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Abstract

Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque.
According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards
a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is
therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system
complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based
mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each
parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the
metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to
give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of
factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying
the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably
modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of
validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability
upstream from in vitro experiments.
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Introduction

Dental caries is a common disease that reduces quality of life

globally and represents a substantial economic burden for health

organisations [1]. It is caused by acids (primarily lactic) in the oral

cavity which initiate demineralisation of tooth enamel, resulting in

lesions that can develop into cavities. These acids are produced as

a by-product of the glycolysis of dietary sugars by the bacterial

community that comprises the oral biofilm known as dental

plaque. However, there is no single pathogenic species responsible

for caries. Although Streptococcus mutans has been widely

implicated and studied in this context, carious lesions can exist

in the absence of S. mutans and be absent in its presence [1,2]. It is

instead thought that any acid-producing species that can

metabolise sugars at low pH, i.e. those that are both acidogenic
and aciduric, can contribute to the caries process. This description

includes S. mutans, but also other mutans streptococci, lactobacilli,

bifidobacteria, and others. Clinical trials have confirmed the

correlation between biofilm composition and caries progression,

with healthy and diseased sites associated with distinct subpopu-

lations of bacteria [3–5].

The bacterial composition of dental plaque, and biofilms in

general, is the result of a dynamic interplay between microbial

physiology and external perturbations from the environment and

host, and in this sense can be meaningfully regarded as ecosystems

[6–8]. For oral biofilms, this has been formalised into the

ecological plaque hypothesis [9]. Varying external conditions

therefore alter biofilm composition, potentially increasing or

decreasing the fraction of cariogenic species, and in vitro studies

have shown that the low pH resulting from pulsing glucose into

mixed species biofilms causes population shifts favouring S.
mutans and lactobacilli [10,11]. This ecological perspective

suggests alternative therapeutic strategies: rather than eradication

of bacteria, which is both difficult and undesirable as many oral

bacteria are also beneficial to the host, it may be possible to instead

modulate the biofilm composition to favour bacterial communities

with a lower fraction of acidogenic, aciduric species. Indeed, in
vitro studies have demonstrated that fluoride below lethal

concentrations can reduce the fraction of putative cariogenic

organisms [12,13]. The mechanism is thought to be a reduction of

their aciduricity and acidogenicity [14–17], and reducing their

competitiveness with respect to non-pathogenic species such as S.
gordonii [18–20].

Identifying targets to modulate biofilm composition to the

benefit of the host is challenging due to the significant complexity

of the system, with many coupled mechanisms driving population

changes. Systematically varying the many candidate factors in in
vitro experiments is costly both in time and expense. It is desirable
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to introduce an additional predictive layer before in vitro
modelling to highlight promising targets, and this can be realised

by in silico modelling, i.e. computational simulation of mathe-

matical models. Such models generate quantitative predictions

over broad ranges of parameter space in relatively short time. In

addition, they are not restricted to specific species of bacteria but

can systematically incorporate strain and sub-strain variation by

continuously varying parameters related to cellular physiology.

They are thus well suited to probing populations of species defined

by their function, rather than their genetic identity. Early

mathematical models of dental plaque by Dibdin et al. adopted

a continuum approach in which concentrations of various

dispersed phases varied smoothly with distance from the enamel

surface [21–26]. This approach has recently been advanced by Ilie

et al. who included numerous coupled fields to more realistically

represent acid buffering, polyglucose storage etc. [27]. These

studies did not consider the changes in biofilm composition

necessary to study population response to perturbations. Such

questions can be naturally addressed using agent based modelling,

which is established in biofilm research [28–36] but has not yet

been applied to plaque.

The aim of this paper is to describe findings from an agent

based model of supragingival plaque, i.e. that component of the

oral biofilm above the gumline that is responsible for dental caries,

developed to probe the relationship between evolving biofilm

composition and cariogenic potential. The model consists of two

competing populations of bacteria, one that is pathogenic in that it

is both acidogenic and aciduric, and a second non-pathogenic

population which, while acidogenic, cannot metabolise sugars at

low pH and thus is non-aciduric. These populations are labelled A

and NA respectively, for ‘aciduric’ and ‘non-aciduric’. It is found

that one population or the other dominates at late times, with a

‘tipping point’ between the two outcomes that depends on a range

of parameters relating to both intrinsic physiological processes and

external factors such as the frequency of sugar intake. Treatments

intended to modify these parameters could therefore drive plaque

composition towards a healthy, non-cariogenic state. In addition,

sensitivity analysis reveals the relative importance of each model

parameter on putative experimental measurements which, as well

as highlighting the most important mechanisms relevant to plaque

function, can also guide validation experiments by identifying

parameter-measurement pairings with high sensitivity, suitable for

fixing input parameters from in vitro data.

Results

Interspecific competition
Snapshots of a section of a biofilm for the primary parameters in

Table 1 are given in Fig. 1 for the initial conditions at t~0d, at an

early time t~10d , and at the final time point t~200d . This time

scale is relevant to biofilm accumulation at stagnant sites, such as

the approximal surfaces between teeth. Even for the early time

point there is visible aggregation of each distinct population

compared to the initial condition, and these aggregates evolve into

the depth-spanning domains visible at the later time. This is

primarily a consequence of daughter particles remaining localised

to their mother during division, driving the aggregation through

shared proximity of descendants from the same progenitor. Note

also that there is a clear gradient in the concentration of acid

produced by the biofilm, with higher concentrations near the

enamel surface and lower concentrations as one moves through

the biofilm into the saliva layer, as seen in real plaque [37]. Lateral

gradients in acid are not visible in these snapshots but are also

present, in particular at late times when the large domains of A

produce more acid than NA. Larger, colour images and movies

are available in Figure S1 and Movies S1 and S2 of the

Supplementary Information.

The two populations A and NA are not competing for the sole

carbon source (glucose), since there is no mass transfer limitation

of glucose as the model is defined. They are however competing

for space, in that the fixed system size imposed by the plaque

thickness hplaque restricts the total number of particles of either

Table 1. Physical and biological parameters that were systematically varied in this study.

Label Meaning Primary value Range

tdurn Duration of pulse cycle 6 h 2–10 h

KA
acid

Half concentration for acid inhibition for A 2|10{5 mol/L 5|10{6{10{4 mol/L

KNA
acid

Half concentration for acid inhibition for NA 2|10{7 mol/L 5|10{8{10{6 mol/L

KA
nut

Half concentration for nutrient uptake for A 5 g/L 0.1–20 g/L

KNA
nut

Half concentration for nutrient uptake for NA 20 mg/L 5–40 mg/L

Ka Effective dissociation constant 10{9 mol/L 10{10{10{8 mol/L

hplaque Thickness of the plaque layer 150 mm 50–250 mm

hsaliva Thickness of the saliva layer 100 mm 25–350 mm

½Gl�inter Concentration of sugar between pulses 5 mg/L 1–15 mg/L

Dacid Diffusion coefficient for the acid (uniform) 103 mm2/s 140–2700 mm2/s

Y EPS
rel

Relative yield factor for EPS 0.4 0.2–1.5

kdeath Linear factor in the kill rate 10{4=mm h 2|10{5{5|10{4/mm h

dmax Threshold diameter for cell division 5 mm 4 mm–10 mm

kchar Characteristic stiffness 50 pN/mm 30–200 pN/mm

sdiv Width of daughter mass ratios after division 0.1 0.05–0.2

When one parameter was varied over the range given in the fourth column, the remaining parameters took the values given in the third column. See Methods for
further details.
doi:10.1371/journal.pone.0105012.t001

PLOS ONE | www.plosone.org 2 August 2014 | Volume 9 | Issue 8 | e105012

Agent-Based Model for Dental Plaque



Agent-Based Model for Dental Plaque

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e105012



population, Ntot~NAzNNA, to remain roughly constant in time.

Therefore, if one population exhibits a net growth rate faster than

the other, it will increase its fraction within the biofilm at the

expense of the other, whose fraction will contract. The only other

form of direct interaction between the two populations is the acid

produced which, particularly during the glucose pulse, severely

reduces the growth of NA relative to A. Since A produces more

acid that NA, this drives the formation of lateral pH gradients

mentioned above.

Alternating differential growth
The dominant population at late times is that with the greater

net growth rate when averaged over both the inter and intra-pulse

periods. If one population exhibited the greater rate in both

periods, it would clearly outgrow the other. However, for this

study we have chosen parameters for which population A exhibits

the greater growth rate during the pulse when the pH is low, but

population NA grows the fastest between glucose pulses when the

pH is high. This situation is representative of oral bacteria as

determined in chemostat experiments, for instance S. mutans is

more aciduric that S. gordonii, but exhibits lower growth around

neutral pH [38,39]. Although the parameters were varied to cover

a broad range of values, encompassing functionally similar species

and strains, they were limited to ensure this basic alternation

between the most competitive population remained true.

An example of this alternation is given in Fig. 2, which shows

both the pH measured at the enamel surface, and the fraction of

the biofilm that belongs to population A, i.e. NA=Ntot, during

three consecutive glucose pulses. For clarity of presentation the

long inter-pulse periods have been compressed in this diagram, but

the behaviour of both quantities can be inferred as explained in

the caption. It is evident that the fraction NA=Ntot increases

during the glucose pulse, but decreases again before the start of the

subsequent pulse, when it again increases. Since A is more aciduric

than NA, more acid should be produced as the fraction NA=Ntot

increases, and this is also evident in the figure where there is a

clear correlation between pH and biofilm composition.

The example shown in Fig. 2 is for a somewhat frequent glucose

pulsing with tdurn~4h. In this case, the increase in NA=Ntot

during the pulse is greater than the decrease between pulses. The

long-term trend is therefore for A to dominate, and correspond-

ingly the pH during pulses to drop. This can be regarded as a

ratchet effect whereby each full pulse cycle increases the fraction of

A by a small amount. The small shifts in composition and pH in

the diagram lead to biologically significant changes when

integrated over many such cycles. It might be expected that a

longer tdurn, and hence a longer period of time spent in the high-

pH environment, will result in a larger drop in NA=Ntot between

pulses and a net decrease of NA=Ntot, resulting in a slow drift

towards a NA-dominated state. This is indeed observed, but

instead we now consider data averaged over whole pulses for

which ratcheting is not visible, to better focus on long-term trends.

Transition between homeostatic and pathogenic biofilms
Fig. 3 shows the fraction of population A versus time for pulse

duration tdurn increasing from 2 h to 10 h, where each data point

corresponds to the averaged value over a 2 d period so that the

sawtooth variation in Fig. 2 is not visible. Starting from a 50:50

population of A:NA, the biofilm composition becomes increasingly

A-dominated with time for low tdurn corresponding to frequent

glucose pulses, i.e. frequent acid challenges. By contrast, for

infrequent pulses with high tdurn, NA=Ntot becomes small,

signifying the biofilm becoming predominantly of type NA.

Varying the frequency of glucose pulses in the biofilm environ-

ment therefore determines the late-time fate of the biofilm, i.e.
whether it is A-dominated (pathogenic) or NA-dominated

(homeostatic).

It is evident from the figure that the biofilm composition

NA=Ntot at any given time point continuously increases as the

frequency of the glucose pulses increase. There is an intermediate

value tdurn&6h where the variation in biofilm composition is not

discernible over the available data window. It can therefore be

hypothesised that there is a transition value of tdurn about which

NA=Ntot remains at 50:50 for all times, and neither population

comes to dominate the other. This is supported by quantitative

analysis of the late-time variation of NA=Ntot, which can be shown

to exponentially increase towards unity for low tdurn, and

exponentially decrease towards zero for high tdurn. This is

demonstrated by semi-logarithmic plot in Fig. 4, which shows

examples of the exponential decay of A (tdurn
w6h) or NA

(tdurn
v6h). The fits in these figures are to a simple exponential,

NA=NA(t)

Ntot(t)
~A exp{kt , ð1Þ

where k is the rate at which the minority fraction decays. The inset

to the figure shows that this rate decreases continuously to zero as

tdurn approaches a critical point close to 6h. The exponential fit (1)

is only successful if an initial transient of roughly 10 days is

removed prior to fitting; no simple fit, including logistic growth,

was found to fit the entire data range.

Multi-factorial modulation of pathogenicity
The duration of glucose pulses tdurn is not the only factor that

determines the relative competitiveness of the two populations.

Any of the model parameters listed in Tables 1 and 2 can, in

principle, affect the growth rates of one or both populations over

the course of a complete pulse, and therefore influence the

selection of the dominant population. This is expected for the

metabolic parameters such as the half-concentrations, but equally

holds true for environmental factors. For example, increasing the

biofilm thickness hplaque with all other parameters held fixed,

results in an increased production of acid and a lower pH,

reducing the metabolic rate of population A to a lesser degree than

NA. This shift in competitiveness might be enough to make A the

dominant population at late times, even when tdurn is greater than

6h.

Confirmation that parameters other than tdurn can promote a

transition between pathogenic and homeostatic biofilms is

presented in Fig. 5. This shows the variation of both the intra-

pulse pH and the biofilm composition as a function of time, for a

Figure 1. Snapshots of a section of a biofilm taken at time points (a) t~0d, (b) t~10d and (c) t~200d for the primary parameters in
Table 1 (the full system size is roughly 10 times wider). Light grey (black) discs denote aggregates of A (NA), respectively, encased in EPS
shells (grey). The shaded field in the background corresponds to the acid, with light (dark) regions for high (low) concentrations. The white regions
near the base correspond to high concentrations of acid, visible in the voids created by cell death (see text). Larger, colour images and movies for
tdurn~4h and tdurn~8h are available in Figure S1 and Movies S1 and S2 of the Supplementary Information.
doi:10.1371/journal.pone.0105012.g001
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series of independent runs that differ only in one of the aciduricity

parameters, KA
acid and KNA

acid. There is a clear trend from a late-time

biofilm composition that is A-dominated with a low pH, arising for

high KA
acid or low KA

acid, to a NA-dominated state with a higher pH

for low KA
acid or high KA

acid. Thus, increasing the aciduricity of one

population enhances its competitiveness with respect to the other.

Note that in Fig. 5(b) the pH at the final time point first increases

with the parameter KNA
acid as it is increased, but then decreases with

KNA
acid for the higher values considered. The initial increase is

because of the increasing dominance of the NA population as just

discussed. The subsequent decrease arises because, although the

NA remain dominant, they become increasingly aciduric as KNA
acid

is increased, resulting in increased acid production. Indeed,

increasing KNA
acid until it equals KA

acid would result it two populations

of equal aciduricity, rendering our labels A and NA meaningless.

Systematically varying each of the parameters in Table 1

reveals that most of them can also promote this transition. This is

summarised in Fig. 6, which shows the biofilm composition and

pH for 10 of the parameters between the extremes of the ranges

given in the table. In all cases the observed variation is intuitive.

For instance, increasing the diffusion D of acid results in more

rapid dispersal from the system according to the boundary

conditions of Methods, resulting in a higher pH and a lower

fraction of A. Conversely, reducing the death rate kdeath increases

acid production, but this effect is weak as demonstrated below.

The parameters dmax, k and sdiv have been omitted from this

figure since the signal-to-noise ratio was too small to discern any

trend.

Parameter sensitivity
It is not readily apparent from Fig. 6 which parameters are the

most important for determining the late-time biofilm composition,

making it unsuitable for identifying potential targets for controlling

biofilm fate. In addition, the time point for the predicted quantities

(pH and composition at t~200d) are not suitable for in vitro
validation, for which a much shorter time scale is convenient. Both

Figure 2. Example of evolution of the pH averaged over the tooth surface (left axis; solid lines) and fraction of biofilm that belongs
to population A (right axis; broken lines) for 3 consecutive glucose pulses. This example is for the primary parameters of Table 1 except the
total pulse cycle duration tdurn~4h here. The pH is observed to decrease for successive pulses, concomitant with an increase in the fraction of A.
During the inter-pulse period, which has been compressed for clarity, the fraction of A decreases slowly (shown schematically by the diagonal
arrows), and the pH takes much higher values around 6.0 (not shown).
doi:10.1371/journal.pone.0105012.g002
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of these issues can be resolved by tabulating the changes in a range

of putative experimental measurements with respect to each input

parameter, allowing pairings that exhibit high or low sensitivity to

be immediately identified. The sensitivity heat map for this model

is Fig. 7, where each entry shows the predicted percentage change

in a range of measurable outcomes for a 1% change in each input

parameter. The measurable outcomes include 4 predictions for

single-species biofilms, i.e. the concentration of Hz ions during

and between pulses for systems comprised purely of A or NA,

which reach dynamical steady states in the order of days. In

addition, 4 outcomes for mixed-species films were considered. This

includes the variation in the critical pulse duration tdurn separating

pathogenic from homeostatic biofilms, and 3 quantities measured

at a time point of t~20d starting from an initial 50:50

composition of A:NA, namely the fraction of NA=Ntot, and the

concentration of Hz (again during and between pulses).

Inspection of the table immediately reveals that the quantity

NA=NtotDt~20d is the most sensitive to a number of parameters,

suggesting this would be a useful quantity to measure in

experiments. Single-species experiments may be the best to

measure each species’ metabolic half-constants, although environ-

mental factors are clearly also important. Reading across rows

rather than down columns suggests that the final 5 parameters in

the diagram give weak or no change to the measurable outcomes,

suggesting these mechanisms are not worthy of further investiga-

tion. The variations are not necessarily zero, as seen by inspection

of the raw data given in Table S1 of the Supplementary

Information, but their influence is evidently weak.

Discussion

Mathematical modelling represents a powerful tool for biofilm

investigation, providing the capability for quantitative prediction

upstream from in vitro models and in vivo trials. All conceivable

measures of biomass composition, structure, and associated

chemical gradients can be extracted non-invasively from an in
silico biofilm. In addition, such data are acquired in an accelerated

time frame, which for the results presented here translates into 200

days real time in approximately 10 hours of simulation time, and

this ratio could be further improved with additional numerical

optimisation and parallelisation. This rapidity allows ranges of

each input parameter to be systematically assayed and the

corresponding effect on the growing biofilm to be determined,

both qualitatively in terms of the nature of the changes, and

quantitatively in terms of if these changes are significant or slight.

Figure 3. Fraction of system that belong to population A versus time for (from top to bottom) tdurn~ 2 h, 3 h, 4 h, 5 h, 5.5 h, 6 h,
6.5 h, 7 h, 8 h, 10 h, respectively. Error bars show scatter over at least 10 independent runs.
doi:10.1371/journal.pone.0105012.g003
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The freedom with which parameters can be varied makes this

form of modelling well suited to studying oral biofilms. The

microbial composition of these complex multi-species communities

varies greatly between human hosts, with phylogenetically distant

organisms fulfilling overlapping functional roles. Focussing on

microbial function rather than genetic identity is therefore

desirable when developing clinical treatments, and mathematical

modelling facilitates this by permitting the rapid assaying of

parameters that vary between functionally-similar species. This

should be contrasted with the equivalent in vitro experiments,

which would need many repeats with different species, strains and

sub-strains to sample equivalent ranges of metabolic activity.

When applied to competing acidogenic populations varying in

their rates of nutrient uptake K
A=NA
nut and aciduricity K

A=NA
acid as in

Figure 4. Plot of the fraction of the minority population (NA for open symbols, A for closed symbols) versus time, for the pulse
cycle durations tdurn shown in the legend. Solid straight lines are the fit to exponential decay for times tw10d . (Inset) Fitted rates versus tdurn .
doi:10.1371/journal.pone.0105012.g004

Table 2. Physical and biological parameters that were not varied in this study and kept at the values shown.

Symbol Description Value Reference

tintra Duration of carbohydrate pulse 15 m [41]

L Longitudinal film width 2 mm -

½Gl�intra Concentration of sugar during a pulse 50 g/L [38,39,47–50]

rc Cell density (excluding water) 0.2 pg/mm3 [31]

re EPS density (excluding water) 4|10{2 pg/mm3 [30]

qmax Base reaction rate 5/h [38,39]

Y c Yield factor for cell mass 0.1 [38,39]

Macid Molecular weight of (lactic) acid 90.08 g/mol -

doi:10.1371/journal.pone.0105012.t002
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this work, this approach demonstrates that these parameters

measurably affect the cariogenic potential of (supragingival) oral

biofims; see Fig. 7. This insight can be used to suggest treatments

for modulating biofilm composition towards a benign homeostatic

state, and indeed reducing aciduricity is one mechanism by which

fluoride promotes improved oral health [12,13]. This highlights

the potentially controlling role of sublethal treatments in

modulating population dynamics. It also highlights an additional

advantage of mathematical modelling, in that it allows us to isolate

this one mechanism from many other postulated roles for fluoride,

simply because these alternatives were not included in the model.

Confirmation of the predictive capability of this or any model

requires model validation. The parameter sensitivity map in Fig. 7

can serve as a framework for model validation, in two respects.

Firstly, it helps identify experiments that can be used to estimate

specific model parameters. If the sensitivity of any single

experimental measure with respect to a given parameter is high,

corresponding to bright entries in the table, the resulting estimate

will have a low signal-to-noise ratio and thus should be reliable.

Secondly, parameters for which the sensitivity is low need not be

determined to any degree of precision for reliable model

predictions. It is clear from Fig. 7 that the parameters for cell

division, stiffness and death rates have little effect on any of the

postulated experimental measures, suggesting that rough approx-

imation of their values should suffice.

Parameter sensitivity can also be used to suggest directions for

further model development. It is apparent from Fig. 7 that the

parameters for inter-pulse glucose concentration ½Gl�inter and acid

buffering Ka have a measurable influence on the resulting

predictions. Both of these mechanisms were incorporated in an

approximate manner in this work, and this sensitivity suggests that

further modelling would benefit from expanding each mechanism

to include more detail, albeit with the overhead of an increased

number of parameters. Indeed, series of reactions for both glucose

storage and acid buffering have already been specified for the non-

growing biofilms of Ilie et al. [27], and these could be incorporated

in an agent-based model such as ours.

The real plaque ecosystem maintains a dynamic equilibrium

between multiple species whose relative fractions vary with

environmental conditions, but never vanish entirely [1]. By

contrast, here one species type is progressively removed from the

system, as long as the frequency of glucose intake and low-pH

challenges remains constant. This most likely represents the

simplicity of the model, and many model extensions are likely to

permit subpopulations of functionally dissimilar species to be

perpetually maintained. Additional community complexity in the

form of more than two distinct species types interacting via a range

of interactions, mutualistic, antagonistic and otherwise, should

permit a dynamically stable biofilm composition. Heterogenous

biofilm composition leads to chemical gradients and an extended

habitat range for species that would not be able to persist in a

homogenous biofilm, features that can be included in agent based

modelling. Other possibilities for maintaining a dynamic equilib-

rium have been discussed elsewhere [6–8]. Finally, we notice that

clonal variation was not included in this version of the model, so all

members of a population are phenotypically identical. It is,

however, straightforward to introduce such a feature into agent-

based modelling, at the expense of additional parameter fitting.

Analysis

The mathematical model employed here is based on the

Individual based Model (IbM), an established agent-based model

for biofilms that has been applied to a range of bacterial

communities and environments [28–36]. Such models consist of

two coupled phases, a particulate phase where each particle

represents a bacterium or bacterial aggregate, and a series of

overlapping continuous phases representing the concentration

fields of one or more dissolved species, e.g. nutrients or metabolic

products. The variant here admits biomechanics in that the

particles are interconnected via springs representing adhesion by

the extracellular polymeric substances (EPS). Here we summarise

only those features of the model relevant to the subsequent

discussion, and direct the reader to [40] for further details.

Figure 5. Variation of biofilm composition and pH during the
glucose pulse as a single parameter is varied, for (a) KA

acid and

(b) KNA
acid. These parameters are plotted as { log10 (K

A=NA
acid ), corre-

sponding to the pH at which cell metabolism is 50% inhibited by
acidity. Each line segment shows the variation in pH, starting from 2 d
and finishing on 200 d, with the arrow showing the direction of
increasing time. The numbers show the percentage of biofilm occupied
by A (i.e. NA=Ntot) at the start and end points.
doi:10.1371/journal.pone.0105012.g005
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Model overview
In this study we consider a mixed film consisting of two

microbial populations that differ in their ability to metabolise

sugars in the presence of low pH. These are referred to as A for

aciduric and NA for non-aciduric, and parameters relating to each

species are labelled A or NA accordingly. Additionally there is a

single scalar field representing the concentration of lactic acid

produced by each particle’s glycolysis of dietary sugar. The system

domain is schematically shown in Fig. 8(a). A two-dimensional

geometry has been employed as this permits biofilms of lateral

extent far exceeding their thickness to be simulated within a

reasonable timeframe. Periodic boundaries have been assumed in

the direction parallel to the enamel surface.

The nutrient (glucose) is not represented as a spatially-varying

field, but is instead assumed to have a uniform concentration with

no gradients. The concentration does however vary in time as

shown in Fig. 8(b). This follows a feast-famine protocol represent-

ing the dietary intake of fermentable carbohydrates, whereby the

concentration ½Gl� alternates between short periods at a high value

½Gl�intra, interspersed with extended periods at a lower value

½Gl�inter. ½Gl�intra is taken to be far above the half-concentrations

for nutrient uptake (see below), so the metabolism for both

populations is saturated during the pulse. The duration of the

pulse has been fixed at 15 minutes as this represents a typical

removal time of acid from the oral cavity [1,41]. The duration of a

complete pulse cycle (i.e. inter plus intra periods), tdurn, is a key

parameter of the model.

The model parameters are listed in two separate tables, where

the free parameters that were systematically varied in this study

are listed in Table 1, and the fixed parameters whose values were

estimated from the literature and not varied are given in Table 2.

Additional numerical parameters, such as the convergence

parameters for the chemical and mechanical relaxation, were

tested to be sufficiently small to not affect the results and are not

quoted here.

Cell metabolism
Acid buffering within plaque results in a lower concentration of

Hz ions, and therefore a higher pH, than for the same

concentration of lactic acid in aqueous solution [41]. However,

empirical titration curves cannot be easily incorporated into

models as discussed elsewhere [23]. Rather than include a series of

coupled reactions as in [27], which would slow down our

simulations and introduce additional parameters, we instead treat

the dissociation of lactic acid to Hz as a single-step process with

an effective dissociation constant Ka that is far lower in value than

aqueous dissociation. Ka thus becomes a free parameter which we

systematically vary. The concentration of glucose between pulses,

Figure 6. Variation of pH during the pulse at t~200d as the first 12 parameters of Table 1 are varied. Each bar corresponds to a single
parameter being varied with the remaining held fixed at their primary values. The shading corresponds to the fraction of the biofilm occupied by
population A as in the calibration bar.
doi:10.1371/journal.pone.0105012.g006
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which depends on the balance of storage and conversion reactions,

is also simplified to a single free parameter ½Gl�inter.

The glycolysis of glucose to lactic acid is assumed to depend on

two factors, the concentration of glucose ½Gl� and the local acidity

½Hz�. Both quantities modulate the overall reaction rate as

independent Monod factors with half-concentrations Knut and

Kacid for nutrient uptake and acid inhibition respectively, as shown

in Fig. 8(c). The full expression for the reaction rate ri (mass per

unit time) for the particle with label i and mass mi is

ri~miqmax
½Gl�

½Gl�zKnut

� �
Kacid

½Hz�zKacid

� �
, ð2Þ

where ½Gl� is in units of mass per unit volume, and ½Hz� in

molarity. Each half-concentration has the same units as its

corresponding concentration, and have separate values for A

and NA, e.g. KA
nut and KNA

nut .

The spatial distribution of lactic acid, which is both produced by

(2) and modulates it by determining ½Hz�, obeys the standard

reaction-diffusion equation in which local production of acid is

balanced by diffusion away from the source. The primary value for

the diffusion coefficient Dacid is taken to be that for lactic acid in

water, but was also systematically varied. The reaction-diffusion

equation was numerically solved using geometric multi-grid on a

rectangular mesh [40], with no-flux boundary conditions at the

enamel surface and the requirement that the acid at the upper

surface of the saliva layer is zero.

Once the ri for each particle i is determined, the resulting rate

of increase in mass is computed as Y cri, where Y c is the

dimensionless yield factor; here we fix Y c~0:1 for both bacterial

populations, comparable to representative oral bacteria [38,39].

EPS is assumed to be produced at a rate proportional to the cell

mass, i.e. the mass of the EPS increases at a rate Y EPS
rel Y cri, where

Y EPS
rel is a free parameter that we systematically vary. Particle and

Figure 7. (Colour online) Sensitivity heat map between input parameters (rows) and measurable outputs (columns). Brightness
corresponds to the relative change (increase or decrease) in the output quantity as the parameter is increased by 1%, as indicated by the colour bar.
Actual values (with error bars) provided in Table S1 of the Supplementary Information.
doi:10.1371/journal.pone.0105012.g007
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EPS masses are converted to physical size by assuming fixed

densities of both components as listed in Table 2.

When a particle diameter exceeds the critical value dmax it

divides into two daughter particles. The mass of the mother

particle, mm, is conserved but is distributed asymmetrically to the

daughters, i.e. with masses m1
d and m2

d obeying

m1
d, m2

d~fmm, (1{f )mm , ð3Þ

where f is a random number drawn from a Normal distribution

with mean 0.5 and width sdiv. The mass of the EPS is distributed

similarly, with the same f . The two parameters dmax and sdiv are

treated as free and systematically varied.

Redistribution and removal of biomass
After particle growth and division, the particles are rearranged

so as to ensure the biofilm as a whole is mechanically stable. This

procedure, described in detail in [40], involves constructing a

network of springs connecting nearby particles. Each of these

springs has a stiffness that is proportional to the local EPS mass

and the model parameter kchar. In addition, springs between

particles and the enamel surface have a stiffness that is also

proportional to kchar. The free parameter kchar is here varied

around values suggested by AFM experiments [42] as shown in

Table 1. The numerical procedure involves converting the

requirement of mechanical equilibrium to a sparse matrix

equation and solving using the conjugate gradient method. This

matrix approach has also been adopted for plant biofilms,

motivated by numerical performance [43].

The plaque biofilm is limited in thickness to hplaque, in that any

particles whose centre exceeds this height is removed from the

system. This can be thought of as a simplistic representation of

biomass removal due to fluid shear by flowing saliva [32], and can

be achieved in vitro by a constant depth film fermenter [13,44–

46]. Above the plaque biofilm is the saliva layer of thickness hsaliva

in which there is no biomass, but the concentration of lactic acid

still continuously varies until vanishing at the upper saliva surface.

Additionally, since bacteria deep within a biofilm exhibit a

lower viability than those near the surface, we include a second

mechanism for particle removal, namely that cells are ‘killed’ at a

rate that depends on their distance from the exposed biofilm

surface, with the highest death rate near the enamel. The death

rate per unit depth per unit time is denoted kdeath and is a free

parameter that is varied here. This parameter is the same for both

populations.

Parameter sampling
Given the large number of parameters, a systematic investiga-

tion of all combinations was not feasible. Instead, each free

parameter was assigned a primary value based on chemostat

experiments of oral bacteria [38,39], known environmental

conditions for oral biofilms [1,7,8] and related models [27]. The

primary value for the effective dissociation constant Ka was

selected to give a realistic pH during the glucose pulse, and that for

½Gl�inter to give a critical value of tdurn (see below) around 6 h.

Each parameter was then varied over the range specified in

Table 1 with all other parameters held fixed.

The sensitivity heat map discussed in Results refers to linear

response, i.e. small changes in the input parameters for which the

corresponding change in each output parameter was proportional.

For each model parameter, a range of variations was tested to

ensure the corresponding variation in the outcome was linear

(unlike the data in Fig. 6, which is concerned with non-linear

trends over a broad variation of parameters), which was typically

the case for a 5–10% change in the model parameter. The

sensitivity was then scaled to a 1% value. The raw data (with

errors) are given in Table S1 of the Supplementary Information.

Supporting Information

Figure S1 Snapshots of examples biofilms. (a) tdurn~8h at

a time point of 10 days, (b) the same after 200 days, and (c)

tdurn~4h after 200 days. Green (blue) discs correspond to

populations of A (NA), respectively. The red in the background

corresponds to the lactic acid, with red (black) corresponding to

high (low) concentrations respectively. All other parameters are the

same as Fig. 1 in the main article.

(PDF)

Table S1 Raw data for the sensitivity heap map. Values

correspond to the percentage change in the measurable outcome

(columns) for a 1% change in the model parameter (rows). Error

bars are either given explicitly, or as variation in the final 2 digits

(shown in brackets).

(PDF)

Movie S1 Movie corresponding to Fig. S1(b). Extends

from t~0 to t~200 days. Colour coding and parameters as per

Fig. S1(b).

(MP4)

Movie S2 Movie corresponding to Fig. S1(c). Extends from

t~0 to t~200 days. Colour coding and parameters as per Fig.

S1(c).

(MP4)
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