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Abstract

The High Static Low Dynamic Stiffness (HSLDS) concept is a design strategy for

a nonlinear anti-vibration mount that seeks to increase isolation by lowering the

natural frequency of the mount whilst maintaining the same static load bearing

capacity. It has previously been proposed that an HSLDS mount could be im-

plemented by connecting linear springs in parallel with the transverse flexure of

a composite bistable plate — a plate that has two stable shapes between which

it may snap. Using a bistable plate in this way will lead to lightweight and

efficient designs of HSLDS mounts. This paper experimentally demonstrates

the feasibility of this idea. Firstly, the quasi-static force-displacement curve of

a mounted bistable plate is determined experimentally. Then the dynamic re-

sponse of a nonlinear mass-spring system incorporating this plate is measured.

Excellent agreement is obtained when compared to theoretical predictions based

on the measured force-displacement curve, and the system shows a greater iso-

lation region and a lower peak response to base excitation than the equivalent

linear system.
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Composites
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1. Introduction

Vibration isolation is a vital requirement throughout much of engineering

[1], particularly when there is a strong source of vibration such as a motor. It

is frequently required to prevent the transmission of these vibrations to other

elements of the system, for reasons such as passenger comfort, or the protection

of delicate electronic equipment.

A High Static Low Dynamic Stiffness (HSLDS) mount seeks to improve vi-

bration isolation by reducing the natural frequency of the mount and its payload,

whilst maintaining the weight bearing capacity of the mount [2]. In the current

work, a nonlinear spring mass system, with an HSLDS force-displacement rela-

tionship, is subjected to harmonic base excitation and response is compared to

analytical predictions made by [3].

An HSLDS response is often achieved by the parallel connection of linear

springs with a snap-through mechanism providing a region of negative stiffness

[4], and this approach is followed here. The chosen negative stiffness device is

the transverse displacement of the centre of a composite bistable plate. Bistable

plates of this kind have two stable equilibrium shapes which they may snap

between [5], as shown in Fig. (1) (a) and (c). By holding the plate at the

unstable position between these two equilibria shown in Fig. (1) (b), negative

stiffness is observed, which is used to tailor the force-displacement response.

This approach was proposed by Carrella and Friswell [6]. It is thought that the

use of flexible composite shells instead of potentially complex spring mechanisms

could lead to lightweight and efficient implementations of the HSLDS concept.

Isolators that exhibit HSLDS behaviour are numerous in the literature, al-

though the HSLDS term itself is relatively new. Authors such as Winterflood

[7], Virgin and Davis [8], Plaut et al. [9], Santillan [10, 11], DeSalvo [12], Car-

rella et al. [13, 14, 15], Kovacic et al. [16], Zhou and Liu [17], Robertson et al.

[18], and Le and Ahn [19] have all worked on variations of the HSLDS concept.

Furthermore, many HSLDS devices are found in the review of passive vibration

isolation methods by Ibrahim [4]. General analysis of the nonlinear phenomena
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(a) (b) (c)

Figure 1: The different stages of the transverse force-through of a bistable state. (a) Initial,

approximately singly curved configuration. (b) At mid point of force through the plate is

a saddle shape; this shape is unstable if unconstrained and at this point the force displace-

ment graph has negative slope. (c) Final singly curved configuration with curvature along

perpendicular axis to initial curvature.

encountered by HSLDS mounts including amplitude dependant transmissibility

and jump frequencies, based on Duffing oscillator models are given in [2]. Shaw

et. al. has also recently published an analytical study of the HSLDS, show-

ing the significant effect that subtle differences in the shape of the nonlinear

force displacement relationship can cause, and proposing two nondimensional

parameters, which can characterise many HSLDS systems [3].

The ‘snapping’ response of bistable plates was first reported and analysed by

Hyer [5, 20]. He also proposed that these effects could be exploited for the pur-

pose of actuation, creating a device that could occupy multiple configurations

with no ongoing power consumption. Since then, there has been considerable

interest in bistability, for example many authors have looked towards imple-

menting bistable plates in morphing aerodynamic devices including Diaconu et.

al. [21], Schultz [22], Gatto et. al. [23], Daynes et. al. [24, 25] and Lachenal et.

al. [26].

In the current work, the principal aspect of the bistable plate that is of con-

cern is the response to external loading, particularly within the region between

the plates two stable states. This has previously been considered by Dano and

Hyer [27], Potter et. al. [28], Tawfik [29], Diaconu et. al. [30], Pirrera et. al.

[31] and Shaw et. al. [32]. However, the current work demonstrates that sub-

stantial qualitative differences to the force displacement curves found in these
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works may be obtained.

Section 2 of this work proceeds with a description of the bistable plate, how it

was mounted, and its experimentally derived nonlinear force-displacement curve.

Section 3 then describes the dynamic experiment that was conducted. Section

4 gives a summary of the key static and dynamic features of an HSLDS mount,

and Section 5 compares the experimental results with theory. Conclusions are

drawn in Section 6.
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Figure 2: The assembled quasi-static test rig. Inset shows detail of one of the spherical pivot

joints used to mount corners.

2. Quasi-static response of the mounted bistable plate subjected to

transverse centre loading

2.1. Bistable plate

A composite bistable plate is typically created on flat tooling by using a

stacking sequence of unidirectional carbon fibre reinforced plastic (CFRP) plies

that is asymmetric about the midplane of the plate. The directional thermal

expansion properties of the plies cause the plate to warp as it cools from its cure

temperature to room temperature, and nonlinear geometrical effects cause the

snapping phenomenon [20].

Hybrid composite bistable plates, consisting of CFRP and steel ply layers,

have been shown to give much greater snapping forces than all CFRP plates [33].

To allow a more compact configuration, this type of plate is used here. The layup

and dimensions were chosen to give relatively low curvature in each bistable

5



state, to prevent the plate forming ‘half-snap’ states during snap-through as re-

ported in [28, 31, 30, 32], which would cause an undesired non-smooth response.

The selected configuration was a 110 mm square plate with a layup [0◦3CF , 0◦1S

, 90◦3CF ] , where the subscripts indicate the number of plies along with CF

for plies of IM7/8552 Intermediate Modulus Carbon Fibre pre-preg nominally

0.125 mm thick, and S for a steel ply 0.25 mm thick. The steel ply was lightly

abraded to improve ‘wetting’ properties and thereby enhance its bonding with

the pre-preg layers. It was vacuum bagged using a tool plate on both sides,

to ensure the most symmetrical resin distribution through thickness. It was

cured using the manufacturers recommended cycle in an autoclave at 180◦C for

2 hours. Holes 12 mm in diameter were drilled 10 mm in from each corner, to

accommodate pivot joints described below.

2.2. Mounting mechanism

The plate was supported by its corners, on apparatus designed to provide

boundary conditions which do not restrain the snap through. These corner

boundary conditions are vertical pins i.e they allow free out of plane rotation,

zero vertical displacement and free lateral translation. To achieve the first

of these conditions, the corners were fitted with spherical bearings that were

bonded into the 12 mm holes drilled through the plate, that permitted pivoting

in any direction. The plate was clamped flat for the bonding of the pivot joints,

so that the glue fillets did not set into the shape of either stable configuration.

To simultaneously achieve the second and third boundary conditions, the bear-

ings were mounted on tall slender steel posts (approximately 250 mm long, 3

mm in diameter), which were rigidly attached to an adjustable base. Clearly a

more compact mounting would be desirable in a practical design, but this would

cause some compromise to the ideal boundary conditions sought here for the

purpose of establishing feasibility. Vertically the posts provided stiffness greatly

in excess of the plate’s transverse stiffness, and could withstand sufficient buck-

ling force. Horizontally, the posts acted as soft cantilever springs, and the size

of lateral motions was not sufficient to cause significant vertical deflections.
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Figure 3: (a) Force-displacement response for plate mounting. Solid lines show results from

quasi-static force-displacement test. Dotted lines show fitted function. Dot-dashed line shows

offset axis about which response is approximately an odd function. (b) Stiffness-displacement

response for plate mounting. Dotted lines show fitted function.

2.3. Quasi-static response

The above apparatus was bolted onto an Instron 3343 load tester, with the

centre of the plate bolted to a 1kN load cell. The complete apparatus is shown

in Fig. (2). The displacement cycle applied to the plate consisted of increasing

displacement at constant velocity over a range including both stable positions

of the plate, then returning at the same speed to the starting point. This was

performed 4 times to ensure repeatability, at a speed of 6 mm/min. Fig. (3) (a)

shows the results of the quasi-static test. There is a small amount of hysteresis in

each cycle, which we believe are caused by frictional moments within the corner

bearings. There is also a large asymmetry in the cycle; the maximum positive

force is greater in magnitude than the minimum negative force. This asymmetry

is caused by stresses locked in by the adhesive fillets used to attach the corner
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joints, and other manufacturing imperfections. The asymmetry takes the form

of a vertical offset; the dot-dashed line in the graph at F=13.5 N illustrates the

line around which the response is approximately an odd function, as required

by our HSLDS analysis.

Ignoring hysteresis and correcting for the vertical offset, the response may

be fitted with the following function:

F = Az −B arctan(Cz) (1)

where A = 41.9, B = 133.3 and C = 0.507. The coefficients are found by

solving such that the displacement at the zero crossings, the peak force, and the

displacement at peak force match graph readings. As the dotted line in Fig. (3)

(a) shows, this gives a good representation of the central shape of the data.

For dynamic purposes, the stiffness-displacement profile is often of greater

concern than the force-displacement profile. Fig. (3) (b) shows the stiffness-

displacement profile, calculated by numerically differentiating the force-displacement

data with regard to displacement. An undesirable spike occurs at approximately

z=0.5 mm. This is caused by a small degree of freeplay within one of the

spherical joints causing a discontinuity as their loading changes sign. Eq. (1)

differentiates to
dF

dx
= A−

BC

C2z2 + 1
(2)

and, as can be seen in Fig. (3) (b), this shows agreement with the stiffness data.

It is of note that the force-displacement shown here is fitted by the smooth

function of Eq. (1), and is therefore quite unlike the complex, multi-event re-

sponses reported previously by Potter [28], Pirrera [31], Diaconu [30] and Shaw

[32]. Although the numerous attachments to the plate will clearly influence its

response, the multi-event snap is reproduced in [32] using a very similar method,

so the change in behaviour may be attributed to the different choice of plate

properties.
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Figure 4: The assembled dynamic test rig. Circles show locations of accelerometers.

3. Dynamic response of a nonlinear mass-spring system incorporating

the bistable plate subjected to base excitation

3.1. Experimental design

3.1.1. Dynamic test apparatus

The plate and mounting mechanism were incorporated into a dynamic test

rig as shown in Fig. (4). The mass was suspended between two springs, that

were tensioned such that they approximately horizontal. The centre of the

bistable plate was attached with nuts to a threaded bar connected to the mass

and springs. The position at which the plate was connected to the threaded bar

was adjusted, until the plate was held in its mid-snap position by the relative

tension in the two springs.

The outer frame slid upon cars on the steel track, which allowed no de-

tectable rotation or lateral free play, whilst giving minimal axial friction. The
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Figure 5: Schematic of experiment and control system.

frame was connected to a Ling V406 Shaker, by a connection which included

a short laterally flexible element, which eliminated issues arising from small

misalignments between the shaker and track.

The frame was designed to be far more rigid than the enclosed spring system;

random noise tests were used to verify that no frame modes occurred within the

frequency range of interest, and during testing accelerometers measured both

the top and bottom of the frame, to ensure it was moving as a rigid body.

Two more accelerometers were located on the mass, to check that no significant

lateral motions occurred.

The combined stiffness of the linear springs kspring was estimated as 33.8

N/mm by observing the natural frequency f of the mass-spring system with the

plate decoupled, using 2πf =
√

kspring/m with effective mass m = 0.97 kg.

3.1.2. Conditioning of the input signal

It was found that the nonlinearities in the system could influence the motion

of the base, and cause distortions to the desired harmonic oscillation. For this

reason, DSpace software and hardware and a Simulink R© model were used to

develop a control system that could minimise these unwanted harmonics. A
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feed-forward system was used in preference to a feedback control system, to

avoid potential issues of instability. The controller repeatedly sampled a buffer

of data from the base accelerometer, then calculated the Fourier series of this

signal based upon the required fundamental frequency, including terms up to

the 5th harmonic. A numerical routine was run that assumed that the mag-

nitude of each harmonic of the base signal was an unknown function of the

output Fourier coefficients at the same harmonic, and used a Newton-Broyden

algorithm to set them to zero, or the required amplitude in the case of the fun-

damental. A schematic of this system is shown in Fig. (5). In this way, the

mean magnitudes of the first 5 harmonics were reduced to no more than 3% of

the required fundamental amplitude.

It was found that the signal conditioning had little effect on the results

presented here compared to results taken with an uncorrected signal, so long as

the fundamental amplitude was controlled accurately, suggesting insensitivity

to harmonic distortions.

3.1.3. Post processing

For each excitation frequency data point shown, a ten-second block of time

series data was saved, for all accelerometers. These time series were then inte-

grated twice to obtain a displacement signal, and a Fourier series was calculated

and averaged for all complete cycles, with the known forcing frequency as the

fundamental. This gave the absolute fundamental amplitudeX, and the relative

fundamental amplitude U could be found by subtracting the base displacement

from the mass displacement and performing a similar process on the result.

3.2. Dynamic results

Fig. (6) shows detailed frequency response results at each of the four excita-

tion amplitudes tested. Results were generally highly repeatable, with the main

source of scatter appearing to be small changes of system properties during the

period of testing.
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Figure 6: Fundamental absolute response amplitude for different values of base amplitude R

and frequency. Crosses (+) show experimental data, peak values shown with (×××), solid line

shows response calculated in Section 5.3. (a) R = 0.04 mm (b) R = 0.05 mm (c) R = 0.06

mm (d) R = 0.07 mm

12



m

c
Pk(z)

x(t)

r(t)

Fs

Figure 7: Massm with static load Fs is supported on a movable base by a nonlinear spring with

linear damper with damping constant c. r(t) denotes base motion, x(t) denotes displacement

response of the mass and the nonlinear spring has force/displacement function Pk(z).

4. Static and dynamic analysis of an HSLDS mount

To model the results, we provide a brief theoretical description of the HSLDS

mount, summarising recent work by the authors [3]. Fig. (7) shows the system

considered; a mass m subject to static load Fs is supported above a base by

a nonlinear spring with force/displacement response Pk(z) and linear damper

with coefficient c. It is excited by base excitation signal r(t), resulting in an

absolute displacement from the static equilibrium position x(t). Inspection of

Fig. (7) gives the following equation of motion:

mz̈ + cż + P (z) = mr̈ (3)

where z ≡ x(t)− r(t) and is known as relative displacement, P (z) = Fs −Pk(z)

and it is assumed that z = 0 at static equilibrium.

An HSLDS function for the nonlinear spring P (z) is an odd function similar

in form to Fig. (8) (a). Stiffness is low near the origin, giving reduced natural

frequency at small amplitudes, while greater stiffness elsewhere minimises the

deflection due to Fs. The equivalent linear system is defined as the linear system

that has the same static displacement zs at the given static load Fs, with conse-

quent static stiffness ks ≡ Fs/zs. Distance and force are nondimensionalised by

the static values; x̂ = x/zs, r̂ = r/zs, ẑ = z/zs and P̂ (ẑ) = P (zsẑ)/Fs, giving
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(1, 1)

ẑ
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Figure 8: a) Generic example of an HSLDS force-displacement response (solid line), and the

linear equivalent response which shares the same static displacement zs and static force Fs, and

has equivalent linear stiffness ks (dot-dash line). b) Nondimensionalised system illustrating

reduced stiffness range ẑr and equilibrium stiffness k̂e.

the nondimensional response shown in Fig. (8) (b). Time is nondimensionalised

by the natural frequency of the equivalent linear system ωe ≡
√

ks/m to give

τ ≡ tωe, and when all nondimensionalisations are substituted Eq. (3) becomes:

ẑ′′ + 2λẑ′ + P̂ (ẑ) = r̂′′ (4)

where the prime ′ denotes differentiation with regard to τ , and the damping

ratio of the equivalent linear system is given by λ ≡ c/(2
√
ksm).

The nondimensional HSLDS profile is characterised by two properties known

as the equilibrium stiffness k̂e and reduced stiffness range ẑr as shown in Fig. (8)

(b). Equilibrium stiffness is the nondimensional tangent stiffness at the equilib-

rium point:

k̂e ≡
dP̂

dẑ

∣

∣

∣

∣

ẑ=0

(5)

Reduced stiffness range is the range of ẑ over which the stiffness is less than

static stiffness ks such that:
dP̂

dẑ

∣

∣

|ẑ|<ẑr
< 1 (6)

A 5th order polynomial response of form:

P̂ (ẑ) = k1ẑ + k3ẑ
3 + k5ẑ

5 (7)

can be fitted to match the condition that P̂ (1) = 1, and solved to satisfy Eq. (5)
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and Eq. (6) to obtain:

k1 = ke , k3 = (1− k̂e)
5ẑ4r − 1

5ẑ4r − 3ẑ2r
, k5 = (1− k̂e)

1− 3ẑ2r
5ẑ4r − 3ẑ2r

(8)

This can give any choice of k̂e although the choice of reduced stiffness range

must be restricted to
√

1/5 ≤ ẑr ≤ 4

√

1/5 for realistic results. Dynamic sim-

ulation shows that for non-polynomial HSLDS functions, approximating the

force-displacement curve using equations (5) to (8) gives very similar results [3].

To obtain the steady state response to harmonic base motion of the form

r̂ = R̂ cos(Ω̂τ + φ), the method of Normal Forms [34, 35] is used in [3], however

the Harmonic Balance method [36] would give identical results in this case.

The method of Normal Forms assumes a relative response of the form ẑ =

Û cos(Ω̂τ)+ ĥ(τ), where ĥ(τ) is a small function containing harmonic responses

that is neglected in this work. This results in a response equation that may be

solved to find Û , the amplitude of the response at the forcing frequency :

Ω̂4(Û2 − R̂2) + 2Ω̂2Û2
[

2λ2 −K(Û)
]

+K(Û)2Û2 = 0 (9)
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where K(Û) is the amplitude dependant stiffness:

K(Û) = k̂e +
3k3Û

2

4
+

10k5Û
4

16
(10)

When forcing and damping are assumed to be zero, Eq. (9) defines the amplitude

dependant natural frequency of the system, known as the backbone curve:

Ω̂ =

√

K(Û) (11)

At resonance, stiffness and inertial terms cancel from Eq. (9) to give:

Û =
Ω̂R̂

2λ
(12)

which is known as the limit curve. The peak response for any given nonlinear

spring occurs when its backbone curve intersects the limit curve for the relevant

base amplitude and damping.

We are often primarily concerned with the absolute response of the pay-

load mass. The nondimensional absolute fundamental magnitude X̂ may be

calculated from the relative magnitude Û by

X̂ =

√

(Û + R̂ cosφ)2 + (R̂ sinφ)2 (13)

where φ is the phase angle between the base motion and relative response given

by

φ = cos−1

(

(−Ω̂2 +K(Û))Û

Ω̂2R̂

)

(14)

Eqns. (11) and (12) concern a system that is in resonance, so therefore φ = π/2

and Û >> R̂, and the effect of R̂ becomes negligible in Eq. (13) so that Û ≈ X̂.

Therefore limit curves and backbone curves are identical when plotted in terms

of relative or absolute response, except at very low frequencies where X̂ → R̂.

An example response is shown in Fig. (9), showing that the use of an HSLDS

mount reduces both the peak frequency and the peak amplitude of response to

base excitation. Note that at low frequency, the absolute response magnitude

converges to the base motion amplitude. Fig. (9) shows that the region where

absolute response magnitude is less than that of the base magnitude, known as

the isolation region, begins at much lower frequency for the HSLDS mount than

for the equivalent linear system.

16



−4 −3 −2 −1 0 1 2 3 4
−150

−100

−50

0

50

100

150

z (mm)

P
 (

N
)

Figure 10: Total force displacement function given by Eq. (15) (solid). Dotted line gradient

shows equilibrium stiffness, dot-dashed line shows equivalent linear system. Crosses indicate

chosen static displacement and consequent static force.

5. Comparison of Experimental Data with Theory

5.1. Nondimensionalising the total response of plate and springs

The combined response of the linear spring and bistable plate, is found by

summing them to obtain:

P (z) = (A+ kspring)z −B arctan(Cz) (15)

This function is plotted in Fig. (10), along with the equilibrium stiffness ke

of 8.09 N/mm found by taking the derivative of Eq. (15) at z = 0. There is

no actual static load of interest in our experiment, so a static displacement of

zs =3.5 mm is assumed, chosen because this value gives reasonable nondimen-

sional properties as described below. Evaluating Eq. (15) at this value obtains

Fs=123.8 N, and therefore static stiffness ks=35.4 N/mm.

Nondimensionalising Eq. (15) as described in Section 4 therefore gives k̂e =

0.229 and ẑr = 0.464, where a numerical solver is used to satisfy Eq. (6); this

allows a polynomial approximation to be calculated using Eqs. (7) and (8).

5.2. Comparison of Backbone curves

Fig. (11) shows all result sets shown in Fig. (6) nondimensionalised as de-

scribed in Sections 4 and 5.1. Three backbone curves are shown in bold; the
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dot-dashed backbone is calculated using Eqs. (8), (10) and (11) with the values

of k̂e and ẑr calculated for Eq. (15) in Section 5.1. As can be seen, this curve has

a qualitatively similar shape to the data but is inaccurate in terms of frequency.

The reason for this is found by inspecting the inset in Fig. (3) (b) at z=0 mm;

there is a range of approximately 2 N/mm in the data, and this is a significant

proportion of the dimensional equilibrium stiffness, which is calculated to be

8.09 N/mm. Furthermore, it is likely that there is some error in adjusting the

plate so that it is held at its exact centre. Therefore it is difficult to establish

the true equilibrium stiffness value with accuracy. A value for the stiffness of

the plate at z= 0mm of -23.5 N/mm, which Fig. (3) shows occurs inside a range

of 0.5 mm from zero, gives a dimensional stiffness of 10.3 N/mm when summed

with the spring stiffness. Nondimensionalising by the calculated static stiffness

gives k̂e = 0.291, and this value in Eqs. (8), (10) and (11) gives the solid back-

bone curve in Fig. (11) which fits the data well. Finally, the dotted backbone

curve shown in Fig. (11) shows the response if the model is simply taken to be a

cubic polynomial with the same equilibrium stiffness, showing that this model

fails to capture the shape of the backbone at higher amplitudes.

5.3. Experimental limit curves, damping estimation and full response

The peak response frequencies and amplitudes on Fig. (6) (marked with

×××) can be used in Eq. (12) to predict damping constant λ, and therefore the

associated limit curves may be calculated. However, the form of this equation

implies that if damping is linear and constant, the limit curves will intercept

the line Ω̂ = 1 on Fig. (11) at heights proportional to their respective excitation

amplitude. The results, circled on Fig. (11), do not show this prediction, for

two reasons. Firstly, the peak values of the experimental graphs may not be

entirely accurate; when response has a ‘drop-down’, it is not possible to know

exactly how near to the true peak frequency was reached before the drop-down

was triggered. Secondly, there is no physical reason for the assumption of linear

damping, so some amplitude dependence may be occurring.

Nevertheless, the above method is used to calculate values of λ separately
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Figure 11: Nondimensionalised absolute frequency response, showing all datasets (thin solid

lines). Dashed values show limit curves implied by peak values (×××) assuming linear damping.

Bold lines show backbone curves; dot-dash line shows calculated back bone response based

on function Eq. (15), solid line uses a modified value for k̂e and dotted line is the backbone

implied by assuming a cubic response. Circles indicate the predicted peak response of the

equivalent linear system.
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for each different level of forcing. The solutions of Eq. (9) can then be found,

converted to absolute response with Eq. (13), and plotted in dimensional form

as solid lines on Fig. (6). This shows good agreement with experiment.
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6. Conclusions

An experimental concept demonstrator for a passive vibration isolator in-

corporating a composite bistable plate has been built, and subjected to har-

monic base excitation. Quasi-static tests have been performed to characterise

the force-displacement properties of the snap through of the bistable plate, and

the results used to make predictions for the dynamic response of a spring-mass

system coupled with this plate.

The quasi-static results show that by selecting suitable plate parameters the

force through of a bistable plate need not be the complex multi-stage event

reported by other authors, although in this study the plate is incorporated in a

mechanism that may affect the plate response.

The dynamic results show good agreement with theoretical predictions, in

particular the backbone curve which matches the shape of the frequency re-

sponse function well, although it proved difficult to accurately predict the equi-

librium stiffness due to experimental scatter. Selecting the peak response at a

given amplitude is not a particularly robust way to find the damping ratio of the

system, and the assumption of linear damping could not be verified. However,

deriving the damping ratio in this way and using it in our model to calculate

the response away from the peak still gave reasonably accurate results.

Future work on this will move towards a more compact mounting, with

a view towards achieving a simple, lightweight and highly effective means of

isolating vibration.
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