
ORIGINAL RESEARCH ARTICLE
published: 12 November 2013

doi: 10.3389/fnhum.2013.00722

The envirome and the connectome: exploring the structural
noise in the human brain associated with socioeconomic
deprivation
Rajeev Krishnadas1*, Jongrae Kim2, John McLean1, G. David Batty3,4, Jennifer S. McLean5,

Keith Millar1, Chris J. Packard6 and Jonathan Cavanagh1

1 Sackler Institute of Psychobiological Research, Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow, UK
2 Department of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
3 Medical Research Council Social and Public Health Sciences Unit, Glasgow, UK
4 Clinical Epidemiology Group, Department of Epidemiology and Public Health, University College London, London, UK
5 Glasgow Centre for Population Health, Glasgow, UK
6 Glasgow Clinical Research Facility, Glasgow, UK

Edited by:

Yong He, Beijing Normal University,
China

Reviewed by:

Sebastian J. Lipina, Unidad de
Neurobiología Aplicada (UNA,
CEMIC-CONICET), Argentina
Boris Bernhardt, Max Planck
Institute for Human Cognitive and
Brain Sciences, Germany

*Correspondence:

Rajeev Krishnadas, Institute of
Mental Health and Wellbeing,
Sackler Institute of Psychobiological
Research, University Corridor,
Southern General Hospital,
Room - 25, Ground-Floor, Neurology
building, 1345 Govan Rd., Glasgow,
Lanarkshire G51 4TF, UK
e-mail: rajeev.krishnadas@
glasgow.ac.uk

Complex cognitive functions are widely recognized to be the result of a number of brain
regions working together as large-scale networks. Recently, complex network analysis
has been used to characterize various structural properties of the large-scale network
organization of the brain. For example, the human brain has been found to have a modular
architecture i.e., regions within the network form communities (modules) with more
connections between regions within the community compared to regions outside it. The
aim of this study was to examine the modular and overlapping modular architecture of
the brain networks using complex network analysis. We also examined the association
between neighborhood level deprivation and brain network structure—modularity and
gray nodes. We compared network structure derived from anatomical MRI scans of
42 middle-aged neurologically healthy men from the least (LD) and the most deprived
(MD) neighborhoods of Glasgow with their corresponding random networks. Cortical
morphological covariance networks were constructed from the cortical thickness derived
from the MRI scans of the brain. For a given modularity threshold, networks derived
from the MD group showed similar number of modules compared to their corresponding
random networks, while networks derived from the LD group had more modules
compared to their corresponding random networks. The MD group also had fewer gray
nodes—a measure of overlapping modular structure. These results suggest that apparent
structural difference in brain networks may be driven by differences in cortical thicknesses
between groups. This demonstrates a structural organization that is consistent with a
system that is less robust and less efficient in information processing. These findings
provide some evidence of the relationship between socioeconomic deprivation and brain
network topology.

Keywords: socioeconomic status, neighborhood deprivation, gray nodes, modularity, graph theory, cortical

thickness

INTRODUCTION
Overlapping large-scale networks that are organized across the
cortex form the anatomical and functional foundations of com-
plex cognitive processes (Bressler and Menon, 2010). Complex
network analysis based on graph theory has been recently used
on neuroimaging data (MRI, MEG, and EEG) to explore differ-
ent properties of these large-scale cortical network organization
(Sporns, 2011). These studies have shown that human brain net-
works are optimally functioning systems that demonstrate small
world properties, and a modular architecture (He et al., 2007;
Bassett et al., 2008; Chen et al., 2008; Bullmore and Sporns,
2012). Modularity is an index of community structure within
a large-scale network (Newman, 2006). That is, these networks
have a tendency to form modules or communities with more

connections between nodes within the module than between
modules. Structurally, modules represent discrete entities whose
functions are separable from those of other modules (Hartwell
et al., 1999).

While modularity is usually associated with robustness of
the network in biological systems, complex cognitive processes
(an index of performance of the network) are unlikely to occur
optimally within isolated modules (Hintze and Adami, 2008).
Rather, they are likely to be dependent on the coordinated
activity between several modules within the large-scale network.
Indeed, most biological networks that survive in nature are those
that achieve some balance between robustness and performance.
Intuitively, it would be beneficial if the human brain network
demonstrated modularity—increasing its robustness—but also
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had an architecture that facilitates efficient information transfer
between modules—thereby improving performance. Therefore,
while maintaining the advantages of having a modular architec-
ture, we propose that the human brain will also demonstrate
an overlapping modular architecture, where certain nodes (we
call gray nodes) are included in many modules at the same time
(Figure 1) (Zhao et al., 2011). Within an information process-
ing system, such architecture, will improve information transfer
between modules thereby increasing efficiency and performance
of the network in terms of having lesser number of edges and
shorter average path lengths. In short, while modularity repre-
sents the community architecture within a network, gray nodes
represents an index of overlapping communities.

Survival in adverse environments may be associated with
changes in network structure that make them less robust and
reduce their performance. Neighborhood level socioeconomic
status (SES) is associated with adversity and the presence of
risk factors for reduced physical and neurocognitive health (Diez
Roux and Mair, 2010; Srireddy et al., 2012). If indeed, cogni-
tive functions are dependent on optimal functioning (and hence
structure and topology) of large-scale brain networks, it is pos-
sible that SES is associated with changes in large-scale network
structure. A small number of neuroimaging studies have shown
SES to be associated with variations in individual brain anatomy
and functional connectivity in adults (Gianaros et al., 2007, 2008).
While network structure and topology have been found to be dis-
rupted in a number of mental illnesses, no study has examined the
relationship between neighborhood socioeconomic deprivation
and brain network structure in humans.

The aim of the present study was to apply complex
network analysis to examine the structural characteristics—
modularity and gray nodes—of cortical networks derived from
cortical morphology correlation (Figure 1). We also examined

FIGURE 1 | Shows the modular architecture (A) and gray nodes (B).

Gray nodes: Consider two fully connected networks (B), with four nodes
each and are fully connected. The two networks can be connected in two
different ways. If they are connected as the first left in the bottom, then one
additional edge is used. On the other hand, if they share the two nodes
depicted in gray, then the combined module saves resources, i.e., there are
two nodes and two edges less than the first combination. In addition, the
average path lengths are shortened than the one with the non-sharing
combination.

these structural characteristics in relation to socioeconomic
deprivation. There is growing evidence that cortical morphol-
ogy covariation is an indicator of connectivity between different
regions of the brain (Worsley et al., 2005; Lerch et al., 2006; He
et al., 2007; Bassett et al., 2008; Zalesky et al., 2010; Alexander-
Bloch et al., 2013). Graph-theoretical network analyses based on
morphological correlations have been used to examine brain net-
work structure in healthy and clinical samples (He et al., 2007,
2009; Bassett et al., 2008).

Using complex network analysis of magnetic resonance imag-
ing (MRI) surface-based morphometry we investigated the topo-
logical features of whole cortical anatomical networks in 42
neurologically healthy men from the most deprived (MD) and
least deprived (LD) neighborhoods of Glasgow (Sporns, 2011).
The connectivity matrices in the present study were derived from
region-wise cortical thickness correlations between 68 anatom-
ical parcellations and subjected to complex network analyses.
We propose that the brain networks derived thus will show
an overlapping modular architecture—by the presence of mod-
ules and gray nodes. We also examined to determine if these
structural properties differed significantly between neurologically
healthy people living in the most deprived (with higher risk
of reduced mental health cognitive functioning) and the least
deprived regions of Glasgow. Throughout the paper, “structural”
refers to the network structure (e.g., modularity or proportion of
gray nodes). We have used the term “anatomical” to refer to brain
anatomy.

MATERIALS AND METHODS
PARTICIPANTS
Participants were recruited as part of a larger study
(Psychological, social and biological determinants of ill health
(pSoBid). Details of the design of pSoBid have been described
elsewhere (Velupillai et al., 2008; Deans et al., 2009; Knox et al.,
2012; McGuinness et al., 2012; McLean et al., 2012). Selection
of participants was based on the Scottish Index of Multiple
Deprivation 2004 (SIMD), which ranks small areas on the basis
of multiple deprivation indicators across six domains, namely:
income; employment; health; education, skills, and training; geo-
graphic access and telecommunications; and housing. Sampling
was stratified to achieve an approximately equal distribution of
the 666 participants across males and females and age groups
(35–44, 45–54, and 55–64 years) within the most (bottom 5% of
SIMD score) and LD areas (top 20% of SIMD score). Participants
could opt-in for the neuroimaging component of the study.
This paper presents the analysis from 42 male individuals who
were randomly selected. This included 21 people from the most
deprived regions and 21 from the least deprived regions, who
were age matched.

IMAGE ACQUISITION
All MR imaging were performed using GE Medical systems, 3T
Signa Excite HD system (Milwaukee, USA) using an eight chan-
nel phased array (receive only) head coil. An axial 3D T1-weighted
IR-FSPGR was acquired with TR = 6.8 ms; TE = 1.5 ms, Inversion
Preparation time = 500 ms; Flip angle = 12◦; FOV = 26 cm;
Phase FOV = 70%; matrix: 320 × 320; 160 slices; Bandwidth
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31.25 kHz; Slab thickness = 1 mm. The acquisition time for this
scan was 8 min 54 s.

Cortical thickness measurements and parcellations
Cortical reconstruction was performed with the FreeSurfer image
analysis suite, which is documented and freely available for down-
load online (http://surfer.nmr.mgh.harvard.edu/). (Dale et al.,
1999; Fischl et al., 1999; Fischl and Dale, 2000) Briefly, following
skull-stripping and correction of inhomogeneity artifact, con-
strained region growing was used to create a unitary white mat-
ter volume for each hemisphere. The gray-matter/white-matter
boundary for each cortical hemisphere was determined using tis-
sue intensity and neighborhood constraints. The white matter
surface was tessellated by assigning two triangles to the square
face of each surface voxel. This process yielded approximately
160000 vertices per hemisphere. The white matter surfaces were
deformed toward the gray matter/pial boundary, with a point to
point correspondence at each vertex. Cortical thickness was com-
puted as the distance between the white and the pial surfaces
at each vertex. Cross-subject registration of hemispheric corti-
cal surfaces was performed by projecting them onto the spherical
representations. The maps produced are not restricted to the voxel
resolution of the original images and are thus capable of detect-
ing sub-millimeter differences between groups. The parcellations
were obtained using the Desikan sulcogyral-based atlas, which
follows the anatomical conventions of Duvernoy. The FS image-
processing pipeline was visually inspected and corrected at critical
points in order to avoid errors permeating through the subse-
quent analyses. Procedures for the measurement of cortical thick-
ness have been validated against histological analysis and manual
measurements. The Desikan Killiany atlas produces 68 parcella-
tions based on gyri and sulci (Desikan et al., 2006). In addition
to the Desikan Killiany atlas parcellation scheme, we also used
fine-grained parcellation schemes based on anatomical sulcogyral

boundaries including the Destrieux atlas, (148 parcellations)
and fine-grained parcellation schemes (200, and 1000 parcella-
tions) that did not follow anatomical conventions described in
Echtermeyer et al. (Destrieux et al., 2010; Echtermeyer et al.,
2011). The pipeline of the analysis and the parcellation are shown
in Figure 2.

CORTICAL THICKNESS—BETWEEN GROUP COMPARISON
Statistical comparisons of global data and surface maps were
generated by computing a general linear model (GLM) of the
effect of neighborhood deprivation (independent variable) on
thickness (dependent variable) at each vertex in the cortical
mantle, using the Query, Design, Estimate, Contrast (QDEC)
interface of FreeSurfer. Age was used as nuisance covariate in
the model. QDEC is a single-binary application included in the
FreeSurfer distribution that is used to perform group averaging
and inference on the cortical morphometric data produced by the
FreeSurfer processing stream. (http://surfer.nmr.mgh.harvard.

edu/fswiki/Qdec). Maps were created using statistical thresholds
of p = 0.05 and were smoothed to a full width half maximum
(FWHM) level of 20 mm. Since this analysis involved performing
a GLM analysis at 160000 vertices, these maps were corrected for
multiple comparisons by means of a cluster-wise procedure using
the Monte Carlo Null-Z simulation method adapted for corti-
cal surface analysis and incorporated into the QDEC processing
stream. For these analyses, a total of 10,000 iterations of simula-
tion were performed for each comparison, using a threshold of
p = 0.05.

NETWORK CONSTRUCTION
Network construction was based on parcellations of cortical
thickness as described by He et al. (2007). We defined an anatom-
ical connection (edge) as statistical associations in cortical thick-
ness between cortical parcellations based on the Desikan Killiany

FIGURE 2 | Shows the pipeline of analysis, including the parcellation schemes—Desikan atlas and Destrieux atlas showing the sulcogyral

parcellations and the Finegrain 200 and 1000 atlas as in Echtermeyer et al. (2011).
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atlas included in the FreeSurfer pipeline (nodes). The statistical
similarity in cortical thickness between 2 regions was measured
by computing the Pearson’s correlation coefficient across subjects
to create an interregional correlation matrix (N × N, where N
is the number of brain regions based on Desikan cortical par-
cellation atlas, here N = 68). In order to keep the analysis as
close as possible to previous reports, prior to the correlation
analysis, a linear regression was performed at every region to
remove the effects of age, and mean overall cortical thickness;
the residuals of this regression were then substituted for the raw
cortical thickness values (He et al., 2007; Chen et al., 2008). In
order to be consistent with the cortical thickness group differ-
ence analysis presented above, the complex network analyses were
repeated without mean overall cortical thickness in the model,
but the results of our analysis did not differ significantly (results
not shown). A separate matrix was produced for the MD (21
subjects) and the LD (21 subjects). As a first step, all negative
correlations were discarded. As the correlation analysis was per-
formed for all 68 × 68/2 = 1431 pairs of regions, we performed
a multiple comparisons correction to test the significance of these
correlations.

We applied the false discovery rate (FDR) procedure sepa-
rately to each matrix in order to correct the multiple comparisons
at a q value of 0.2 (this was chosen as at 0.05, both matrices
were very sparse). (Genovese et al., 2002) Using this threshold,
we constructed a symmetric connection matrix (Figures 5, 6),
whose element was 1 if the cortical thickness correlation between
2 regions was statistically significant and 0 otherwise. This bina-
rized connection matrix captures the underlying anatomical con-
nection patterns of the human brain common to the population
sample under study. We repeated all the analyses on matrices
derived from the fine grained parcellation schemes described
above, in order to validate our findings using multiple parcella-
tion schemes.

MODULARITY
All the modularity metrics were calculated on the above two adja-
cency matrices separately and compared to corresponding ran-
dom networks. Modularity is an intuitional concept and there are
variations in the mathematical definitions, where each has its own
advantages and disadvantages. One common property among the
various ways of defining modularity, however, is accounting for
the agreed intuition about modularity, i.e., a module is a subset of
nodes in a graph, whose connections among the elements within
the subset are much denser than the ones to nodes outside the
subset. Newman suggested the following modularity measure,Q:

Q = max
s ∈ S

1

4m
sTBs,

where s is a column vector and element of the set S, S is the
set of all column vectors whose dimension are equal to the
number of nodes in the graph, n, and each component of the
vector is either −1 or +1, (·)T is the transpose. B is equal to
A − kkT/ (2m), A is the adjacency matrix, whose dimension is
n × n, and the i-th column (or row) and j-th row (or column)
element is 1 (or 0) if i-th and j-th nodes are connected by an edge
(or if there is no edge), k is a column vector whose element is the

number of edges connected for each node, i.e., the degree of node,
and m is the total number of edges. Roughly speaking, B quanti-
fies the difference between the number of edges found in a subset
of the given network structure, i.e., A, and the expected average
from the random graphs, whose nodes degree is the same as the
one of the given graph, i.e., kkT/ (2m). Hence, positive Q values
imply that there are more edges found than the expected and it is,
therefore, a module.

By obtaining s that maximizes the modularity, Q, the nodes
are divided into two groups, i.e., modules, depending on the cor-
responding values in the maximizing vector, s. The maximization
problem, however, is the integer quadratic programming prob-
lem, which is NP-hard. It is even computationally very difficult to
obtain the true solution, which gives the global maximum value of
Q. Note that Q is always less than or equal to 1. If the condition for
s is relaxed so that it can take any real numbers, then the problem
becomes finding maximum eigenvalue and the corresponding
eigenvector of the matrix, B. This can be solved efficiently using
the power-iteration, i.e., choosing an arbitrary initial vector, s0,
and recursively updating the vector using sk+1 = Bsk until it con-
verges. Then, s maximizing Q is calculated simply by taking the
sign of converged sk. To increase the chance of finding the global
solution, these procedures are repeated a number of times with
a different random initial vector, s0. If the calculated maximum
value, Q, is positive (or negative), then the graph is divided (or
declared indivisible).

Once the graph is divided into two modules, then each mod-
ule is inspected whether it can be further divided by solving the
following the maximization problem:

�Q = max
r ∈ Sg

1

4m
rTBgr,

where r is an element of the set sg , sg is the set of ng-dimension
column vectors whose element is either +1 or −1, ng is the num-
ber of nodes in the module, which is found in the previous step,
Bg is equal to Bij − diag [kg], Bij is a matrix constructed by a part
of B, where the rows and columns belong to the module, kg is the
degree of each nodes only concerning Bg , and diag [·] is the diago-
nal matrix, where the diagonal terms are given by the vector in the
argument and the other elements are zero. Again, if �Q > 0(or
�Q ≤ 0), then the module is divided into two smaller mod-
ules (or declared indivisible). The above procedures are repeated
on every module recursively until all modules are declared indi-
visible. By definition, the divisibility of a module is determined
based on whether the modularity measure is positive or not. Very
often, it is, hard to justify whether some subgroups of a graph
are modules if the modularity contribution, i.e., Q or �Q, is very
close to zero. As the mathematically possible maximum value
is 1, the modular structure is much clearer if the modularity is
closer to 1. Hence, the number of modules is calculated for var-
ious Q-threshold, which decides when modules are declared as
indivisible.

GRAY NODES
A network, in general, is not a simple collection of modules but a
combination of complicated overlapped modular structures, i.e.,
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it demonstrates a hierarchical modular architecture. The over-
lapped modular structures are hard to decipher into elementary
modules that pertain to the whole network. There are several
methods to unravel the overlapping modular structure. In order
to use a consistent measure with the modular calculation, an
extended modularity (Qe) is defined as follows:

Qe = max
se ∈ Se

1

4m
sT
e Bse,

where se is an element of the set, Se, and the set Se is the collec-
tion of vector, se, whose dimension is again, n, i.e., the number
of nodes, and its element is either -1, +1, or 0. Compare to the
vector s in S, se has one more degree of freedom in possible values
(Zhao et al., 2011). The nodes corresponding to zero are called
gray nodes, which are included in multiple modules at the same
time or are not included in any module. �Qe is defined in the
similar manner. Gray node is a similar concept to that of con-
nector hub and hierarchical or overlapping modular structure.
While connector hubs are defined as nodes with greater than aver-
age degree of the network and distributed between both local and
long range connections, gray nodes are defined as nodes that are
shared by modules. It is an index of overlapping modular archi-
tecture of the network. Previous literature has described such
overlapping architecture based on a prior definition of modular-
ity by Newman and Girvan (Newman and Girvan, 2004; Nicosia

et al., 2009; Lazar et al., 2010; Wang et al., 2012). On the other
hand, “gray nodes” are a unified way to define the structure in the
more recent modularity definition by Newman (Newman, 2006).
This provides an advantage that we measure modular architec-
ture, and the overlapping architecture using a consistent measure
without requiring significant changes in the algorithm (Newman,
2006).

All calculations presented in this paper are based on Monte-
Carlo simulations performed 1000 times. The distributions of all
calculations are confirmed to be similar to Gaussian distributions
(data not shown). Hence, there is no danger that the analyses
based on the mean and the variance may give any false inter-
pretations of the true distribution of the data. All graphs were
compared to random graphs (with the same number of nodes and
degree distribution as the corresponding brain networks).

RESULTS
Demographic details, differences in risk factors and performance
on cognitive tests of the participants are shown in Table 1. In
general, participants in the MD group had higher inflammatory
and metabolic risk markers, poorer GHQ scores and performed
poorly on a number of cognitive tests. Supplemental file shows
the details of how early life and current individual level SES were
derived. Table A1 shows that individual level SES covaried signif-
icantly with the neighborhood level deprivation status, and hence
were not included in our data analysis.

Table 1 | Demographic and clinical characteristics of study participants.

Least deprived n = 21 mean (s.d.) Most Deprived n = 21 mean (s.d.) t p

Age (years) 51.18 (8.7) 50.70 (8.75) 0.224 0.82

Alcohol units per week 15.81 (9.39) 18.61 (21.32) −0.55 0.58

Diet score 95.24 (48.55) 40.66 (32.92) 4.26 < 0.001

GHQ 28 score 1.48 (2.71) 5.00 (5.59) −2.59 0.015

NART errors 5.33 (3.719) 12.43 (6.66) −4.26 < 0.001

Choice reaction time 860.14 (115.66) 1064.48 (168.6) −4.5 < 0.001

Trail making test A 28.55 (7.59) 35.86 (12.97) −2.18 0.035

Trail making test B 61.74 (20.81) 90.42 (29.98) −3.4 0.002

RAVLT – trial 5 12.05 (1.74) 11.52 (2.06) 0.88 0.52

Cortisol (nmol/l) 354.37 (103.29) 398.63 (124.06) −1.19 0.24

CRP (mg/L) 1.17 (1.34) 3.40 (2.94) −3.16 0.004

ICAM (ng/ml) 234.48 (25.72) 309.67 (84.19) −3.81 0.001

IL6 (pg/ml) 2.6235 (5.42) 2.5320 (1.76) 0.07 0.94

Fibrogen (g/L) 2.94 (0.61) 3.17 (0.95) −0.89 0.37

D-dimer 89.81 (47.35) 150.32 (104.27) −2.32 0.029

Glucose (mmol/L) 5.42 (0.57) 5.31(1.15) 0.38 0.70

HDL (mmol/l) 1.22 (0.20) 1.26 (0.36) −0.46 0.64

Triglycerides (mmol/l) 1.71 (0.72) 2.29 (2.23) −1.14 0.26

Insulin (uIU/ml) 7.1820 (4.82) 9.857 (6 8.43) −1.23 0.22

Systolic BP (mmHg) 139.90 (17.03) 142.47 (20.96) −0.43 0.66

Diastolic BP (mmHg) 81.28 (8.53) 82.85 (11.33) −0.50 0.62

BMI (kg/m2) 27.02 (2.69) 28.42 (5.86) −0.99 0.33

Waist-Hip ratio 0.90 (0.05) 0.97 (0.072) −3.6 0.001

Intracranial volume (cc) 1572.94 (143.52) 1542.66 (161.72) 0.642 0.525

T, unpaired t-test; BMI, body mass index; CRP, C-reactive protein; IL-6, interleukin-6; ICAM-1, intercellular adhesion molecule.
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CORTICAL THICKNESS DIFFERENCES BETWEEN GROUPS
Initial analysis of cortical thickness across groups showed that
those from the most deprived population had significant cortical
thinning pertaining to bilateral perisylvian cortices. (Figure 3).

NETWORK ANALYSIS
We conducted all analyses on binarised matrices derived from
interregional correlations of cortical thickness. Initial examina-
tion of number of isolated modules showed that for a given
correlation threshold, the least deprived group had greater num-
ber of isolated groups compared to the deprived group (Figure 4).
The raw networks and FDR filtered networks are shown in
Figures 5, 6. The distribution of the groups’ correlation coeffi-
cients is shown in Figure 7. A direct comparison of the networks
derived from the above populations, was not possible, as for
a given correlation threshold, the sparsity (density) of the two
networks were significantly different (Figure 8). In addition, the
FDR procedure thresholded the two networks significantly differ-
ently. This method of thresholding resulted in different number of
edges—k—(sparsity) in the networks of the two groups because
of differences in their inter-regional cortical thickness correla-
tions. We therefore compared the network structure derived from
the groups to their corresponding random networks. The results
of this analysis are shown in Figures 9, 10.

Modularity and grey nodes
Firstly, the networks derived from both groups showed a modular
architecture, and the presence of gray nodes. Toward a modu-
larity of 0.3 (strong modularity), the least deprived network had
more modules, compared to its corresponding random network.
However, the most deprived network, showed no difference from
its random counterpart.

With regards the gray nodes, for a given a modularity toward
0.3, the least deprived network showed significantly greater num-
ber of gray nodes compared to the corresponding random net-
work. However, the most deprived network showed significantly

FIGURE 3 | Shows the difference in cortical thickness between the

most deprived and the least deprived groups. Red regions pertain to
regions where the most deprived group showed cortical thinning.
Covariates in the model—Age and alcohol use.

smaller proportion of gray nodes compared to its random coun-
terpart. While the differences between groups were maintained
in the Destreaux atlas (148 parcels) that followed the sulcogyral
boundaries, these differences were not seen with the finer grain
parcellations of 200 and 1000 parcels that did not follow the
sulcogyral scheme. (Figures 11A–C).

DISCUSSION
We have shown here that brain networks derived from cortical
morphological correlations show a modular organization, and
indeed an overlapping modular architecture as demonstrated by
the presence of gray nodes. We have also shown that neurolog-
ically healthy subjects from the MD regions of Glasgow differ
significantly in their brain network structure from those from the
LD regions in comparison to their corresponding random net-
works on relatively coarse parcellations schemes that followed the

FIGURE 4 | The correlation values in the matrices are distributed

between 0.1 and 0.9. By changing the correlation threshold from 0.2 to
0.85, the number of isolated groups are counted for the both groups. The
least deprived has more isolated groups than the deprived over the almost
all values of the correlation threshold. Affluent: Least deprived; Deprived:
Most deprived.

FIGURE 5 | The raw correlation matrix for each group shows that two

groups have almost equal number of non-zero components in the

matrix. The correlation matrix for each group is given by a 68 × 68 matrix,
where each value in the matrix is calculated from the cortical thickness
correlation measured in 21 individuals. Affluent: Least deprived; Deprived:
Most deprived.
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FIGURE 6 | In the correlation matrix for each group, all values below

the FDR threshold are set to zero, where. About three-times more edges
survived the FDR procedure in the most deprived than the least deprived
group. Affluent: Least deprived; Deprived: Most deprived.

FIGURE 7 | The distributions of correlation coefficients for both

groups. The vertical red lines are the FDR threshold values for each group.
Affluent: Least deprived; Deprived: Most deprived.

sulcogyral boundaries. Brain networks in the MD group showed
same number of modules and smaller proportion of gray nodes
compared to their corresponding random network. These differ-
ences, however, disappeared at fine-grained parcellation schemes
that did not follow the sulcogyral schemes.

A number of recent studies have shown that human brain net-
work structure derived from anatomical covariance demonstrates
a modular architecture (Chen et al., 2008, 2011). There are a
number of advantages in having a modular architecture. Kaiser
et al. suggest that this feature allows for low wiring costs; are
time scale separable; allows for the coexistence of integration and
segregation within a network; transient chimera states of resyn-
chronization and synchronization; and also allows for rapid and
robust assembly (Kaiser, 2007). In addition, a modular architec-
ture is robust against random attacks on the network and helps
to contain the effects of these attacks to the module, rather than
spreading through the network.

We compared the brain network graphs with random graphs
that had similar degree to the corresponding brain network. For

FIGURE 8 | Correlation and sparsity (Number of zeros divided by

Maximum possible number of edges) relations in cortical thickness

network. The most deprived have more edges (denser network) than the
least deprived for a fixed correlation threshold. On the other hand the least
deprived would have more false positive edges than the deprived and/or
the deprived would have more false negative edges than the least deprived
for a fixed sparsity. Affluent: Least deprived; Deprived: Most deprived.

FIGURE 9 | Number of modules and the corresponding random graphs

[indicated by “(R)”] with respect to various modularity (Q) threshold.

Error bars represent the 1σ-bound for each case. In the module calculation
algorithm, if the module contribution, Q or �Q, is less than the threshold, it
was declared indivisible. Higher thresholds imply strong modules. Affluent:
Least deprived; Deprived: Most deprived.

both the LD and MD groups, at lower modularity thresholds,
the brain network graphs had fewer modules compared to their
corresponding random graphs. However, this phenomenon was
reversed at higher thresholds. This is possibly because within
the constraints of fixed resources (nodes/edges), brain networks
enhance a few specific modules by rewiring and sacrificing
unwanted modules.

In our study, for a given number of modules, the brain
networks in the LD group showed stronger modular organization
than their corresponding random graphs. In other words, the net-
works derived from the most deprived group had more edges
between modules, which weakened the modular architecture.
Previous work by Chen et al. using a similar technique showed
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FIGURE 10 | Shows the proportion of gray nodes with respect to the

corresponding Modularity threshold. Error bars represent the 1σ-bound
for each case. In the module calculation algorithm, if the module
contribution, Q or �Q, is less than the threshold, it was declared indivisible.
Higher thresholds imply strong modules. Gray nodes have two implications
in the network structure: (i) efficient usage of resources and (ii) shorter
average distance between nodes. Recycling existing nodes and edges to
combine multiple modules saves limited resources to construct the
network. It is believed that reducing wiring resources is one of the major
selection pressure on the brain network evolution. Affluent: Least deprived;
Deprived: Most deprived.

that modules derived using correlations of cortical thickness,
broadly gave out six functionally relevant modules (Chen et al.,
2008). Using the same number (six modules) as Chen et al., the
modules were functionally more relevant in the LD population
(data not shown). For example, all anatomical regions pertaining
to language function were integrated together within a given
module. However, this was not the case with the MD. Anatomical
regions pertaining to similar function were distributed across
several modules, consistent with poor functional modular orga-
nization at a given threshold. While these modularity differences
may be due to anatomical differences between groups that we
have shown, these may have functional implications, as anatomi-
cal networks have been found to overlap with functional networks
(Alexander-Bloch et al., 2013). If we consider these networks
as information processing systems, then such a difference in
network structure could contribute to greater noise and less effi-
cient information processing within the system. However, a direct
interpolation of the results of our study is not possible due to the
static nature of our data.

We describe a new metric—gray node—as a measure of
overlapping modular organization. While modularity improves
the robustness within a system, it is unlikely that our brain
network achieves optimal performance by operating as a num-
ber of different isolated modules. As stated previously, cognitive
processes are likely to be the result of a number of modules inter-
acting with each other in a fast and efficient way. The overlapping
modular architecture—represented here by the presence of gray
nodes—is beneficial in that given a fixed number of resources it
provides the best modular architecture, maximizing the commu-
nication between modules thereby achieving a balance between
robustness and optimal performance. Gray nodes have two impli-
cations in the network structure: i) efficient usage of resources
and ii) shorter average distance between nodes. Recycling exist-
ing nodes and edges to combine multiple modules saves limited
resources to construct an efficient network. It is believed that

reducing wiring resources is one of the major selection pres-
sures on the brain network evolution. Our results suggest that
the networks derived from the MD group show much lower
efficiency compared to their corresponding random network
(Achard and Bullmore, 2007; Bullmore and Sporns, 2009). While
metrics describing overlapping modules have been outlined pre-
viously, gray nodes have the advantage that it was derived from
Newman (2006) and integrates well with the given modularity
metric (Newman, 2006).

While the structural differences may be driven by the differ-
ence in cortical thickness between the two groups, the reason
for the anatomical difference between the two groups is not
clear. It should be noted that the groups differed on a number
of variables that could potentially explain the observed differ-
ence. For example, those from the most deprived had poorer
mental health and also had higher levels of inflammation. (See
Table 1) We have previously shown inflammatory markers to
be associated with cortical thickness (Krishnadas et al., 2013).
We were, however, underpowered to explore the role of poten-
tial mediators that could explain the difference between groups
in structural properties. Previous studies have demonstrated age
related changes to modularity (Chen et al., 2011). Our groups
were matched for age. Similarly, mental illnesses have shown to
be associated with disruption to the modular architecture. A few
studies have also examined this property in medical conditions
like MS and epilepsy (He et al., 2009; Vaessen et al., 2012). A
number of studies have shown an association between socioe-
conomic deprivation and brain anatomy and function in both
children and adults, though none have examined the associa-
tion with network structure (Gianaros et al., 2011; Hanson et al.,
2011; Jednorog et al., 2012). A key question that remains is how
these anatomical differences could contribute to poorer cognitive
functioning and mental health. Interestingly, the MD group per-
formed poorly on all cognitive tests, including NART (National
adult reading test)—a test that is relatively stable through age,
and often considered a test of measure of the peak achieved intel-
lectual functioning. We did not examine if less modularity was
directly associated with poorer cognitive functioning as utiliz-
ing correlation coefficients to construct the matrix meant that
indices of modularity could not be calculated at an individual
level. However, change in network structure is a potential mecha-
nism by which regional anatomical brain deficits may contribute
to global network topology, thereby resulting in poorer cogni-
tive function. Previous studies have examined the relationship
between intelligence quotient (IQ) and network properties. For
example Li et al. found a significant positive correlation between
number of edges and IQ. They also found that those with greater
IQ had shorter path lengths, greater clustering coefficient (sim-
ilar to our findings) and in general greater global efficiency of
structural networks in the brain (Li et al., 2009). Similarly using
resting state fMRI to examine the overall organization of the brain
network using graph analysis, van den Heuvel et al. showed a
strong negative association between characteristic path length of
the resting-state brain network and IQ (Van Den Heuvel et al.,
2009). They suggest that human intellectual performance is likely
to be related to how efficiently the brain integrates information
between various brain regions.
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FIGURE 11 | Shows the number of modules and proportion of

gray nodes at a fine grain level—(A) parcellation following
sulcogyral boundaries—Destrieux atlas (148 parcels) and (B) a

parcellation scheme that does not follow the sulcogyral boundaries
[(B) 200 parcels and (C) 1000 parcels). Affluent: Least deprived;
Deprived: Most deprived.

NEIGHBORHOOD LEVEL vs. INDIVIDUAL LEVEL SES.
Socio-economic status (SES) refers to a multidimensional con-
struct that is usually measured using a number of economic
(e.g., income) and non-economic (e.g., education) indicators
(Hackman et al., 2010). SES can be measured at an individ-
ual/household or at a neighborhood level. Regardless of the level
of measurement (individual/neighborhood), SES has been asso-
ciated with significant health disparities (Diez Roux and Mair,
2010). Most of the studies previously mentioned have examined
the association between individual level SES and brain mor-
phology. But individual level explanations for poor health do

not capture significant social and structural determinants of ill
health (Diez Roux and Mair, 2010). It is well-established that
social circumstances have direct biological consequences, as well
as impact on health behaviors (see Diez Roux and Mair for a
detailed review on neighborhood deprivation). However, rela-
tively small number of studies have explored the contributions
of individual level SES indicators with neighborhood level indi-
cators to health inequalities. Neighborhood level deprivation has
been associated with poor health outcomes due to inequali-
ties in resource distribution. These neighborhoods have physical
(e.g., access to food) and social (e.g., violence) attributes that
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are contributors to health outcomes. However, individual and
neighborhood deprivation are likely to interact significantly. For
example, Stafford and Marmot found that living in a deprived
neighborhood has the most adverse impacts on poorer indi-
viduals possibly because they are more dependent on collective
resources of the neighborhood (Stafford and Marmot, 2003). In
our study, individual level SES covaried significantly with neigh-
borhood level SES. (For details of this analysis see Table A1 in
Appendix) Due to the nature of the sampling technique, people
from the most deprived neighborhoods also had poorer individ-
ual SES. This is partly because neighborhood deprivation scores
(SIMD) are derived from data pertaining to individuals in the
area. Since our groups differed inherently in their individual SES,
it was deemed inappropriate to co-vary for the effects of individ-
ual SES (Miller and Chapman, 2001). Our relatively small sample
size was also not sufficiently powered to examine if individual SES
contributed significant variance over and above that explained
by neighborhood SES or vice versa. The extreme group sampling
technique prevented us from examining any dose-response effect
of either individual or neighborhood level deprivation in our
sample.

EFFECT OF PARCELLATION SCHEME ON NETWORK STRUCTURE
Zalesky et al. have previously shown that network topology
vary considerably as a function of the spatial scale of the atlas
used (Zalesky et al., 2010). Previous reports that have exam-
ined cortical thickness covariance network structure in clinical
and non-clinical populations have used the same parcellation
scheme (Desikan-Killiany atlas) used in our study (Raj et al.,
2010; Hanggi et al., 2011; Romero-Garcia et al., 2012; Yang et al.,
2012). Of note, Romero-Garcia et al. in order to examine the
effect of network resolution on topological properties, compared
the Desikan-Killiany atlas based parcellation with finer parcella-
tion schemes of up to 1494 parcellations (Romero-Garcia et al.,
2012). Interestingly they found that highly grained cortical scales
showed enhanced local connectivity (clustering coefficient), and
local efficiency, but increased path length and decreased global
efficiency. Our findings resonate that of Romero-Garcia et al.,
in that, at different parcellation schemes, the network topologies
differed (Romero-Garcia et al., 2012). For fine-grained parcel-
lation schemes that did not follow sulcogyral boundaries, the
LD brain network, and MD brain network were similar. At a
modularity threshold of around 0.3, both network structural
properties looked similar to their random counterparts (suggest-
ing a decrease in global properties at more fine grained schemes)
(Figures 1A,B).

Anatomically, since cortical thickness is a continuous measure,
regions that lie close to each other will show very similar corti-
cal thickness and hence high correlation. Here, a fine parcellation
schemes, may uncover local connection (or a forking-U fiber con-
nection), while a coarse may not (see Figure 1 in Zalesky et al)
(Zalesky et al., 2010). In addition, regions close to each other are
likely to be anatomically connected by the tangential neurons and
dendrites. It is possible that in our case, the group differences dis-
appeared when geometrically close connections were exposed at
the finer parcellation schemes. In addition, at finer parcellation,
where the number of parcels far exceed the number of subjects in

the study, the study may have been significantly underpowered to
show significant differences between groups (Zalesky et al., 2010).

It is also possible that network structure derived from relatively
coarse parcellations are more representative of large scale corti-
cal networks, while the networks derived from the fine-grained
parcellations also include the meso/microscale connections rep-
resenting regional/local connections. Whatever the case, it is clear
that the granularity of chosen parcellations may affect the results
of the network analysis. Our data suggest that when exploring
connectivity, choosing the right granularity that is best suited
to answer the question of interest is vital. However, clear cut
guidelines pertaining to this are absent. One suggestion is that in
order to answer clinical questions, anatomically relevant atlases
like AAL or the sulcogyral parcellations (FreeSurfer) as used in
our study may be more relevant. Interestingly for a finer (than
Desikan atlas) parcellation that follows the sulcogyral bound-
aries (the Destreaux atlas—149 parcellations), the difference
between the brain and random networks in the most deprived
group disappear at around a modularity threshold of around 0.2
(Figure 11A).

SPARSITY (DENSITY) AND MODULARITY
Although we found significant differences between the networks
and their corresponding random graphs, we did not perform
a direct comparison of the network structure between the two
groups, as the thresholds imposed by the FDR correction led
to matrices that were significantly different in their sparsity
(density). Thresholding a matrix is a problem when compar-
ing networks that have different sparsity for a given correlation
coefficient (Van Wijk et al., 2010). While the reason for the
sparsity difference between the groups is not known, revealing
topological differences gives deeper insights into the difference
in networks than just revealing the sparsity difference. One rec-
ommended way to solve this problem is by fixing the sparsity
(density) of a matrix, and comparing the networks at the same
fixed sparsity threshold (Hanggi et al., 2011). This approach will,
however, increase the false negative or false positive correlations
at a given threshold. For instance, in our case, at more than 90%
of correlation thresholds, the LD network was more sparse (less
edges—k) than the MD. i.e., for a given correlation threshold,
the networks from both the groups were different in their size
(the number of edges). The difference in modularity between
groups may therefore be k dependent. This difference in correla-
tion threshold may have arisen from anatomical difference in the
bilateral perisylvian cortical thickness we found between groups.
While these morphological differences could have led to a reduc-
tion in correlation between regions that are actually connected,
this could also have led to an increase in the number of spurious
correlations (false positive), between regions that are not biologi-
cally connected, thereby contributing to noise within the network.
Therefore, introducing false edges by fixing the sparsity was not
thought to be meaningful.

CORTICAL THICKNESS CORRELATION AS A MEASURE OF
CONNECTIVITY
While the biological meaning of structural covariance is not clear,
structural covariance networks have been found to be genetically
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heritable, associated with cognitive function, recapitulate func-
tional networks, and change over the life span. See Alexander-
Bloch et al. (2013) for a detailed recent review of this literature
(Alexander-Bloch et al., 2013). Cortical volume is a construct
that is derived from two distinct properties of the cortical sheet:
cortical thickness and surface area and have distinct cellular and
genetic basis. Rakic’s (2007, 2009) radial unit hypothesis pro-
poses that symmetrical cell division within the neural stem cell
pool in the ventricular zone causes an exponential increase in
the number of radial columns—that result in surface area (SA)
expansion. This is independent of asymmetrical cell division in
the founder cells that is responsible for a linear increase in the
number of neurons within a radial column, contributing to cor-
tical thickness (CT) (Rakic, 2007). Complex network analysis
using graph theory using cortical structural covariance networks
derived from CT and cortical SA shows different structural prop-
erties, suggesting that they contribute to different properties
within cortical networks (Sanabria-Diaz et al., 2010). Cortical
gray matter volume is almost entirely driven by differences in
the cortical SA rather than CT. (Im et al., 2006) Secondly, recent
large scale studies have shown that these two parameters—CT
and SA—have independent genetic basis (Panizzon et al., 2009).
Thirdly, life course trajectories of these cortical parameters seem
to be different. While gyrification—a ratio of total SA to pial
SA remains fairly stable post childhood through to early adult-
hood, CT changes dynamically through this period (Rathbone
et al., 2011; Raznahan et al., 2011; Salinas et al., 2012). However,
more recent studies suggest that the relation between age and
cortical parameters in adulthood, are complex (Hogstrom et al.,
2012). CT in addition appears to be highly susceptible to various
environmental influences over the life course such as smoking,
alcohol dependence, and marijuana use while SA appears to be
influenced by various unique developmental factors (Kuhn et al.,
2010; Lopez-Larson et al., 2011; Momenan et al., 2012). This
highlights the importance of studying volume and thickness inde-
pendently in morphometric studies (Winkler et al., 2010). Surface
area appears to be influenced by various unique developmental
factors and is less susceptible to age-related differences in later life
(ref). These and other findings suggest that while cortical surface
areas increase significantly prenatally and remain fairly stable post
childhood, cortical thickness changes dynamically across the lifes-
pan (Raznahan et al., 2011; Salinas et al., 2012; Shaw et al., 2012).
We restricted our analysis to cortical thickness as we were exam-
ining the association between what an environmental variable
(deprivation) and a cortical parameter (cortical thickness) that
has previously shown to be influenced by environmental factors.
Further analysis using other parameters may reveal differences in
structural properties that are contributed by factors that may be
influenced early in life.

LIMITATIONS
While the positive features of this study include a well-
characterized community based cohort, there are limitations to
be acknowledged: the cross-sectional design limits our ability
to attribute causation and there is some selection bias in that
the participants opted in. We did not include any sub-cortical
regions particularly those that are relevant to physiological stress

response. Smaller sample size meant that there was a potential for
type 2 error, especially with regards the fine grain parcellations.
We excluded female subjects in order to reduce variance in
cortical morphology pertaining to gender. Further work would
involve replication of the study in a larger population, including
younger population, targeting critical periods of brain growth.
Finally, future work to develop a clearer biological framework of
a more comprehensive investigation of metabolic and inflamma-
tory markers may be more informative.

In summary, people from the MD population show less mod-
ular and overlapping modular architecture of the brain networks
derived from cortical morphology compared to their correspond-
ing random graphs at a coarse sulcogyral parcellation scheme.
At fine grained parcellation scheme that did not follow sulcogy-
ral boundaries, this difference disappeared. While the difference
in network structure at the coarse level may be the result of
anatomical differences at a large scale level, the exact etiopatho-
genesis and the consequence of this difference is not clear. Taken
together we propose that brain networks associated with MD
group may be less efficient in information and signal processing
at a large scale level. Future studies should look at longitu-
dinal functional and effective connectivity studies using MRI
and EEG/MEG to explore the effect of socioeconomic status on
development.
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APPENDIX
EARLY LIFE AND CURRENT SOCIOECONOMIC STATUS (SES)
Correspondence analysis was used to explore the factor struc-
ture of early and late SES. This is similar to factor analysis
for categorical data. These analyses confirmed that markers of
early and late SES are well-represented by single factors, and
determined the corresponding weight associated with each level
of each marker. By taking levels with positive and negative
weights as representing relative deprivation or affluence, the fol-
lowing cut-offs were used to derive early and late SES scores:
Early life SES (ESES) consisted of the following items: number

of siblings (> 3 = 0), people per room (> 1 = 0), paternal
social class (IIIM or below = 0), parental housing tenure (Not
owner = 0), use of a car by the family (no car = 0). The cur-
rent SES (CSES) score was derived from current income (<
25k = 0); current social class (III or lower = 0); current hous-
ing tenure (not owner = 0). For each variable, those deemed
to be least deprived scored 1 and those deemed to be most
deprived scored 0. These scores were then summed for each,
giving total score (0–5 for ESES, 0–3 for CSES), higher scores
suggesting more affluence. The components are shown in the
Table A1.

Table A1 | Individual level SES.

Affluent (N = 21) Deprived (N = 21) *p

Childhood overcrowding (no.
people per room at age 11)

n (missing) 21 (0) 21 (0)

≤1 12 (57.1%) 3 (14.3%) 0.0088

>1 9 (42.9%) 18 (85.7%)

Fathers social class n (missing) 21 (0) 19 (2)

I 5 (23.8%) 1 (5.3%) 0.0042

II 7 (33.3%) 0 (0.0%)

IIIM 4 (19.0%) 11 (57.9%)

IIINM 3 (14.3%) 3 (15.8%)

IV 2 (9.5%) 2 (10.5%)

V 0 (0.0%) 2 (10.5%)

Parents tenure status at age 11 n (missing) 21 (0) 21 (0)

Owner 12 (57.1%) 0 (0.0%) <0.001

Not owner 9 (42.9%) 21 (100.0%)

Parents owned car at age 11 n (missing) 21 (0) 21 (0)

Yes 12 (57.1%) 4 (19.0%) 0.0247

No 9 (42.9%) 17 (81.0%)

Number of siblings n (missing) 21 (0) 21 (0)

0–2 16 (76.2%) 13 (61.9%) 0.5055

3 or more 5 (23.8%) 8 (38.1%)

Current social class n (missing) 21 (0) 20 (1)

I 11 (52.4%) 0 (0.0%) <0.001

II 8 (38.1%) 3 (15.0%)

IIIM 0 (0.0%) 8 (40.0%)

IIINM 2 (9.5%) 2 (10.0%)

IV 0 (0.0%) 6 (30.0%)

V 0 (0.0%) 1 (5.0%)

Current income n (missing) 20 (1) 21 (0)

<£15,000 0 (0.0%) 8 (38.1%) <0.001

£15–25,000 1 (5.0%) 9 (42.9%)

£26–35,000 1 (5.0%) 2 (9.5%)

£36–45,000 3 (15.0%) 2 (9.5%)

> £45,000 15 (75.0%) 0 (0.0%)

Current tenure status n (missing) 21 (0) 21 (0)

Owner Occupier 20 (95.2%) 5 (23.8%) <0.001

Tenant 1 (4.8%) 16 (76.2%)

*Fishers exact test.
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