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Abstract

A new algorithm is introduced to identify differential equation models for linear
and nonlinear MIMO systems from frequency response data using a weighted complex
orthogonal estimator. The estimation procedure is progressive beginning with the
estimation of the linear terms and then sequentially adding higher order nonlinear
terms to build up the model. Simulated examples are included to demonstrate the

performance of the new algorithm.

1 Introduction

Modelling of dynamic systems has always been an important issue in both science and en-
gineering. The problem of system modelling has been studied in many different frameworks
and investigated from different view points using various optimization techniques. An impor-
tant class of systems that has been intensively studied by researchers in the past are linear
lumped parameter systems which are described by a set of ordinary differential equations.
Although most physical systems are continuous in time most of the available techniques of
system modelling approximate the continuous time system by a difference equation instead
of a differential equation.

Parameter estimation methods for linear difference equation (discrete) models based on

sampled input-output data have been thoroughly studied (Ljung,1987; Soderstrom and Sto-
200391430
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ica,1989). The reasons for this may partly be attributed to the rapid development and wide
use of digital computers. Although the approximation ability of discrete models is quite sat-
isfactory, the parameters of nonlinear discrete models can not easily be related to the physical
behaviour of the system. Hence identification of continuous time models is important for
the purpose of system design and analysis.

Methods for continuous time parameter estimation using digital computers have received
Increasing attention in recent years. A comprehensive review of the continuous time mod-
elling can be found in Young (1981), Unbehauen and Rao(1987,1990). A major difficulty of
identification of continuous time models is associated with the numerical errors which can be
induced when derivatives of the input and output signals are computed. Several techniques
have been proposed by researchers in the past to minimise and possibly avoid these errors
during estimation. But most of these techniques have been developed for linear systems and
the extension of these techniques to nonlinear systems 1s much more involved.

One method of avoiding noise accentuating derivative operations on the noisy input-
output signal is to fit a nonlinear discrete time model to the sampled data records and
to generate the first and higher order frequency response functions and then to curve fit to
these to obtain a continuous time model (Tsang and Billings,1992b; Swain and Billings,1995).
Based on this approach a new estimatc;r called the weighted complex orthogonal estimator
was proposed (Swain and Billings,1995) to estimate the parameters of linear and nonlinear
single input single output models. The objective of the present study is to extend this
technique to fit continuous time differential equation models for multi input multi output
(MIMO) systems.

The organisation of the paper proceeds as follows. Section-2 briefly describes the weighted
complex orthogonal least squares estimator (Swain and Billings,1995). The concept of
Volterra modelling and the generalised frequency response function matrix for MIMO 5ys-
tems are introduced in section-3. The estimation procedure for fitting parametric nonlin-
ear differential equation models to frequency response data are described in section-4. In
section-5, simulated examples are included to demonstrate the effectiveness of the new MIMO

approach.




2 Weighted Complex Orthogonal Least Squares Esti-

mator

Consider a system which can be modeled as

M
2(jw) = ) Oipiljw) + €(jw) (1)
i=1
wheredd = T s M are the real unknown.deterministic parameters of the system associated

with the complex regressors p;(jw),i = 1,...M. z(jw) is a complex dependent variable or the
term to regress upon and {(jw) represents the modeling error. Before any attempt is made to
estimate the parameters ‘¢’, the complex variables involved in eqn(1) should be partitioned
in to real and imaginary parts; otherwise 8 could be complex. If ‘N’ measurements of z(jw)
and pj(jw) are available at w;,i = 1,.....N the complex system of eqn(1l) can be represented

after partitioning in matrix form as

Z=P8+E (2)

The weighted complex orthogonal estimator (Swain and Billings,1995) transforms eqn(2)
in to an auxiliary equation

7=Wg+= (3)

The properties of the matrix W are such that WTQW is orthogonal; where ‘Q’ is a positive
definite weighting matrix. Further let

V=g (4)
The regressors of the auxiliary model of eqn.(3) can be obtained recursively from

W1(w) = Pl(‘-“')

b , (5)
wi(w) = pi(w)— ¥ auwr(w) fork <i

k=1

where "
i Vie(w )pi(w;)

N ( ,
2= Vil ) wWic(wy

for k=1..... 1i—=1 (6)

Qy; =




The estimates of the i-th element of the auxiliary parameter vector ‘g’ 1s given by

Zi Z(w)vi(w)

B =
i vi(wy)wi(wy)

fori=1,.M (7)

Once the parameters g;,i = 1, ..M are estimated,the original system parameters fi=1,...M

can easily be recovered according to the formula

=g (T-1) (8)
that 1s
b = fu
C L w ©)
e = &@x— Y onb, fork=1.M-1
i=k+1
Therefore by using the above equations,the unknown parameters 6,1 = 1,....M can be esti-

mated step by step. The structure of the system or which term to include in the model can

be determined by using the error reduction ratio test

g T vilwy )wi(w;)

T 27 (w) Qu Z(w)

ERR; =1 M (10)
which gives the percentage contribution that each term makes to the output variance (en-
ergy). The value of ERR indicates the significance of a candidate term. Normally at the
beginning all available candidate terms are examined and the term which contributes the
maximum ERR is included in the model. This is repeated until all candidate terms have
been exhausted or the sum of the ERR approaches 100%. In order to avoid possible numer-
ical ill-conditioning the normalised version of the algorithm (Swain and Billings,1995) can
be used.

Before formulating the problem for estimating the parameters of continuous time non-
linear differential equation models, the concept of Volterra modelling, the generalised kernel
transform and [w, ] permutation needs to be introduced. These ate discussed in detail in

Swain and Billings(1996) but will be briefly reviewed below for completeness.




3 Volterra Modelling of MIMO Systems

The output of the j;-th ’ subsystem of an r-input m-output system possessing nonlinearity

up to degree N| may be expressed as

i (t Z y(“) (11)

where yj(ln}(t) is the n-th order component of the output y;, (t). When the r-inputs are denoted

as ug, (t),...ug(t) eqn(11) can be expressed as

Vi (t Z Z Z Z / -/ h(j £, ﬁ" (71, -. n)uﬁ](twﬁ)..ujgn(t—Tn)d'rh..drn

n=1pg;=1 ;= Pn=Fn—-
(12)

where hg“ﬁl'”‘ﬁ“)(ﬁ, ...Ty) is the n-th order Volterra kernel of the jith subsystem. The su-
perscripts [y, ...0, in the kernel correspond to the inputs ug, (t),...ug,(t) that take part
in the n-dimensional convolution with hff'*fi’“'ﬁ“)('rl,...?'n). The kernels are called self-
kernels when all the superscripts G, ...... Br in hg‘*‘ﬁ""'ﬁ“)(ﬁ, ... Tn) are equal; for example
hU:te ) (7, ..Ta) is the n-th order self kernel of the system corresponding to the inputs
u;(t), otherwise they are called cross-kernels.

The total number of kernels associated with the n-th order nonlinearity of a particular

subsystem depends on the number of inputs and is denoted as ng})
(r) _ () (r-1) (1)
Nk(n) —_— Nk(n-l) + Nk(n-—l) + ...... Nk(n—l) (13)

where
ng) = total number of first order kernels for an r-input system = r.

The multidimensional Fourier transform of the n-th order Volterra kernel results in the -
th order kernel transform and constitutes the elements of the n-th order generalised frequency
response function matrix (GFRFM) denoted as GFRFM®. The elements of the ji-th row
of GFRFM®) are




(14)

The elements of the GFRFM can be computed using the harmonic probing technique
(Bedrosian and Rice,1971). The procedure of computing each column of the GFRFM differs
from another column and requires' the harmonic inputs to be configured differently depend-
ing on which column of the GFRFM is being analysed. Instead of deriving an expression for
each column it is legitimate to define a generalised kernel transform and find the procedure
for computing this. Other kernel transforms can be considered to be special cases of the
generalised kernel transform. '

The Generalised Kernel Transform is denoted as
(G181, .+, By s gy’
——— e N

-u(im‘es Tatimes Tn times
GKERT = H, :

where

nqg = the number of distinct inputs present in the kernel

71 = number of times f§; occurs in the superscript and

Yng = number of times &, appears in the kernel

For example the kernel traﬁsfﬁrm ng’:’?"ﬁl’ﬁz’ﬁa’ﬁz)(.) would be represented in the above form

with ng =8,m =2, =1 and 95 = 2.

Average Generalised Kernel Transform and [w, 8] Permutation

The frequency domain behaviour of a single input single output (SISO) system can be
described in terms of symmetric versions of the generalised frequency response functions.
Analogously the frequency domain behavior of MIMO systems is described in terms of the
average generalised kernel transform. The symmetric GFRF is computed by an averaging
operation over all permutations of the frequency arguments of asymmetric GFRFs. But
the average kernel transform is computed by the permutation of both the arguments and
the superscripts of the GKERT by using [w, §] permutation (Swain and Billings,1996). To
explain this consider the configuration of an n-tone input while computing the GKERT. The




n-tone input is split according to

ug (t) = it 4 L + ¥t
un(t) = i g e (15
il
e o ;
g, (t) = € Thttmant + et
This implies that the frequencies {w,,... , W~ } belong to the input point Briw,, yo.,w, L
31 11 +72

belongs to the input point 3, and so om. The Average Generalised Kernel Transform is

defined as

(j;:,’?;,..‘,ﬁg,......ﬁnd,...)
e e

yitimes Yatimes Tndtimu

Davg (lea """" an)
(ji:lglr v e '\153! a '-",BTLG') )
jtimes ystimes w A - . .
= -—l Z Hn s (_]W}, ...... an) (16)
* all permutations

[w.5]

where the [w, §] permutation means that when any argument of a kernel transform HO(),
w; (say) which belongs to input point §; if is permutated to wy (say), £; must change to ,-6’1:_
such that &“** belongs to the input point 5.

As an example

BUHE.S ™ (e, Joa, Jovs) = HE* ¥ e, g, ) + HE Vo, g, )
+HG P g, joos, 1) + B g, o, ws)
+H§1:221)(jw3,jw2,w1) -+ ngl:m)(jw&jwhw?)

S (17)

permutation [w,3]

With the above background the expression for the CKERT of a system will be given by

mapping the differential equation models of the system into the frequency domain.




3.1  Frequency Domain Mapping of Differential Equation Models

Consider an r-input m-output nonlinear system. The dynamics of the ‘j;-th’ subsystem can

be represented by

n=1p=0a;=1az=a, @p=Cp-1 f1=1 =0 Bq=PFq-1

L P’ ] Pta
> cgé---ap.ﬁz,--ﬁq(h;11,..1p+q)HD'ym(t) Il Dhus , = 0 (18)
111'1P+q20 1=1 i=p+1

LY

where p + g = n and the operator DV is defined as

dhx(t)
dt

Dhx(t) = (19)
‘L’ is the order of the maximum derivative. The parameter c;é'“c‘*"ﬁl"'ﬁq(jl : Jepodipa ) 18
assoclated with the term [T, Dhy, (t )prpq*l Dhug,_, in the j;-th subsystem.

For example the equation

L.5y1(t) + ya(t) + 1.67y2(t) + 1.1ya(t) + ui(t) + 20.0y2(t)+
15.0y1(t)ya(t) + 2.3y1(t)ia(t) + 3.3ya(t)in(t) = 0 (20)

which may describe the first subsystem of a 2-input 2-output system would be represented
in the above form as c}o(1:1) = 1.5 clo(1:0) = 1.0 el ¢ 1Y= 1.B7
fo(1:0)=11, ¢} (1:0)=1.0 c35(1:00) =20.0, cl3(1:00) = 15.0, ersll 110 =53,
c3i(1:01) = 3.3

The frequency domain equivalent of eqn(18) corresponding to the generalised kernel trans-

form can be expressed as

(al:ﬁl,...}ﬁ ﬁnu’?'"
m 1hme1 12|1m=a

-y Z 1301+ 1) (Gwy + .. .jwn)h} n!Hy,,, rd“m" (Gwryeennn. jwn)

a1=1 11-—0

N

—

contribution from linear output terms
ﬁ ﬂ?) ¥ ﬁnd)
W—’
T1 nmn-yz hm::-md times
Z o (31 : L1, .1g)Hy
1;,1n=0

contribution from pure input nonlinear terms
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n m m L
C!l,..&p . .
PR S Y byl Hy
P=2o=1 ap=as_;],l,=0
contribution frem pure cutput nonlinear terms
&1,..Qp, ,@],... ﬁz,... ’Gﬂd""
n-1n+q L X ) g
njy timesng nm::,-,“:l times , |
+2 .20 Y., T (1 + 11y piq)Hyy
a=1p=11; Jp3q=0
contribution from input—output cross—product terms
(21)
where ¥
Bu = % GG D (e (e e
u - .]1 "‘J'rl J}+~,1 ”.j":l"'":?
all permutations of all permutations of
Wy eesblig iy vty
1
. ]+‘71+~— +75 » . 1
Z (le""z“”**ndkl ) d-1 ...(}wn)n (22)
all permmutations of
Yity 4+ St R
_ (= o T oy 2,
Hy = 3 e (Gwi, - - jwn) (23)
all permutations of

[«.A]

and He+*:( . ) denotes the contribution of p-th order nonlinear output terms of the form

—1 Dy, (t) to the n-th order nonlinearity. This is estimated recursively as
n—-p+1 i Bo:)
e S Z H7 7o oy, cedwi G200 (Wi - jwn) o + ... +J'¢b'i)lpv (24)

i=1

where §,, corresponds to the input point to which el belongs and f,, corresponds to the
input point to which &** belongs.
The recursion finishes with p = 1 and Ho%(jwi, ....jwn) has the property

H() = HEPorBon) o, i) (o + e+ o) (25)

and




10

HUY = Z Z e Z HL?Q)C(QQJ Z Hﬁi,ﬁ';l(gn—q)
]

1 ek
all wy ey all u]+71 ,...w11+72 all wi+7l + "’nd_] - perm {U—'.B

taken nj at a time taken nj; at a time viben nng at a Viigs
(26)
where
8] FOT . : lp4ns
Hoge@a) = (20 (OP)r .. (07 o)
all perm _’E,:'
n;”,.nnz ..
(20 (QF)emvt . (O )remsm)
all perm. of
n;:!,..ngg
. ( Z (jQ;rnd )lp-:—n1+...+nd_1+1 o (jQKZd )lq) (27>
all perm. of
: ﬁ:“d,..n:::
), ...Qn represent the variable of each combination of 71 irequencies belonging to the

input point ug, (t) taken n; at a time and similarly QF, ... Q7 represent the variables of each

combination of 4; frequencies belonging to the input point ug (t) taken n; at a time and

Qg = [QF,...00,...0,...05
e, = [wl,wg,...wn]ﬂ[ﬂq} (28)

These equations can be used to derive regression equations for estimating the unknown
parameters of the system. Before describing the general procedure of deriving regression
equations associated with the MIMO nonlinear differential equation model the following
example demonstrates how the information of the GFRFM of a system can be put in a
least squares based framework to estimate the parameters of a MIMO nonlinear differential

equation model.

Example

Consider a MISO system described by

a131(t) + a231(t) + y1(t) = bouy (t) + biui(t) + coua(t) + cruy(t) + d1ya1(t)ya(t) + dayi(t)(t)
+daya(t)ia(t) + data (t)d;(t) + dstiy (£)2(t) + detia(t)iia(t)(29)




Ll

The elements of the first and second order generalised frequency response function matrices

(GFRFM) of this system are given as

GFRFM® = [H(juy ), H" ey )]
GFRFM® = [H{ ™ (jwr, jwa), BY (e, jwn ), By, jws)] (30)

The estimation process to determine the nonlinear differential equation model of the system
utilizes the information in all the columns of the GFRFM sequentially by starting with the
columns of first order GFRFM , then the columns of the second order GFRFM and so on.

The procedure consists of several steps as described below.

Estimation of the Linear Terms

Step-1.1:
The frequency domain equivalent of the system corresponding to the first column of GFRFM(
i1s derived from eqn(29) with u;(t) = &*1* and u,(t) = 0 by equating the coefficients of &,
This gives

[21(jwr )? + az(jwr) + HE M (jwr) = bo + jwrby (31)

This can be written as
—H{™(jon) = a1 (jwr2HE M Gwr) + 22(wn ) B (wr) — bo — jenby (32)

The parameters a;, a;, by and by can be solved using least squares based techniques by in-
serting values for the frequency response function Hgl:l)(jwi).
Step-1.2 :
The frequency domain equivalent of the system correspdnding to the second column of the
GFRFM®) s

(a1 (jwn )? + az(iwr) + TH (wn) = co + jwnrey (33)

Note that the parameters a;, 2, on the left hand side of eqn(33) have been estimated in step-
1.1 above. Thus the parameters cp and c; can be estimated using least squares techniques

once values for H{"*)(jw;) have been inserted.
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Estimation of the Second Order Nonlinear Terms

Step-2.1 :
The frequency domain equivalent of the system corresponding to the first column of GFRFM2)
is computed by applying u;(t) = fej“l‘ +¢“2* and uy(t) = 0 in equation(29) by equating the

coefficients of el(“s+«2)t, This gives

(22w + jea)* + aajwn + jwa) + U2HL jwr,jwn) = ds 3 () (jwa)?

all perm

T 30 () Gen) B Vo)t 3 (Gen) B ) ) PH ) o)
all perm. all perm.
[w.B] [w.B]

(34)

The parameters d;,d; and d, can be estimated from eqn(34) once the values of the HY()
have been inserted.

Step-2.2 :

The frequency domain equivalent of the system for column-2 of GFRFM®) is

[a1(Gwr +jen)? + ax(jwr + jwz) + 12MHE2 0y, jwn ) = ds(jwr ) Gws )

2avg
tds 30 (wa) () B V(o) +di Y (o) 'HED () Goa )PHE? ()
all perm. all perm.
[w,B] [w.E]

(35)

Note that the parameter d; has been estimated before which can be brought to the left hand

side to give

[a1(wr + jw2)? + az(jwr + jwz) + 1]2!Hgi;152)(jw1,ng)
—d; Y (jwl)ngl"”(jwl)(jw2)2H§1:2)(jw2)

all perm.

[w.B]
= ds(jor)'(w2)' +ds Y (wz)*(Geor) HE (o) (36)
all perm.
[w.8]

Again this can be solved to give estimates of d5 and ds once values for the H{)(.) have been
inserted.

Step-2.3 :

The frequency domain equivalent of the system corresponding to the last column of GFRFM(?)
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1s

: 5 . 2 [1:22Y¢. . . . )
(1 (jwr +jw2)? + az(jwr + jwr) + 1J21H5 2wy, juws) = d o Gwr)Gws)?

all perm.
e D (el len) BV un) 4 di 3 G EE G eon P D o)
all perm. all perm.
[w.B] (A

(37)

Since the parameters d; and d; have been estimated before these can be brought to the left

hand side and the resulting equation can be solved to yield an estimate of ds.

4 Problem Formulation

In order to estimate the parameters of the system the information from all the columns
of the GFRFM will be utilized . The parameters of a particular subsystem of an n-th
order nonlinear MIMO system are estimated in n- stages. At the i-th stage the parameters
associated with the i-th order nonlinear terms are estimated by utilizing the information of
the i-th order generalised frequency response function matrix GFRFM®). Each stage consists
of a number of steps where at the k-th step of the i-th stage the frequency domain equivalent
(FDE) of the system corresponding to the k-th column of the GFRFM® is put in a regression
formulation to estimate the parameters of the system. The number of steps in the i-th stage
is equal to the number of columns in GFRFM®. This will be explained in more detail in
the following section.

The last example illustrates the normal procedure of estimating the parameters of a

simple MISO system. A more general procedure is described in this section.

4.1 Stage-1: Estimation of the Parameters Associated with the

Linear Terms

" The total number of steps in this stage is equal to ‘r’ where r is the number of inputs to
the system and is equal to the number of columns of the first order generalised frequency
response function matrix GFRFM() denoted as ncol,

Step-1.1:

The frequency domain equivalent of eqn(18) corresponding to the first column of the GRFRFM(?)
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is computed by setting n =1, = 1,8, = 1 in eqn(21) which gives

Hl ! JWl Z CQI(JI: J"‘ul) (38)

;=0

- Z [Z c73 (] '11)(j4‘v'1)1l

a;=1 |1, =0

Note that multiplying by a constant on both sides of eqn(38) has no effect on the form of the
equation except all the parameters will be changed which suggests that all the parameters
can not be uniquely estimated. Hence it is necessa;:y to fix a parameter before the estimation
begins. Without loss of generality it is assumed that the parameter corresponding to the

linear output term of the j;-th subsystem c¢; o(j1;0) is unity. Moving all other terms to the
right hand side (RHS) gives

m L L

~HPGw) = 3 | X @6 )G | B V6w + 30 G l)Gw)® (39)

;=1 =0 ;=0
13 #0 for ay=j;

which is a linear in the parameters expression and can be solved by applying the weighted
complex orthogonal estimator (Swain and Billings,1995).
Step-1.2:
To estimate the parameters associated with the linear terms of input [u,]; consider the FDE
of eqn(18) corresponding to the second column of GFRFM®) by setting £, = 2,71 =1 1n
eqn(21).
i Z [Z ClO : 11)(jw1)1‘-} H1 . le Z Co1 jish le) (40)
o =1 [1;=0 L,=0

Note that all the parameters associated with linear output terms cro(r L)l =0,...L,
a1 =1,...m on the left hand side (LHS) have been estimated as linear terms in the first
substep 1.1. Thus the parameters on the R.H.S. &f eqn(40) can be estimated using the
weighted complex orthogonal estimator (Swain and Billings,1995).

Similarly at step 1.r the parameters of the linear terms consisting of inputs [u;] can be

estimated from the FDE of the system corresponding to the r-th column of GFRFM®) which

1s given as
m [ L . L
= 20 |2 el s W)Gwn ) | B Gen) = 3 e Gas ) (on ) (41)
01-—-1 ]1_0 11:0
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4.2 Stage-2 : Estimation of the Parameters of the Second Order

Nonlinear Terms

Analogous with the linear case, the information from all the columns of the second order
GFRFM ; GFRFM(® will be progressively utilized to estimate all the parameters associated
with the second order nonlinear terms. The total number of steps required to search all the
nonlinear second order parameters of the system.equals the total number of columns of the
GFRFM() denoted as ncol;. For an r-input system ncol, = Nké;)) — m—;ll Note that the
estimation of the parameters will not be‘affected by the order of selection of the columns
of the GFRFM. However without loss of generality it is assumed that the columns of the
GFRFM®) are arranged as ngl:ﬁl'ﬁ”(jwl,ng) 51 =1,...1,6; = Bi,...1. For example for a
system having two inputs ug, (t), and ug,(t), the elements of GFRFM®) are given as

GFRFM(Z) — [ngzlﬁlﬁl), ng.‘n:ﬁlﬁ?), H(?J'Jiﬁz.@z)] (42)

Step 2.1 :
The frequency domain equivalent of eqn(18) corresponding to column-1 of the GFRFM()
derived from eqn(21) by setting v; = 2 is given as 7 _

m

- Z Z Clo : 11)(jw1 —i—ng) 2|H(m L ﬁl(lw >Jw2)
o1=1 {];=0
Z e (151 12)[(wr ) (Gwa) + (wz)™ (e )]
1;,1,=0
+ Z Z 512 (51 + 10, 12)[Geon ) BT Gy ) (102 )12 + (oo 2 ) (g ) (e )]

a;=1 11—0

m m L

+3 Y 3 e Gl L) [Gw) HE) Gwn ) Gwa 2 HE ) ()

ay=1lax=ay 1y ,1,=0

+(Gwa) B (g ) (eor )2 22 (0 )]
(43)

The parameters cg3(j; : 11),11 =0,...L, a1 = 1,...m in L.H.S. of eqn(43) have been esti-
mated as linear terms in step 1.1 while all the parameters on the R.H.S. of the above
equation can be estimated from eqn(43) by replacing the first and second order kernel trans-

forms by their estimates and applying the new ectimator.
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Note that after the execution of step 2.1 the terms that would be estimated are
e all the second order nonlinear output terms of the j;-th subsystem

¢ second order nonlinear input terms of the form Dhug, (t )Dlug (t) , 15,1, =0,...L.
Other second order nonlinear input terms do not contribute to the computation of

H(C’l1 i GIJ(JUJ],_]LUQ) and therefore can not be estimated using eqn(43).

o The subset of second order input-output cross product terms of the form D" Voo (£)D2ug, (1),
&121,...111,11,12:0,...:[4. ’

In order to estimate other second order nonlinear terms, the FDE of the system corre-
sponding to other columns must be utilized. In order to demonstrate the procedure consider
a two input system having inputs ug, (t) and ug, (t).

Step-2.2 : The FDE of eqn(18) corresponding to the second column of GFRFM(®)

m
— Z Z il s V(jwn +Jw2) E'H ’B‘ ﬁ"’)(le,Jwg)

a1=1 |1;=0
L

_ = Y off (131, 1) [Gwn ) (g )2

11,.11-, =0

+> Z 3P (3y 1y, 1) (e Yo HES 1ﬁz)(sz)(Jﬁ’l)b]
Q= 1I; 0

5 Z 117G 1y L) [ G ) B (o ) (o )2

Q1= =1 ]1——0

m m L .
+Z 2o 22 (1) (en ) H® ) oy ) oo Y2 HE#) ()

az=ay ];,1,=0
() H ) ) on) 2B )
(44)

Note that while executing this step the second order nonlinear output terms and the
input-output cross product terms which contain a factor D'ug, (t) have been estimated in

step-2.1 and can be brought to the L.H.S. This gives the equation

m

-3 ):cw L) (jn + jwa ) | 2UHET PP (G )

)= 1 11_0




Ly

=3 5 Gy oG HE ) g o )

c;=11,=0

L
Do g (i T 1) [Geon ) B2 (o ) (eon) = HEW 22 ()
3.12=0

ay=1cp=ag |
+(jwz R HE® ﬁz)own)@w Jem it
L

Z (15 11, 12) [(Gen ) ()]

-3 Zc?;ﬁi 13, 1) Gy U HS ) (juor ) G )2 (45)

1= = ]1*0

This equation may be solved to give the estimates of the parameters cﬁ”e (ai s da ) €395, 1 Lu I2),
11,12 = O,L
Step-2.3 : The FDE of eqn(18) corresponding to column-3 of GFRFM is

_Z Zcm 1) (jor + jwn )" 21H2j:gﬁ2E2(leaJw2)

ai=1 |1;=0
m L
=3 3 G 1, 1) [Gen ) HE P Gon ) (wa)'? + (o) HE P2 () (e )]
x3=11,=0

m m L

S22 eIl B ) ) HE ) )

oy =1 e@2=ay 1y l,=0

(o) B juog) (o )2 ()]

L
Y B Gl 1) [(wn) Gwa Y2 + (jwz)" (o )]

11 ,.1n=D

(46)

4.3 Stage-n : Estimation of the Parameters of the n-th Order

Nonlinear Terms

The total number of steps required to estimate all the n-th order parameters of j;-th subsys-

tem of an r-input system is equal to Nk%;)) where NkE;)} is the number of n-th order kernels

of the j;-th subsystem. This is also equal to the total number of columns of GFRFM(®)

NkE )) = meal.
Step n.1:

Find the frequency domain equivalent of eqn(18) corresponding to the first column of

GFRFM®). This is obtained from eqn(21) by putting -;yl = n and f; = 1. Note that while
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estimating using the n-th order GFRFM™) some parameters which have been estimated in

previous stages appear on the right hand side (R.H.S.). These are
e lower order pure output terms of order Ppp<nm
* input-output cross product terms consisting of p-th order factors of the output and
g-th order factors of the input [ug, (t)] such that Pp+g<n

Bringing the contribution of these terms to the L H.S gives

(a1:B81,...61)
I . y ———
= 3 | i)+ o+ )| By ()
a;=1 |1;=0
n-1 m m L
&y, .
_Z Z - Z Z ijO ap(j] ! 11;--1p)HY
p=2ai=1 Qp=ap_3 ]l,lp:O
ay,..ap,f, .06
n—-1n-g-1 ——

m m L »
Z = Z Z cpa (1o, Ap+a)Huy

q=1 p=1 a;=1 Gp p=1 11,]p+q=G

L ﬁla ﬁl
= Com o (1L, 1n)Hy
11,.11-1:0

ay,..ap,f1, .01
N’

m m L >
+ Z e Z Z Cpq 8 times (jl é 11, --1p+q)HUY

=1 op=1 @p=a-1] l=0

m m L
+ 2, e 3, 3 el 1 LHy (47)
a;=1 an=an_3];,1,=0
The parameters on the R.H.S. of the above equation can now be estimated by applying the
- weighted complex orthogonal estimator.
Stepn.;i=2,...... NkE;))

Let the columns corresponding to the i-th column of GFRFM®) be represented as

(jl:ﬁll"'lﬁ2l""--ﬁﬂ,d|...)
S N e

Titimes yptimes Tngtimes
Ha

Find the FDE of the system corresponding to the i-th column of the n-th order GFRFM
and bring the contribution of the terms which have been estimated before to the L.H.S.

These terms are

e all output terms having nonlinearity up to degree n .

® asubset of input-output cross product terms. In order to find the cross product terms

that have been estimated prior to the n.i-th step, the following notation is introduced.
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Let TUY cont represents the set of all input-output cross product terms that contribute
to the kernel transform corresponding to the i-th column of the n-th order GFRFM.
This consists of a p-th order factor of the output denoted as Y? and a q-th order factor
of the input denoted by U%such that p + q < n. U? consists of

n;-th order factor of ug,,

np-th order factor of ug,,

n;+nop+...... iy =g and
max(n;) <7
max(ny) < 7,

ma.x(nnd) S ‘Ynd

Let TUY st represent the subset of TUYcont which has been estimated from Step
1.1 to Step n.i-1. That is

TUY;st = TU-\-{contlp+q<n - (48)

Hence the parameters of the input-output cross product terms that need to be esti-

mated is given as TUY = TUYcont N TUYest. That is

TUY = TUY cont|p+q=n
(49)

Bringing the contribution of the estimated terms to the L.H.S gives the regression equa-

tion
"‘lﬁlw ; 621-- ﬁnda"‘
m
. I~ '7]11m:: 'mumes - \ . .
= ¥, Ecm :1)(jwr + -+ jwn)" | lHa,,, Ay s s+ 00)
a;=1 |1;=0

M:n

m m L
2o D g™t h, L) Hy

ay=1 ap=ap—_1l]y l,=0

I
[}

P
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Gyietps Bl Paie Bngyoe
n-1n-g-1 m m L 2 ‘ S
ny timesng times Nng times
- Z - Z Z Cpa (32 : iy lpsq) Huy
gq=1 p=1 a;=1 ap=cp-11;lp4q=0
Terms which corresponds to TUYes
Br .. Py . Jﬁ'ﬂda'--
) L “--v—’
71 times T2 &mc:-”.d times
= 3 g (Ja. ¢ Las dg)Hu
11‘.lnf0
all--an‘ﬁlﬁ--' ﬁZn-“ ﬁnd_x--'
i b m L n) timesnyp times fng times , .
+ £ Z Z Cpa (31 2 lus-lpq) Huy
q=1 g;=1 Qap=0ap- 11,19_0
ip=n—gq
Terms which corresponds to TUY
(50)
. To further clarify these expressions consider the example of a two input system. The

regression equation will be formulated to estimate the parameters of the system associated
with the third order nonlinear terms from GFRFM(®), Note that for a system with two
inputs ug, (t), ug,(t), the elements of the ji-th subsystem of GFRFM®) are

GFRFM® = [Hgl:ﬁl B1 ,51)1 ngrﬁ:.ﬁl.ﬁz), H(Sjliﬁa ,5?.ﬁ2), ngﬂﬁz,ﬁ?.ﬁ:)} (51)

Stage-3 :
Step-3.1:

The FDE of the system corresponding to the first column of GFRFM®) is given as

W 3| i D) + )| S G o )

afg
ay1=1 11 0

- Z Z Z cap (1t 1y la) Z H52* (jwi, --jws)

a;=1a2=011; 1,=0 -11{ p;}"n
L
i Z 601151( = I Z : e (5 .
- 11 1, 12) (jw1)?H3; (jw2, jws)
ey=11;,1=0 lll[:;]rn.
=Y POl Y (e Gun)s)]
1;,13=0 all permutations

Lo B fdc]

. Z Z Cuzﬁ 151 ‘]1:11,12’13) Z JLU lz(lw‘?)lsH?ll(Jwa')

e1=11;,15=0 a.l!lup’é]rm
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m m L
+2, X 3 ey (Guilida ) D7 (Gor)*HS2 (jws, jws)
Ja=

a;=1 as=ay 11 0 all perm
[w.8]

+ Z E Z Ca i Or:-\ \]1111:173 Z H& c':20(](,]”",1! £ _]UJ3) (52)
a1=1 @az=az];,13=0 all perm

[w.B)

Step-3.2 : ‘
The FDE of the system corresponding to second column of GFRFM() 1s given as

.Y

= Z Z cgd (i + 1) (wn + jwy + jws) | 31HS B] BB (G, jws, jws)

oy =1 11—0
m m L
- Z Z Z Ca m L L H32 lez'JWS)
ay=1 az=ag ]y \1,=0 all perm
[«.8]
= Z Z C?fﬁ’ 13,12) Z (jw1)]2H§"11(sz,jw3)
ay1=11,1,=0 all perm
[w.B]
m
-y Z Y (151, 00,18) YD Gen )2 (Gws Y2 HE (jws)
oy =11y,13=0 all perm
[w.B)
m m L
=2 2 X ar P inkulk) Y (e HE (jwn, juws)
ay;=1c2=a; ]1;,.13=0 all perm
[w.B]
m m L
- Z Ny Z Z Ca]a aa .]1)]'1: Z Haz ozzai le)_3w3)
;=1 Ci3=op 11,,1:1:0 all perm
[w.B)
L
2o Pl )l Y () () (s
13,.13=0 all permutations
wy w2
+ Z Z 5?1152 11,12) Z (3W1)12H21(JW21JW3)
ay1=11];,l,=0 tl][ p'glrm

(83)

Following identical procedures regression equations for cther columns of GFRFM can be

formulated to identify the parameters of the system.

5 Simulated Examples

In the present section the effectiveness of the new estimator is demonstrated using three dif-

ferent types of systems. The first example refers to a two degree of freedom of linear system;
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the second example represents a quadratically nonlinear system and the third example is a
coupled Vander Pol oscillator. Note that the following guidelines have been followed in all

the examples.

e No assumption has been made regarding the structure of the underlying system. An
overparameterized model structure is initially specified and with no a priort informa-
tion the algorithm is used to detect the correct structure and estimate the unknown

parameters.
¢ The weighting matrix Q has been taken to be a diagonal matrix of the form e=* />

* Anormalised version of the weighted complex orthogonal estimator (Swain and Billings,1995)
has been used to avoid possible numerical ill-conditioning. That is the regression equa-

tion in eqn(1) is normalised according to

2(jw) = Ti bipi(jw)
= Oipi(jw) + O2pa(jw) + ... + Oypm(jw) (54)
= Bullpa () IS + Oalloalieoll Z20Ty + . o o) 223,
= OUpI + 63y + ..+ OhipH -
where the superscript ‘nr’ denotes normalised term. The normalised parameters 077,65, .08

are initially estimated. The original parameters of the model are then recovered di-

rectly from the normalised parameters.

Example-1 : Two Degree Freedom Linear System

Consider a two input two output system described by the equation.

d?iréz( : +021dy£( ) 4 12,(t) 0. dyjt(t) 2y2(t) = w(t) 55)
008 y2(t) ;f?( L, Oldy;( ) 4 0.23,(t) - 0.0133% = 0.25(t) = ua(t) (56)

where yi(t), y2(t) represent the outputs of the systems. The magnitude plot of the first order
self kernel transforms which are obtained from the frequency domain equivalent of eqn(55)
and eqn(56) are shown in the Fig-1.

In order to reconmstruct the system differential equation corresponding to subsystem-

1 (eqn(55)), a set of 100 equally spaced frequency response data were generated from the
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Figure 1: The Gain plot for the self kernel transforms for the two degree of freedom linear
system of Example-1 (eqn(55,56)): (a) Hgl'l)(jwl), (b) Hgl'z)(jwl) (¢) ngrl)(jwl) (d) Hg‘:“)(jwl)

frequency domain equivalent of eqn(558) in the frequency range 0-0.5Hz and these were used to
estimate the parameters of eqn(55). An overparameterized (8th order) differential equation
was initially specified for the estimation to test the capability of the proposed algorithm to
detect the correct model structure. Table-1 shows the terms and the order that they were
selected as the iteration proceeded together with the error reduction ratios (ERR) and the
parameters of the auxiliary model. Note that the estimator initially estimates the parameters
of the auxiliary model and then recovers the original system parameters from eqn(9). Recall
that the ERR values correspond to the percentage contribution each term makes to the
regression. The parameters of the model are shown in Table-2. To estimate the parameters
of the second subsystem (eqn(56)) an identical procedure was followed except the tuning
parameter was interactively chosen to be 30. The terms that were selected and the resulting
parameter estimates are shown in Tables-3 and 4. The results show that the estimated

parameters closely match the true parameters of the system.




| Iteration | Selected Terms (p,) [ ERR | Par.of Aux.model |

1 d%y, /dt? 58.22 | 0.7829
2 u 21.71 -0.905
3 Vs | 17.8 -0.2092
4 dy, /dt 2.2 0.2077
5 dy,/dt 0.032 -0.01

24

Table 1: Parameters of the Auxiliary model of Subsystem-1 for a two degree freedom linear
system Example-1 (eqn(55)); A = 40.0

Candidate Terms | Estimated Parameters | True Parameters
d?y,/dt? 1.00 1.00
dy;/dt 0.21 0.21
dy./dt -0.01 -0.01
Va2 -0.2 0.2
uq 1.0 1.0

Table 2: Parameters of the Subsystem-1 for a two degree freedom linear system Example-1
(eqn(55)); A = 40.0

“ Iteration ‘ Selected Terms (p;) | ERR

| Par.of Aux.model H

1 a2y, /dt? 64.27 0.1824
2 u 24.84 -1.1448
3 Vi 10.78 -0.2101
4 dy./dt 0.0811 0.0083
5 dy,/dt 0.016 -0.01

Table 3: Parameters of the Auxiliary model of Subsystem-2 for a two degree freedom linear

system Example-1 (eqn(56)); A = 30.0

| Candidate Terms

Estimated Parameters

True Parameters

d?yz/dt?
dy2/dt
dy,/dt
y1

Us

0.2
0.01
-0.01
-0.2

1.0

0.2
0.01
-0.01
-0.2

1.0

Table 4: Parameters of the Subsystem-2 for a two degree freedom linear system Example-1

(eqn(56)) ; A = 30.0




H Iteration | Selected Terms (p;) [ ERR 1 Par.of Aux.model ”

1 d2y, /dt? 95.05 0.9438
2 u 4.90 -0.9950
3 dy, /dt 0.039 -0.0201
4 ¥z 0.0001 0.140

Table 5: Parameters of the Auxiliary model (linear) of Subsystem-1 for the Quadratic Non-
linear System :Example-2 (eqn(57)) with A = 20.0

Candidate Terms | Estimated Parameters | True Parameters
d?y, /dt? 1.00 5 1.00
dy;/dt 0.02 0.02
Y2 0.14 0.14
u; 1.0 1.0

Table 6: Parameters of Linear terms of Subsystem-1 for the Quadratic Nonlinear System
:Example-2(eqn(57)) with A = 20.0

Example-2 : A Quadratic Nonlinear System

Consider a two degree of freedom quadratically nonlinear system governed by the dynamical

equation

d?y.(t dy:(t - ]

—*%é-g(—)- + 0.0QOydl*t() + 1.01y:(t) 4+ 0.14y2(t) = uy(t) — 0.05y5(t) — 0.2y1(t)y2(t) — 0.15y5(t)
(587)

d?y,(t dya(t . 2

—(31(1;22( ) + O-OQ—YSE ) +4.01y2(t) + 0.072y1(t) = up(t) — 0.1y5(t) — 0.3y1(t)y2(t) — 0.2y3(t)

(58)

In order to reconstruct the system differential equation for subsystem-1 (eqn(57)), initially,a
set of 100 equally spaced frequency response data in the frequency range 0 -1.0Hz were
generated from the systems transfer function matrix and these were used to estimate the
parameters of the transfer function. An overparameterized (8th order) model was initially
specified for the estimation so that the effectiveness of the proposed algorithm in detecting
both the correct model structure and estimating the unknown parameters could be tested.
Table-5 shows the order and the terms that were selected as the iteration proceeded together
with the error reduction ratios. The parameters of the model are shown in Table-6. An
identical procedure was followed to estimate the parameters of subsysiem-2 (eqn(58)). Table-
7 shows the terms that were selected as the iteration proceeded together with the error
reduction ratios. The parameters of the model are shown in Table-8.

After estimating the parameters associated with the linear terms, the algorithm was
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[LIteration | Selected Terms (p:) | ERR | Par.of Aux.model |

1 A%y, /dt? 96.8 0.9770
g 4 3.09 -0.9953
3 dy,/dt 0.009 -0.020
4 Vi 0.0007 0.072

Table 7: Parameters of the Auxiliary model (linear) of Subsystem-2 for the Quadratic Non-
linear System : Example-2 (eqn(58)) with A = 20.0

Candidate Terms | Estimated Parameters | True Parameters
d?y,/dt? 1.00 1.00
dy,/dt 0.02 0.02
Y1 0.072 0.072
14 1.0 1.0

Table 8: Parameters of Linear terms of the Subsystem-1 for the Quadratic Nonlinear System
: Example-2 (eqn(58)) with A = 20.0

applied to estimate the parameters of the quadratic nonlinear terms of subsystem-1. It is
emphasised that the procedure of reconstruction is sequential where the parameters of the
linear terms are estimated first and then the parameters associated with the second order
nonlinear terms and so on. This offers significant advantages since the model can be build
up term by term and thus is not limited to any degree of nonlinearity. To reconstruct
the nonlinear part of the first subsystem 100 equally spaced frequency response data were
generated in the frequency range of -1.0-1.0Hz. The terms that were selected from the
specified model set 5, v y.f, Vi, y2¥2, Yiva, ¥1¥2} together with the associated error
reduction ratios as the iteration proceeds are shown in Tables-9-10 To reconstruct the
nonlinear part of the second subsystem 100 equally spaced frequency response data were
generated in the frequency range of -1.0-1.0Hz. The terms that were selected from the

model set [y2, y,y,, y2, ¥i, vi¥1, ¥iva, ¥2¥1] together with the associated error reduction
ratios are shown in Tables-11- 12. The results show that the estimated parameters match

with the true system parameters very well.

| Tteration [ Selected Terms (p:) | ERR [ Par.of Aux.model |

1 ye 29.13 0.0469
2 Yiye 0.85 0.1953
3 y3 0.001 | 0.15

Table 9: Parameters of the Auxiliary model (nonlinear) of Subsystem-1 for the Quadratic
Nonlinear System : example-2 (eqn(57))
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Candidate Terms | Estimated Parameters | True Parameters—l
yi 0.05 0.05 i

Yiy2 0.2 0.2

ya 0.15 0.15

Table 10: Parameters of Nonlinear terms of the Subsystem-1 for the Quadratic Nonlinear
System : Example-2 (eqn(57))

| Iteration | Selected Terms (p;) | ERR | Par.of Aux.model ||

1 y2 99.26 0.1814
2 y1¥2 0.73 |} 0.2873
3 y2 0.0011 0.10

Table 11: Parameters of the Auxiliary model (nonlinear) of Subsystem-2 for the Quadratic
Nonlinear System : Example-2 (eqn(58))

Example-3 : A Coupled Vander Pol Oscillator

The equations governing the dynamics of two mutually coupled Vander Pol oscillators are

(Linkens,1975)

Fa(t) + Acya(t) — ca(1 = y1(£))(F1 () + Acya(t)) + wiya(t) = wa(t) _
F2(8) + A (1) = ca(l = y3(0)([F2() + Acya(t)) + wlya(t) = us(t) (59)

where A. is the coupling parameter. For A, = 0.8, w; = w, = 2.0 rad/sec,c; = c; = 0.1, eqn(59)

gives

Fa(t) — 0.1y1(t) + 4.0y1(t) + 0.8¥5(t) — 0.08y2(t) + 0.1y;(t)j(t) + 0.08y2(t)y2(t) = us(t)
(60)

0.891(t) — 0.0872(8) + Falt) — 0.17:(t) + 4.0y5(t) + 0.1y2(t)7a(t) + 0.0852(E)y (£) = ua(t)
(61)

In order to reconstruct the linear parts of both the subsystems 100 equally spaced

Candidate Terms | Estimated Parameters | True Parameters
y2 i 0.1 0.1
Y1¥2 0.3 0.3
v 0.2 0.2

Table 12: Parameters of Nonlinear terms of Subsystem-2 for the Quadratic Nonlinear System
: Example-2 (eqn(58))
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| Tteration | Selected Terms (p:) | ERR [ Par.of Aux.model ||

1 32y, /dt? 52.04 0.8768
2 U 39.87 -0.7085
3 dy/dt 7.91 0.7783
4 dy, /dt 0.130 -0.0956
5 Vs 0.039 -0.080

Table 13: Parameters of the Auxiliary model (linear) of Subsystem-1 for the Coupled Vander
Pol Oscillator : Example-3 (eqn(60)); A = 40.0

Candidate Terms | Estimated Parameters | True Parameters
d%y,/dt? 1.00 ) 1.00
dy,/dt -0.1 -0.1
dy,/dt 0.8 0.8
Va -0.08 -0.08
u; 1.0 1.0

Table 14: Parameters of Linear terms of the Subsystem-1 for the Coupled Vander Pol Os-
cillator: Example-3 (eqn(60)) ; A = 40.0

frequency response data were generated in the frequency range of 0-0.5Hz. To identify
the parameters of subsystem-1 the tuning parameter was chosen as 40. The terms that
‘were selected from an over parameterised model (4th order) together with the associated
err{-Dr reduction ratios are shown in Table-13 The linear terms of subsystem-2 were se-
lected following an identical procedure and the results with a weighting parameter of 40
are given in the Table-15 The nonlinear part of the first subsystem was reconstructed
by generating 64 equally spaced frequency response data in the frequency range -0.1 to
0.1Hz. For reconstructing the nonlinear part of the second subsystem 64 data samples
were generated in the frequency range -0.08 to 0.08 Hz. The overparameterized model sets
specified for subsystem-1 were [y3, y3v,, yl};f, yf, Yiy2, ViV1¥a, y-fyg] and for subsystem-2
lv3, v3ya, yZy-%, yg, Y2y1, ya¥ayi, y.ffyl}. The terms that were selected and the associated

[ Iteration | Selected Terms (p;) | ERR | Par.of Aux.model |

1 d%y,/dt? 52.04 0.8768
g 1y 39.87 -0.7085
3 dy,/dt 7.91 0.7783
4 dy,/dt 0.130 -0.0956
5 1 0.039 -0.080

Table 15: Parameters of the Auxiliary model (linear) of Subsystem-2 for the Coupled Vander
Pol Oscillator : Example-3 (eqn(61)); A = 40.0
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Candidate Terms | Estimated Parameters | True Parameters
d?y,/dt? 1.00 1.00
dy,/dt -0.1 -0.1
dy;/dt 0.8 0.8
V1 -0.08 -0.08
Uz 1.0 1.0

Table 16: Parameters of Linear terms of the Subsystem-2 for the Coupled Vander Pol Os-
cillator: Example-3 (eqn(61)) ; A = 40.0

| Iteration [ Selected Terms (p;) | ERR | Par.of Aux.model |

1 yiv, 99.324 0.0825
2 ¥iy2 0.675 0.0800

Table 17: Parameters of the Auxiliary model (Nonlinear) of Subsystem-1 for the Coupled
Vander Pol Oscillator : Example-3 (eqn(60))

error reduction ratios are shown in Tables-17 - 20.
From the results it is obvious that the estimated parameters matched very well with the

true parameters of the system.

6 Conclusions

A weighted complex orthogonal estimator has been applied to estimate continuous time
nonlinear differential equation models of MIMO nonlinear systems from generalised frequency
response function matrices. The estimator possesses properties and advantages of both the
weighted and orthogonal least squares algorithms. The estimation procedure is progressive
and involves utilizing the information in the GFRFM beginning with the first column of the
first order GFRFM and continuing with the columns of the second order GFRFM and so on.
There is therefore no restriction on the order and dimensions of the MIMO systems which can
be investigated using this approach. The estimation procedure combines structure selection
with parameter estimation and thus provides a powerful tool to identify parsimonious models

for systems with unknown structure in the frequency domain. Several simulated examples

Candidate Terms | Estimated Parameters | True Parameters
Vivi 0.100 0.100
¥iy, 0.0800 0.080

Table 18: Parameters of Nonlinzar terms of Subsystem-2 for the Coupled Vander Pol Oscil-
lator : Example-3 (eqn(61))
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| Iteration [ Selected Terms (p;) | ERR | Par.of Aux.model ||

1 y3¥2 96.377 0.0880
2 yay1 3.614 0.0802

Table 19: Parameters of the Auxiliary model (Nonlinear) of Subsystem-2 for the Coupled
Vander Pol Oscillator : Example-3 (eqn(61))

Candidate Terms | Estimated Parameters | True Parameters
Y32 0.100 ©0.100
Yoy 0.0802 0.080

Table 20: Parameters of the Subsystem-2 for the Coupled Vander Pol Oscillator : Example-3
(ean(61))

were included to demonstrate the effectiveness of the new procedure to build continuous time

differential equation models from the frequency response data.
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