PEX5 and the key binding residues of a canonical PTS1

peptide.

Pull-down experiments from cytosolic extracts using recombi-

nant PEX5 were in agreement with in vivo data demonstrating that

PEX5 amino acids 314–334 are required for PEX7 interaction [9] as

PEX7 co-isolated with full length PEX5 but not PEX5C. Attempts to

HRP

PEX5C

Probe SEL SKL SKL SKL

PEX14N - - 0.2 µM 2 µM

A 

B 

C 

Fig. 2. Binding of PEX14N to PEX5C does not release PTS1-cargo. (A) PEX5C and HRP

controls were pipetted onto a nitrocellulose membrane and probed with HRP–

YQSKL or HRP–YQSEL. HRP–YQSKL probed blot was incubated with indicated

concentrations of PEX14N and re-developed. (B) FA measurement of bound

lissamine-YQSKL concentration against PEX5C concentration in the presence (black

square) or absence (open triangle) of 1 lM PEX14N. Shown binding curve is fitted to

titration in the absence of PEX14N, Kd 8.6 ± 4.0 nM (R2 = 0.97) [34]. (C) FA

measurement of bound lissamine-YQSKL concentration against PEX14N concen-

tration in the presence of 100 nM PEX5C.

2226 T. Lanyon-Hogg et al. / FEBS Letters 588 (2014) 2223–2229



α-PEX5 α-thiolaseα-PEX7

80
58

170

46

30
25

17

80
58

170

46

30
25

17

80
58

170

46

30
25

17

PEX5C + - C
y
t

+ - C
y
t

+ - C
y
t

80
58

170

46

30
25

17

80
58

170

46

30
25

17

80
58

170

46

30
25

17

PEX5 + - C
y
t

+ - C
y
t

+ - C
y
t

* 
* 

* 

A 

B 

Fig. 3. PEX5 binds PEX7 and thiolase but PEX5C does not. Arabidopsis cytosol was incubated with Ni–NTA resin in the presence or absence of recombinant PEX5 proteins. The

combined elution fractions (10 lL) were analysed by immunoblotting against PEX5, PEX7 or thiolase. In each panel ‘cyt’ is a depleted cytosolic fraction allowing detection of

the protein of interest by immunoblotting (positive control), ‘�’ is depleted cytosol to which no recombinant protein is added (negative control) and + is depleted cytosol to

which either recombinant PEX5 or PEX5C as indicated was added and recovered by Ni–NTA chromatography. (A) PEX5 pull-down. Arabidopsis proteins (closed arrows), His6-

PEX5 (open arrow), AtPEX5 degradation products (asterisk). (B) PEX5C pull-down. Arabidopsis proteins (closed arrows), His6-PEX5C (open arrow).
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Fig. 4. PEX5 can simultaneously bind PTS1 and PEX7–PTS2, however in the presence of PEX14N thiolase PTS2 cargo is not co-isolated. Arabidopsis cytosol was incubated with

Ni–NTA resin in the presence (+) or absence (�) of recombinant proteins. The combined elution fractions (10 lL) were analysed by immunoblotting against PEX5, PEX7 or

thiolase. In each panel ‘cyt’ is a depleted cytosolic fraction allowing detection of the protein of interest by immunoblotting (positive control), ‘�’ is depleted cytosol to which

no recombinant protein is added (negative control) and + is depleted cytosol to which recombinant as indicated was added and recovered by Ni–NTA chromatography. (A)

Dci1 (PTS1 protein) pull-down. Arabidopsis proteins (closed arrows), AtPEX5 degradation products (asterisk). (B) pMDH1 (PTS2 protein) pull-down. Arabidopsis proteins

(closed arrows), AtPEX5 degradation products (asterisk). (C) PEX14N pull-down. Arabidopsis proteins (closed arrows), AtPEX5 degradation products (asterisk).
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detect a range of PTS1 cargo-proteins were not successful (data not

shown), presumably due to the higher abundance of PTS1 proteins

causing individual PTS1 proteins to be below the detection limit in

the complex. The less-common utilisation of PTS2 signals results in

lower competition for receptor binding; additionally PTS2 proteins

released from peroxisomes during preparation of the cytosolic

fraction can have had their PTS2-sequences proteolytically cleaved

within the peroxisome [22]. Isolation of the preimport complex via

recombinant PTS1-cargo co-isolated PEX7 and thiolase PTS2 cargo,

indicating that PEX5 is capable of binding both PTS1- and PTS2-

cargo, or PTS1 and a PEX7/PTS2 loaded second molecule of PEX5

simultaneously.

Interestingly, we were not successful in isolating thiolase using

recombinant PEX14N, although the isolated complex contained

PEX7. The absence of thiolase in this complex can be accounted

for by two hypotheses; firstly PTS2 cargo may be unloaded from

the complex through binding with PEX14N, or secondly PEX14N

may show a higher affinity for PEX5–PEX7 than for PEX5–PEX7–

PTS2. Without recombinant AtPEX7 it is not possible to unambig-

uously distinguish between these possibilities, however in vitro

import assays demonstrate that interaction with docking complex

components is sufficient for unloading of thiolase into the peroxi-

some [22]. This is compatible with the hypothesis that thiolase is

dissociated from the import complex through the binding of

PEX14. In addition, PEX5L–(PEX7–PTS2) complexes have been

shown to be more stable in CHO pex14 cell lines [47]. Both catalase

and thiolase (directly or via PEX7) require interactions with the

PEX5 N-terminal region for import, which is also the PEX5 region

containing the PEX14N binding motifs. Structural data from yeast

shows the PEX7 co-receptor, Pex21p, forms a lid over the bound

PTS2 sequence [7]. Conformational shifts in the co-receptor upon

PEX14N binding may disrupt these favourable interactions with

the PTS2 signal. Interestingly the 37 amino acid insert allowing

mammalian PEX5L to function as a PEX7 co-receptor also contains

a PEX14N binding motif.

Our data are compatible with a growing body of evidence sup-

porting cargo release occurring at the stage of receptor interaction

with the docking complex [22,24] but our data suggest the N-termi-

nal domain of PEX14 is not sufficient, at least in vitro, for cannonical

PTS1 cargo unloading. The obvious other candidate for involvement

in unloading of canonical PTS1-cargos at this stage of import would

therefore be PEX13, the second component of the docking complex.

Pull-down experiments have previously demonstrated PEX13 can

co-isolate PEX5 but not a PEX5–PTS1 complex [47], and in vivo

studies indicate that efficient PTS1 import requires PEX5–PEX13

interaction [48,49]. The differential interaction of PEX13 and

PEX14with receptors may therefore allow them to function as both

docking site and cargo unloading site.

Acknowledgements

We thank Nicola Skoulding for construction of PEX5 and devel-

opment of the purification protocol, Prof. Y. Poirier for AtDCI1, Prof.

S. Smith for AtpMDH1, Prof. M. Nishimura for anti-Arabidopsis

PEX5 and Prof. I. Graham for anti-Arabidopsis thiolase. T.L.H.

acknowledges the Engineering and Physical Sciences Research

Council (EPSRC) and Biotechnology and Biological Sciences

Research Council (BBSRC) doctoral training studentship for fund-

ing. S.G. acknowledges Infineum for funding.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,

in the online version, at http://dx.doi.org/10.1016/j.febslet.2014.

05.038.

References

[1] Lanyon-Hogg, T., Warriner, S.L. and Baker, A. (2010) Getting a camel through
the eye of a needle: the import of folded proteins by peroxisomes. Biol. Cell
102, 245–263.

[2] Rucktaschel, R., Girzalsky, W. and Erdmann, R. (2011) Protein import
machineries of peroxisomes. Biochim. Biophys. Acta 1808, 892–900.

[3] Lametschwandtner, G., Brocard, C., Fransen, M., Van Veldhoven, P., Berger, J.
and Hartig, A. (1998) The difference in recognition of terminal tripeptides as
peroxisomal targeting signal 1 between yeast and human is due to different
affinities of their receptor Pex5p to the cognate signal and to residues adjacent
to it. J. Biol. Chem. 273, 33635–33643.

[4] Reumann, S., Quan, S., Aung, K., Yang, P.F., Manandhar-Shrestha, K., Holbrook,
D., Linka, N., Switzenberg, R., Wilkerson, C.G., Weber, A.P.M., Olsen, L.J. and Hu,
J.P. (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes
combined with in vivo subcellular targeting verification indicates novel
metabolic and regulatory functions of peroxisomes. Plant Physiol. 150, 125–
143.

[5] Rachubinski, R.A. and Subramani, S. (1995) How proteins penetrate
peroxisomes. Cell 83, 525–528.

[6] Brown, L.A. and Baker, A. (2008) Shuttles and cycles: transport of proteins into
the peroxisome matrix. Mol. Membr. Biol. 25, 363–375.

[7] Pan, D.Q., Nakatsu, T. and Kato, H. (2013) Crystal structure of peroxisomal
targeting signal-2 bound to its receptor complex Pex7p–Pex21p. Nat. Struct.
Mol. Biol. 20, 987–993.

[8] Hayashi, M., Yagi, M., Nito, K., Kamada, T. and Nishimura, M. (2005)
Differential contribution of two peroxisomal protein receptors to the
maintenance of peroxisomal functions in Arabidopsis. J. Biol. Chem. 280,
14829–14835.

[9] Woodward, A.W. and Bartel, B. (2005) The Arabidopsis peroxisomal targeting
signal type 2 receptor PEX7 is necessary for peroxisome function and
dependent on PEX5. Mol. Biol. Cell 16, 573–583.

[10] Otera, H., Harano, T., Honsho, M., Ghaedi, K., Mukai, S., Tanaka, A., Kawai, A.,
Shimizu, N. and Fujiki, Y. (2000) The mammalian peroxin Pex5pL, the longer
isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter,
translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial
docking site, Pex14p. J. Biol. Chem. 275, 21703–21714.

[11] Agne, B., Meindl, N.M., Niederhoff, K., Einwachter, H., Rehling, P., Sickmann, A.,
Meyer, H.E., Girzalsky, W. and Kunau, W.H. (2003) Pex8p: an intraperoxisomal
organizer of the peroxisomal import machinery. Mol. Cell 11, 635–646.

[12] Saidowsky, J., Dodt, G., Kirchberg, K., Wegner, A., Nastainczyk, W., Kunau, W.H.
and Schliebs, W. (2001) The di-aromatic pentapeptide repeats of the human
peroxisome import receptor PEX5 are separate high affinity binding sites for
the peroxisomal membrane protein PEX14. J. Biol. Chem. 276, 34524–34529.

[13] Neuhaus, A., Kooshapur, H., Wolf, J., Meyer, N.H., Madl, T., Saidowsky, J.,
Hambrunch, E., Lazam, A., Jung, M., Settler, M., Schliebs, W. and Erdman, R.
(2014) A novel PEX14 protein-interacting site of human PEX5 is critical for
matrix protein import into peroxisomes. J. Biol. Chem. 289, 437–448.

[14] Kerssen, D., Hambruch, E., Klaas, W., Platta, H.W., de Kruijff, B., Erdmann, R.,
Kunau, W.H. and Schliebs, W. (2006) Membrane association of the cycling
peroxisome import receptor Pex5p. J. Biol. Chem. 281, 27003–27015.

[15] Meinecke, M., Cizmowski, C., Schliebs, W., Kruger, V., Beck, S., Wagner, R. and
Erdmann, R. (2010) The peroxisomal importomer constitutes a large and
highly dynamic pore. Nat. Cell Biol. 12. 273-U68.

[16] Oliveira, M.E., Gouveia, A.M., Pinto, R.A., Sa-Miranda, C. and Azevedo, J.E.
(2003) The energetics of Pex5p-mediated peroxisomal protein import. J. Biol.
Chem. 278, 39483–39488.

[17] Miyata, N. and Fujiki, Y. (2005) Shuttling mechanism of peroxisome targeting
signal type 1 receptor Pex5: ATP-independent import and ATP-dependent
export. Mol. Cell. Biol. 25, 10822–10832.

[18] Williams, C., van den Berg, M., Geers, E. and Distel, B. (2008) Pex10p functions
as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. Biochem.
Biophys. Res. Commun. 374, 620–624.

[19] Kiel, J., Emmrich, K., Meyer, H.E. and Kunau, W.H. (2005) Ubiquitination of the
peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a
quality control mechanism during peroxisomal matrix protein import. J. Biol.
Chem. 280, 1921–1930.

[20] Harper, C.C., Berg, J.M. and Gould, S.J. (2003) PEX5 binds the PTS1
independently of Hsp70 and the peroxin PEX12. J. Biol. Chem. 278, 7897–
7901.

[21] Grou, C.P., Carvalho, A.F., Pinto, M.P., Huybrechts, S.J., Sa-Miranda, C., Fransen,
M. and Azevedo, J.E. (2009) Properties of the ubiquitin-Pex5p thiol ester
conjugate. J. Biol. Chem. 284, 10504–10513.

[22] Alencastre, I.S., Rodrigues, T.A., Grou, C.P., Fransen, M., Sá-Miranda, C. and
Azevedo, J.E. (2009) Mapping the cargo protein membrane translocation step
into the PEX5 cycling pathway. J. Biol. Chem. 284, 27243–27251.

[23] Ma, C., Hagstrom, D., Polley, S.G. and Subramani, S. (2013) Redox-regulated
cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J.
Biol. Chem. 288, 27220–27231.

[24] Freitas, M.O., Francisco, T., Rodrigues, T.A., Alencastre, I.S., Pinto, M.P., Grou,
C.P., Carvalho, A.F., Fransen, M., Sa-Miranda, C. and Azevedo, J.E. (2011) PEX5
protein binds monomeric catalase blocking its tetramerization and releases it
upon binding the N-terminal domain of PEX14. J. Biol. Chem. 286, 40509–
40519.

2228 T. Lanyon-Hogg et al. / FEBS Letters 588 (2014) 2223–2229

http://dx.doi.org/10.1016/j.febslet.2014.05.038
http://dx.doi.org/10.1016/j.febslet.2014.05.038
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0005
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0005
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0005
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0010
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0010
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0015
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0015
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0015
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0015
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0015
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0020
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0020
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0020
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0020
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0020
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0020
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0025
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0025
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0030
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0030
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0035
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0035
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0035
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0040
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0040
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0040
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0040
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0045
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0045
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0045
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0050
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0050
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0050
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0050
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0050
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0055
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0055
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0055
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0060
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0060
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0060
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0060
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0065
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0065
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0065
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0065
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0070
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0070
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0070
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0075
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0075
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0075
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0080
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0080
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0080
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0085
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0085
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0085
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0090
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0090
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0090
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0095
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0095
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0095
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0095
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0100
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0100
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0100
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0105
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0105
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0105
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0110
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0110
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0110
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0115
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0115
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0115
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0120
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0120
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0120
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0120
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0120


[25] Williams, C., Bener Aksam, E., Gunkel, K., Veenhuis, M. and van der Klei, I.J.
(2012) The relevance of the non-canonical PTS1 of peroxisomal catalase.
Biochim. Biophys. Acta 1823, 1133–1141.

[26] Purdue, P.E. and Lazarow, P.B. (1996) Targeting of human catalase to
peroxisomes is dependent upon a novel COOH-terminal peroxisomal
targeting sequence. J. Cell Biol. 134, 849–862.

[27] Oshima, Y., Kamigaki, A., Nakamori, C., Mano, S., Hayashi, M., Nishimura, M.
and Esaka, M. (2008) Plant catalase is imported into peroxisomes by pex5p but
is distinct from typical PTS1 import. Plant Cell Physiol. 49, 671–677.

[28] Madrid, K.P., De Crescenzo, G., Wang, S.W. and Jardim, A. (2004) Modulation of
the Leishmania donovani peroxin 5 quaternary structure by peroxisomal
targeting signal 1 ligands. Mol. Cell. Biol. 24, 7331–7344.

[29] Nito, K., Hayashi, M. and Nishimura, M. (2002) Direct interaction and
determination of binding domains among peroxisomal import factors in
Arabidopsis thaliana. Plant Cell Physiol. 43, 355–366.

[30] Mitsuya, S., El-Shami, M., Sparkes, I.A., Charlton, W.L., Lousa Cde, M., Johnson,
B. and Baker, A. (2010) Salt stress causes peroxisome proliferation, but
inducing peroxisome proliferation does not improve NaCl tolerance in
Arabidopsis thaliana. PloS One 5, e9408.

[31] Brown, L.A., O’Leary-Steele, C., Brookes, P., Armitage, L., Kepinski, S., Warriner,
S.L. and Baker, A. (2011) A small molecule with differential effects on the PTS1
and PTS2 peroxisome matrix import pathways. Plant J. 65, 980–990.

[32] Germain, V., Rylott, E.L., Larson, T.R., Sherson, S.M., Bechtold, N., Carde, J.P.,
Bryce, J.H., Graham, I.A. and Smith, S.M. (2001) Requirement for 3-ketoacyl-
CoA thiolase-2 in peroxisome development, fatty acid beta-oxidation and
breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J.
28, 1–12.

[33] Gatto, G.J., Geisbrecht, B.V., Gould, S.J. and Berg, J.M. (2000) Peroxisomal
targeting signal-1 recognition by the TPR domains of human PEX5. Nat. Struct.
Biol. 7, 1091–1095.

[34] We reproducibly observe a slight deviation from theoretical single site binding
model curves at lower PEX5 concentrations in these anisotropy measurements
suggesting some more subtle equilibria, perhaps involving PEX5 multimers is
present, however these minor differences do not affect the analysis presented
herein.

[35] Costa-Rodrigues, J., Carvalho, A.F., Fransen, M., Hambruch, E., Schliebs, W., Sa-
Miranda, C. and Azevedo, J.E. (2005) Pex5p, the peroxisomal cycling receptor,
is a monomeric non-globular protein. J. Biol. Chem. 280, 24404–24411.

[36] Carvalho, A.F., Costa-Rodrigues, J., Correia, I., Pessoa, J.C., Faria, T.Q., Martins,
C.L., Fransen, M., Sa-Miranda, C. and Azevedo, J.E. (2006) The N-terminal half
of the peroxisomal cycling receptor Pex5p is a natively unfolded domain. J.
Mol. Biol. 356, 864–875.

[37] Moscicka, K.B., Klompmaker, S.H., Wang, D.Y., van der Klei, I.J. and Boekema,
E.J. (2007) The Hansenula polymorpha peroxisomal targeting signal 1
receptor, Pex5p, functions as a tetramer. FEBS Lett. 581, 1758–1762.

[38] Goepfert, S., Vidoudez, C., Rezzonico, E., Hiltunen, J.K. and Poirier, Y. (2005)
Molecular identification and characterization of the Arabidopsis Delta(3,5),
Delta (2,4)-dienoyl-coenzyme A isomerase, a peroxisomal enzyme
participating in the beta-oxidation cycle of unsaturated fatty acids. Plant
Physiol. 138, 1947–1956.

[39] Pracharoenwattana, I., Cornah, J.E. and Smith, S.M. (2007) Arabidopsis
peroxisomal malate dehydrogenase functions in beta-oxidation but not in
the glyoxylate cycle. Plant J. 50, 381–390.

[40] Gouveia, A.M., Guimaraes, C.P., Oliveira, M.E., Sa-Miranda, C. and Azevedo, J.E.
(2003) Insertion of Pex5p into the peroxisomal membrane is cargo protein-
dependent. J. Biol. Chem. 278, 4389–4392.

[41] Harano, T., Nose, S., Uezu, R., Shimizu, N. and Fujiki, Y. (2001) Hsp70 regulates
the interaction between the peroxisome targeting signal type 1 (PTS1)-
receptor Pex5p and PTS1. Biochem. J. 357, 157–165.

[42] Urquhart, A.J., Kennedy, D., Gould, S.J. and Crane, D.I. (2000) Interaction of
Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal
membrane proteins Pex14p and Pex13p. J. Biol. Chem. 275, 4127–4136.

[43] Shiozawa, K., Konarev, P.V., Neufeld, C., Wilmanns, M. and Svergun, D.I. (2009)
Solution structure of human Pex5.Pex14.PTS1 protein complexes obtained by
small angle X-ray scattering. J. Biol. Chem. 284, 25334–25342.

[44] Ghosh, D. and Berg, J.M. (2010) A proteome-wide perspective on peroxisome
targeting signal 1(PTS1)-Pex5p affinities. J. Am. Chem. Soc. 132, 3973–3979.

[45] Stanley, W.A. and Wilmanns, M. (2006) Dynamic architecture of the
peroxisomal import receptor Pex5p. Biochim. Biophys. Acta 1763, 1592–1598.

[46] Bharti, P., Schliebs, W., Schievelbusch, T., Neuhaus, A., David, C., Kock, K.,
Herrmann, C., Meyer, H.E., Wiese, S., Warscheid, B., Theiss, C. and Erdmann, R.
(2011) PEX14 is required for microtubule-based peroxisome motility in
human cells. J. Cell Sci. 124, 1759–1768.

[47] Mukai, S. and Fujiki, Y. (2006) Molecular mechanisms of import of
peroxisome-targeting signal type 2 (PTS2) proteins by PTS2 receptor pex7p
and PTS1 receptor Pex5pL. J. Biol. Chem. 281, 37311–37320.

[48] Pires, J.R., Hong, X.J., Brockmann, C., Volkmer-Engert, R., Schneider-Mergener,
J., Oschkinat, H. and Erdmann, R. (2003) The ScPex13p SH3 domain exposes
two distinct binding sites for Pex5p and Pex14p. J. Mol. Biol. 326, 1427–1435.

[49] Schell-Steven, A., Stein, K., Amoros, M., Landgraf, C., Volkmer-Engert, R.,
Rottensteiner, H. and Erdmann, R. (2005) Identification of a novel,
intraperoxisomal Pex14-binding site in Pex13: association of Pex13 with the
docking complex is essential for peroxisomal matrix protein import. Mol. Cell.
Biol. 25, 3007–3018.

T. Lanyon-Hogg et al. / FEBS Letters 588 (2014) 2223–2229 2229

http://refhub.elsevier.com/S0014-5793(14)00425-6/h0125
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0125
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0125
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0130
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0130
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0130
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0135
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0135
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0135
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0140
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0140
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0140
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0145
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0145
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0145
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0150
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0150
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0150
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0150
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0155
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0155
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0155
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0160
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0160
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0160
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0160
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0160
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0165
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0165
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0165
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0175
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0175
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0175
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0180
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0180
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0180
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0180
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0185
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0185
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0185
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0190
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0190
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0190
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0190
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0190
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0195
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0195
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0195
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0200
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0200
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0200
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0205
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0205
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0205
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0210
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0210
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0210
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0215
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0215
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0215
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0220
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0220
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0225
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0225
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0230
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0230
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0230
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0230
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0235
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0235
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0235
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0240
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0240
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0240
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0245
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0245
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0245
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0245
http://refhub.elsevier.com/S0014-5793(14)00425-6/h0245

	PEX14 binding to Arabidopsis PEX5 has differential effects on PTS1 and PTS2 cargo occupancy of the receptor
	1 Introduction
	2 Materials and methods
	2.1 HRP conjugate binding overlay assays
	2.2 Pull-down assays
	2.3 Fluorescence measurement-

	3 Results
	3.1 PEX5 and PEX14N form complexes in the presence or absence of PTS1 cargo
	3.2 PEX14N does not release cannonical PTS1 cargo from PEX5C
	3.3 PEX5 residues 1–339 are required for co-isolation of PEX7 and thiolase
	3.4 Recombinant PTS1 and PTS2 cargo-proteins, or PEX14N, co-isolate cytosolic PEX5 and PEX7

	4 Discussion
	Acknowledgements
	Appendix A Supplementary data
	References


