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Abstract

In this paper a method for designing supplemental brace–damper sys-
tems in single–degree–of–freedom (SDOF) structures is presented. We in-
clude the affects of the supporting brace stiffness in the dynamic response
by using a viscoelastic Maxwell model. Based on the study of a SDOF
under ground excitation, we propose a non-iterative design procedure for
simultaneously specifying both the damper and brace while assuring a
desired structural performance. It is shown that to increase the damper
size beyond the value delivered by the proposed criteria will not provide
any improvement but actually worsen the structural response. The de-
sign method presented here shows excellent agreement with the FEMA
273 design approach but offers solutions closer to optimality.
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1 Introduction

For reducing unwanted vibrations in civil engineering structures, passive systems
are valued for their inherent stability and reliability [1,2]. Most of the solutions
proposed for sizing dampers have been based on iterative approaches [3–6].
In a practical context however, procedures offering a direct solution have the
advantage of being quick and easy to apply and in some situations could be
more convenient to use than those based on numerical optimisation. The lack of
simple design guidelines has motivated many researchers to investigate practical
procedures intended to guide the engineer in selecting commercially available
dampers. Some examples include the simplified design methodology discussed
in [7] and [8]. Those procedures are intended to give the preliminary damper’s
sizing based on the structural properties and seismic hazard. Comparable design
procedures have also been proposed in the literature (see e.g. [9–11]).

In this paper, we present a method for designing a supplemental brace–
damper assembly in a SDOF system. Unlike more commonly used approaches,
we include the effects of the supporting brace stiffness in the dynamic response.
This is an important effect, because as will be shown, when the brace stiffness is
included, an optimal damper value can be defined beyond which it is counter–
productive to increase the damper size. Based on the study of a SDOF system
under ground seismic excitation, we propose a non–iterative procedure with two
easy–to–use criteria for the preliminary design of brace–damper systems. This
delivers not only the damper size but also the brace stiffness that is needed to
ensure a desired structural behaviour in terms of the overall damping ratio.

The brace compliance reduces the displacement effectively transferred to the
damper and introduces a shift in phase and frequency. These issues have been
studied by several researchers seeking more accurate design procedures. Some
works consider the brace stiffness by way of a loss factor that reduces the velocity
transfer to the damper (see e.g. [12]); or consider a viscoelastic behaviour for
the damper and formulate gradient–based optimisation algorithms as in [13].
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The previous work most directly related to this paper was published in 2011 by
Chen and Chai [14]. They proposed an iterative design method based on the
minimisation of some performance indices. Our work differs from theirs in that
we present a procedure in a few consecutive steps that does not require any
iteration or time–consuming optimisation process. Another related work was
presented in 1998 by Fu and Kasai [15]. Their formulation assumes steady–state
harmonic motion of an SDOF oscillator fitted with a brace–damper arrangement
at its undamped natural frequency. Instead, our approach is not restricted to
steady–state motion, being still valid for any kind of dynamic excitation.

The proposed method may also be applicable to multi–degree–of–freedom
(MDOF) structures that can be represented by an equivalent SDOF system.
Note that under certain circumstances harmonic motion at the natural frequency
or a displacement shape could be assumed to transform a MODF structure to
a SDOF system with good approximation of its dynamic behaviour.

2 Braced single degree of freedom structure

c

k

cd

kb

m
a)

✲✛ ✲✛

✲✛

x

xb xd

cdkb
q q q

b)

Figure 1: a) Structure with an added brace–damper system. b) Maxwell model.

We assume the case of a linear fluid viscous damper in serial arrangement
with its supporting brace, as shown in Figure 1. This configuration can be
represented by the Maxwell model and described by the first–order differential
equation in formula (1b) where fd is the force in the arrangement, cd is the
coefficient of the viscous damper, kb is the horizontal stiffness of the brace, x is
the total deformation of the arrangement and ( ˙ ) denotes the derivative with
respect to time t.

The system dynamics under earthquake excitation can be described by means
of the system of equation (1), where m, c, k represent the mass, damping and
stiffness of the structure; x is the structural displacement and ẍg is the ground
acceleration.

mẍ(t) + cẋ(t) + kx(t) + fd(t) = −mẍg(t) (1a)

fd(t) +
cd

kb
ḟd(t) = cdẋ(t) (1b)

We calculate the system transfer function for the structural displacement
with respect to the ground acceleration. Two dimensionless parameters, α and
β, are used to represent the brace stiffness and the damper size as ratios of the
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structural stiffness and damping ratio respectively.

ω2
n =

k

m
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c

2mωn
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kb

k
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cd

c
=

cd

2
√
km

(2)

By substituting the above parameters into equation (1), applying the Laplace

transform method and solving the system for the transfer function T (s) = X(s)

Ẍg(s)
,

we obtain the following expression where s is the Laplace variable.

T (s) =
−(2βs+ αωn)

2βs3 + ωn(α+ 4ξβ)s2 + 2ω2
n(ξα+ β + αβ)s + αω3

n

,
N(s)

D(s)
(3)

We use the poles of (3) for estimating the overall damping ratio of the system.
The poles are the values of s that cause the transfer function to become infinite.
The third–order polynomial D(s) can be factorised in terms of its roots to get:
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D(s) =

(

s

ωn

− w

)(

s

ωn

− (u+ vj)

)(

s

ωn

− (u− vj)

)

= 0 (4)

where u, v and w are functions of the system parameters α, β and ξ. The overall
structural damping ratio, ξT , can be evaluated by using the conjugate poles:

ξT = −u
(

u2 + v2
)

−
1
2 (5)

which is independent of ωn, see (4). Moreover, note that u and v are solely
functions of ξ, α and β, so that, for a particular value of the structural damping
ratio ξ, we can obtain the total damping of the system as a function of α and
β.

2.1 Added damping map

It is not possible to derive an explicit solution for ξT in terms of α and β.
However it is possible to obtain a damping map as a function of α and β for
a constant value of ξ. To show this, let us consider the example of a SDOF
system with structural damping ratio of 5%.

By solving the third–order polynomial D(s) = 0 and applying equation (5),
we can draw the surface and contour plot shown in Figure 2. This plot represents
the additional damping ratio ξD, defined as ξD = ξT −ξ. Now, as β is a function
of ξ the surface will change for different ξ values. Therefore we have introduced
an generalised parameter β∗, (which for ξ = 5% has the relationship β∗ = β) so
that this one plot can be used for any ξ value.

Our design method is based on the following observations from Figure 2:
• To achieve a certain value of ξD there exists a minimum value of α, that
is a minimum brace stiffness, that needs to be provided.

• The near vertical zone on the contour curve can be used to define the
point at which, for a certain ξD, a reduction in the support stiffness would
require an increased damper size.

• For any constant value of α there exists a unique value of β∗ that max-
imises the additional damping ratio. Note that increasing β∗ beyond that
limit will worsen the structural response.

2.2 Criteria for sizing the brace and damper

We now propose a procedure for designing the supplemental brace-damper sys-
tem. It can be seen from Figure 2 that for a fixed α value the optimal (i.e.
highest ξD) damping value occurs at the minima of the contour curve. In Fig-
ure 2 such points are represented by black crosses and correspond to a fitted
curve in the (α, β∗, ξD) space defined by the crossing of the surfaces given by:

α = 3.9ξ2D + 4.0ξD
β∗ = 2.81ξD − 0.314α+ 0.017

(6)

We call this the Optimum Damper Size (ODS) criterion.

5



0
0.1

0.2
0.3

0.4
0.5

0.6

0.5

1

1.5

2

2.5
0

0.1

0.2

0.3

0.4

0.5

β ∗

Added damping ratio ξD (ξ = 5%)

α

ξ
D

=
ξ

T
−

ξ

0

0.05
0.05

0.05
0.05

0.05

0.1
0.1

0.1

0.1

0.1

0.15
0.15 0.15

0.15

0.2
0.2

0.2

0.2

0.25

0.25

0.25

0.3

0.3

0.3
0.35

0.35

0.4

0.4

β ∗

α

Added damping ratio ξD (ξ = 5%)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6

0.5

1

1.5

2

2.5

ξ D ODS OB S

Figure 2: Added damping ratio map for a structure with ξ = 5%.
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Alternatively, if it is required to keep the damper sizes as small as possible,
but still achieve a certain ξD value we can fit a curve to give the minimum α

for each contour. Therefore we select α such that the change of ξD with respect
to α is less than 0.5%: ({min(α)|∂αξD < 0.5%}). For a given added damping
this results in the minimum damper size required. Such points can be defined
as (see black circles in Figure 2):

β∗ = −0.17ξ2D + 1.02ξD
α = −53.0ξD + 64.4β∗ + 0.03

(7)

This is called the Optimum Brace Stiffness (OBS) criterion.
Equations (6) and (7) have been derived from the case of ξ = 5%. For

arbitrary values of structural damping, the damping maps can be scaled with
respect of β without significant loss of accuracy by:

β∗ = (0.4ξ + 0.98)β (8)

In summary the four-step design procedure for a brace-damper system is:
1. Choose the required damping ratio of the SDOF system after adding the

damper.
2. Determine the values of the pair (α, β∗) for the desired added damping by

using either equation (6) or (7) in accordance with the criterion selected.
3. Make correction to the parameter β∗ by applying formula (8) and get β.
4. Use the definitions in (2) to obtain the damper size cd and the brace

stiffness kb.
This procedure can be used to calculate either (i) the optimal damper required
for a fixed brace stiffness, or (ii) the minimum brace stiffness required by the
structure to achieve a desired overall damping ratio. We also note that the load
carrying capacity of the brace still needs to be able to withstand the maximum
force generated by the damper. In addition, the size of an equivalent nonlinear
damper capable of dissipating the same amount of energy as the linear device
delivered here can be estimated by considering the energy-equivalence principle
presented in [1].

2.3 Numerical example.

Consider a SDOF structure with mass of 1000Kg, lateral stiffness of 150kN/m
and damping equal to 3% of critical. Suppose that we want to add a brace–
damper arrangement to increase the damping up to 25%. Following the steps
described above for the ODS criterion we have that:

The desired additional damping ratio ξD is 22%. From equation (6) the
values for α = 1.0688 and then β∗ = 0.2996 can be calculated straightaway.
Then, from equation (8), β can be estimated to be: 0.3020; and finally, by
using the definitions in (2) we can obtain the required size for both the brace
and damper as: kb = 160.32 kN/m; and cd = 7.40kNs/m. By repeating the
procedure considering the OBS criterion, equation (7) can be used to obtain the
reference values β∗ = 0.2162 and α = 2.2915. As before, we use equation (8) to
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account for the structural damping ratio and use the definitions in (2) to get:
kb = 343.73kN/m and cd = 5.34kNs/m.

Figure 3a shows the Bode diagram of the transfer function in (3) for this
example. Note that because of the additional damping provided, the peak re-
sponse of the original system is strongly reduced when considering either design
criteria. Whenever these values are exceeded no significant improvement is ob-
tained in the structural response. Figure 3b shows the dynamic response when
doubling either the damper size or brace stiffness estimated by the ODS and
the OBS criterion.

The values delivered from the proposed procedure are compared against the
provisions defined in Fema 273. The equations 9–30 in these guidelines provide
the approximate design formula [16]:

ξd =
T
∑

j cdj cos
2 θjφ

2
rj

4π
∑

i (
wi

g
)φ2

i

(9)

where T is the period, θj is the angle of inclination of the device, φrj is the
relative displacement of the device, wi is the reactive weight of floor and φi is
the floor displacement. After substituting the known values of the example, the
equation (9) can be solved to get: cd = 5.39kNs/m. Note that one could assume
steady–state harmonic motion and consider the transformation from the Kelvin
model to the Maxwell model as suggested in [17]. In a similar fashion to the
OBS criterion, we select the stiffness in the Kelvin model (5.0kN/m) so that the
equivalent Maxwell model damper size is within
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Figure 3: (a) Dynamic response of the SDOF structure with and without the
brace–damper system and (b) comparison among different design approaches.

within 0.5% of that when the brace stiffness is infinite. This results in a near–
rigid brace stiffness (876.5kN/m) and damper size (5.42kNs/m) that match the
pure dashpot behaviour assumed in Fema 273. Note however that the results
are highly dependent on the dummy stiffness initially assumed and that they
are strictly valid at the fundamental frequency used in the transformation.

The design outputs are evaluated by simulating the dynamic response of
the structure under the earthquake records NGA–1048 and NGA–173 taken
from the PEER ground motion database [18]. We use the set of performance
indices presented in Table 1 to measure the level of reduction achieved for each
design criteria for the two earthquakes. Figure 4 shows the responses of the
structure when excited by the Northridge earthquake. We also include in Figure
4b the response of the structure without dampers but with an inherent structural
damping of 25% to show that the design target was achieved. The plots show
that both design criteria ODS and OBS offer solutions that behave satisfactorily
and are comparable to the other commonly accepted design approach. Note that
the ODS criterion delivers a value of kb that is about the structural stiffness k
and OBS around twice k, while the transformation of the FEMA provision
results in a kb of almost 6 times k. Furthermore, notice how OBS almost
perfectly tracks the dynamic behaviour of the system with damping ratio of
25%. This shows that the proposed design methodology can deliver solutions
close to optimality.

Method
kb cd max

∀t,i

(

‖ẍi(t)‖c
‖ẍmax

i
‖u

)

max
∀t

(

|xtop(t)|c
|xmax

top
|u

)

max
∀t,i

(

|fdi
(t)|

100kN

)

(kN/m) (kNs/m) EQ1 EQ2 EQ1 EQ2 EQ1 EQ2

ODS 160.32 7.40 0.345 0.521 0.406 0.613 1.617 0.785
OBS 343.73 5.34 0.217 0.403 0.409 0.594 1.341 0.735

FEMA 876.56 5.42 0.201 0.341 0.396 0.590 1.354 0.746
c: structure with added brace–damper; u: uncontrolled structure

Table 1: Design outputs and performance indices for each sizing criteria.
EQ1: Northridge (NGA–1048). EQ2: Imperial Valley (NGA–173)
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Conclusions

In this paper we have proposed a simplified non–iterative procedure in four
steps that allows the engineer to simultaneously obtain both the size of linear
viscous fluid damper and its supporting brace stiffness when considering SDOF
structures. We defined two different criteria named the Optimum Damper Size
and the Optimum Brace Stiffness (depending on whether the minimum size for
the brace or damper is wanted) to satisfy the desired structural performance
expressed in terms of the overall damping ratio. It is shown that to increase the
damper size or brace stiffness beyond the value delivered by either criteria will
not provide any significant improvement in the structural response. Instead,
increasing the damper size beyond the value delivered by ODS will worsen the
structural response. The results are also compared with a commonly accepted
design approach showing excellent agreement in terms of performance but of-
fering solutions closer to optimality.
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