
This is a repository copy of Integration testing of heterotic systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/80594/

Version: Accepted Version

Article:

Stannett, M. and Gheorghe, M. (2015) Integration testing of heterotic systems.
Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 373.
20140222. ISSN 1364-503X

https://doi.org/10.1098/rsta.2014.0222

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ar
X

iv
:1

40
8.

26
74

v1
 [

cs
.E

T
]

 1
2

A
ug

 2
01

4

Integration Testing of Heterotic Systems

Marian Gheorghe and Mike Stannett

Department of Computer Science

University of Sheffield

Regent Court, 211 Portobello, Sheffield S1 4DP

United Kingdom

{m.stannett,m.gheorghe}@sheffield.ac.uk

11 August 2014

Abstract

Computational theory and practice generally focus on single-paradigm systems, but rel-
atively little is known about how best to combine components based on radically different
approaches (e.g., silicon chips and wetware) into a single coherent system. In particular,
while testing strategies for single-technology components are generally well developed, it is
unclear at present how to perform integration testing on heterotic systems: can we develop a
test-set generation strategy for checking whether specified behaviours emerge (and unwanted
behaviours do not) when components based on radically different technologies are combined
within a single system?

In this paper, we describe an approach to modelling multi-technology heterotic systems
using a general-purpose formal specification strategy based on Eilenberg’s X-machine model
of computation. We show how this approach can be used to represent disparate technologies
within a single framework, and propose a strategy for using these formal models for automatic
heterotic test-set generation. We illustrate our approach by showing how to derive a test set
for a heterotic system combining an X-machine-based device with a cell-based P system
(membrane system).

Keywords. Heterotic computing, P system, membrane system, unconventional computing,
integration testing, system integration, hybrid computing, X-machine.

1 Introduction

Modern technologies allow computation to be defined and implemented relative to a wide variety of
paradigms and physical substrates, and it is natural to ask whether any advantage is to be gained
by combining components based on radically different technologies to form a heterotic system.
Stepney et al. [SAB+12] describe several instances of this idea, which at its most basic involves
a system H comprising two interacting components, Base and Control . The two components,
possibly based on different computing paradigms, interact in a step-by-step manner. At each
stage, the Base component performs an action, thereby generating an output. This is interpreted
by Control , which then tells Base what action to perform next.

The computational power of heterotic systems has been studied for many years. Towards the
end of the twentieth century Siegelmann showed that no analogue device computing in polynomial
time can compute more than the non-uniform complexity class P/poly [Sie99], while Bournez and
Cosnard had previously argued that an idealised hybrid analogue/discrete dynamical system could
in principle achieve this bound [BC96]. More recent analyses by Tucker, Beggs and Costa have
described a series of models that use experimental systems (Base) as oracles providing data to
an otherwise computable algorithm (Control) – the Control layer observes the outcome of each

1

http://arxiv.org/abs/1408.2674v1
{m.stannett,m.gheorghe}@sheffield.ac.uk

Base-level experiment, and uses this information to reconfigure Base prior to the next experiment
[TB07]. Their results show that ‘interesting and plausible’ model systems can, in principle, com-
pute the smaller non-uniform complexity class P/log∗, and they postulate [BCT12, p. 872] that
this is essentially an upper limit for efficient real-world computation (“physical systems combined
with algorithms cannot compute more in polynomial time than P/log∗”).

Kendon et al. [KSS+11] have likewise pointed to the work of Anders and Browne [AB09], who
observed that the combination of (efficiently) classically simulable Control and Base layers in a
quantum cluster state computer results in a model which cannot be simulated efficiently. This
implies that the interactions between two layers in a heterotic computer can contribute funda-
mentally to the power of the combined system, and this in turn has important consequences for
anyone interested in the practicalities of testing such systems, since it tells us that the correctness
of a heterotic system’s behaviour cannot be assessed simply by examining the behaviours of its
various components in isolation. While the components’ correctness is obviously important, what
Anders and Browne’s example shows is that important aspects of a heterotic system’s behaviour
may depend not only on the components per se, but also on the intricate choreography of their
interactions.

In this paper we focus on the complex question of integration testing, viz. how can we test the
system obtained by combining Base and Control? We will illustrate our approach with a hybrid
example drawn from the bio-related topic of P systems (membrane systems) [PRS09].

Outline of paper. In Sect. 2 we provide a review of X-machine testing strategies, which form
the basis of our approach. In particular, we explain what a system of communicating stream
X-machines (CSXMS) is, and how such a system can be tested. In Sect. 3 we show how the
CSXMS approach can be used to model and generate a test set for a heterotic system combining a
stream X-machine (Control) and a P system (Base). To make this example accessible to readers,
we first describe the biologically-based P system model in detail, and demonstrate how P system
behaviours can themselves be unit tested.

In Sect. 4 we identify shortcomings of our CSXMS testing approach, and discuss ongoing
research into extending the underlying theory accordingly. We suggest in particular how a gener-
alised theory of X-machine testing can be defined, which can be applied to heterotic systems in
which the timing structures implicit in the system’s behaviour are more complicated than allowed
by existing approaches. Section 5 concludes the paper, and includes suggestions for theoretical
and experimental research towards validating the approach.

2 The X-machine testing methodology

In this section we introduce the basic concepts of the stream X-machine (SXM) and communicating
SXM (CSXM), and describe what it means for an interacting collection of such machines to form
a system (CSXMS). We explain what we mean by testing such a system, and summarise the
existing approach to SXM testing described in [IH97, HI98]. Finally, we discuss a testing strategy
for communicating SXM systems derived from the SXM testing methodology. For simplicity, we
will only describe the procedures associated with testing deterministic machines, but a similar
approach can also be developed for non-deterministic behaviours [IH00].

Stream X-machines were introduced by Laycock [Lay93] as a variant of Eilenberg’s X-machine
model of computation [Eil74], and we have recently described elsewhere how a generalised form of
Eilenberg’s original concept might be used to describe hybrid systems of unconventional compu-
tations [Sta01, Sta14]. Our goal here is to expand on that description by showing in detail how
the use of these models supports the identification of behavioural test-sets.

Notation. Throughout this paper we write ∅ for the empty set and R for the set of real num-
bers equipped with its standard algebraic and topological structures. Each natural number is
interpreted to be the set of its predecessors, i.e. 0 ≡ ∅, n + 1 ≡ {0, 1, . . . , n}. In particular, we
have 2 = {0, 1}.

2

If X and Y are sets, the set of total functions from X to Y is denoted Y X . The domain
of a function f is denoted dom(f). Since each subset S of X can be identified in terms of its
characteristic function χS : X → 2, we write 2X for the set of subsets of X (the power set of X).

Given any set X , we define X⊥ = X ∪{⊥} where ⊥ 6∈ X is interpreted to mean ‘the undefined
element of type X ’. If ambiguity might otherwise arise, we write ⊥X to indicate the set with
which ⊥ is associated. However, for historical reasons the ‘undefined memory’ value (below) is
generally called λ instead of ⊥Mem.

Given any alphabet A, we assume the existence of a symbol null 6∈ A, with the property that
prepending or appending null to any string in A∗ leaves that string unchanged, and likewise, if a
variable x is of type A, then the assignment x:=null leaves the value of x unchanged.

2.1 Stream X-machines

We recall the definition of a stream X-machine and some related concepts from [HI98].

Definition 1 A stream X-machine (SXM) is a tuple

P = (In,Out,Q,Mem,Procs, Start, Stop,m0,Next),

where

• In and Out are finite non-empty sets called the input alphabet and output alphabet, respec-
tively, and Q is a finite non-empty set of states; Start ⊆ Q is the set of initial states and
Stop ⊆ Q is the set of terminal states;

• Mem is a (possibly infinite) non-empty set of memory values, and m0 ∈ Mem is the initial
memory;

• Procs is a finite set of processing functions. Each of these is of type Mem× In −→ Out×
Mem;

• Next : Q× Procs −→ 2Q is a partial function, called the next-state function.

Intuitively, a stream X-machine can be regarded as a finite state machine A, equipped with
transitions triggered by Next and carrying labels of the form o/ϕ/ι, where ι ∈ In, o ∈ Out and
ϕ ∈ Procs. Traversing such a transition is interpreted as consuming the input symbol ι, updating
the current memory from m (say) to ϕ(m), and producing the output symbol o. We call A the
automaton associated with P . This process is deterministic if Start contains just one element
and Next maps each state and processing function label onto at most one state, i.e. Next can be
regarded as a function Next : Q×Procs −→ Q. A configuration of an SXM is a tuple (m, q, σ, γ),
where m ∈ Mem, q ∈ Q, σ ∈ In∗ and γ ∈ Out∗. It represents the idea that the machine is currently
in state q, the memory is currently m, the machine’s remaining input stream is σ, and it has so
far produced the output stream γ. An initial configuration is one in which m = m0, q ∈ Start and
γ = ǫ (the empty sequence). A final configuration has q ∈ Stop and σ = ǫ.

We say that a configuration change (m, q, σ, γ) ⊢ (m ′, q ′, σ′, γ′) can occur provided

• σ = ισ′ for some ι ∈ In;

• γ′ = γo for some o ∈ Out; and

• there exists some ϕ ∈ Procs with q ′ ∈ Next(q, ϕ) and ϕ(m, ι) = (o,m ′)

The reflexive and transitive closure of ⊢ is denoted ⊢∗.
The relation computed by an SXMM is the relation [|M |] : In∗ ←→ Out∗ defined by

σ [|M |] γ

iff there exist start ∈ Start, stop ∈ Stop and m ∈ Mem such that

(m0, start , σ, ǫ) ⊢∗ (m, stop, ǫ, γ).

3

2.2 Communicating Stream X-machine Systems

We introduce, loosely following [BGG+99], a simplified definition of communicating stream X-
machines and communicating stream X-machine systems. A communicating SXM (CSXM) can
be thought of as an SXM equipped with one input port (IN) and one output port (OUT). In a
standard SXM, the next action of the machine in any given state (i.e. the processing function to be
applied) is determined by the current input and current memory value. In a communicating SXM
we also allow the machine to take into account the value, if any, currently present on the input
port. The machine can also enter various special communicating states, in which it transfers a
memory value from its output port to the input port of another machine. This enables the various
machines to exchange memory values as and when required, thereby allowing them to coordinate
shared computations.

Notice that the input alphabet of a component machine Πi (the values which, together with
its current memory, determine its behaviour) is a set of pairs, each describing the current input
symbol and input port symbol (i.e. Ini× INi).

1 The result of firing a transition is more complex –
in addition to updating local memory the outcome can affect the local output stream, input port
and output port, as well as the input port of any other machine in the system. Consequently, we
take the output type to be Outi × OUTi ×

∏n

m=1 INm.

Definition 2 A communicating stream X-machine system (CSXMS) with n components is an
n-tuple Pn = (Π1, . . . ,Πn), where each Πi is a communicating SXM (CSXM), i.e. an SXM with
input alphabet Ini × INi and output alphabet Outi × OUTi ×

∏n

m=1 INm, where (writing Memi for
the memory of Πi, and similarly for its other components):

• INi and OUTi are both subsets of (Memi)⊥,

• Qi can be written as a disjoint union Qi = Q′
i ∪ Q′′

i , where the elements of Q′
i are called

ordinary states and those of Q′′
i are communicating states;

• Procsi can be written as a disjoint union Procsi = Procs′i ∪ Procs′′i , where the elements of
Procs′i are called ordinary functions and those of Procs′′i are communicating functions;

• The next-state function, Next i, is undefined except on (Q′
i × Procs′i) ∪ (Q′′

i × Procs′′i), and
Nexti(q

′′, ϕ′′) ⊆ Q′
i for all q ′′ ∈ Q′′

i , ϕ′′ ∈ Procs′′i , i.e., ordinary states support ordinary
functions, communicating states support communicating function, and the target state of a
communicating function is always an ordinary state.

Configurations and configuration changes in a CSXMS. A configuration of a component
CSXM Πi is a tuple ci = (m, q, σ, γ, in , out), where in ∈ INi, out ∈ OUTi, and the other entries
are defined as before. Given a CSXMS Pn = (Π1, . . . ,Πn), we define a configuration of Pn to
be a tuple (c1, . . . , cn) where each ci is a configuration of the corresponding Πi. A configuration
(c1, . . . , cn) is initial provided each ci is initial (including the requirement that in = out = λ, so
that the first move made by the machine must be ordinary).

There are two ways in which a CSXMS can change its configuration. An ordinary configuration
change is one that causes no communication between machines; each machine can either consume
and process a symbol present on the input channel, or it can leave the input channel untouched.
We model this second case by saying that it consumes the undefined λ symbol. A communicating
configuration change is one in which a symbol is removed from one machine’s output port and
a corresponding symbol is inserted into a second machine’s output port, provided it is currently
empty.

Definition 3 A configuration change (c1, . . . , cn) ⊢ (c′1, . . . , c
′
n) is ordinary if there is some i such

that c′j = cj for all j 6= i, and some ordinary function ϕ′ ∈ Procs′i with

1These definitions of Πi’s input and outputs are technically only valid if each INi and OUTi can be assumed
finite. While we can rewrite the definition of a CSXM in a more rigorous, but more complicated, form to ensure
that all input and output alphabets remain finite without regard to INi and OUTi, this is unnecessary for our
purposes [BGG+99].

4

• q ′ ∈ Next i(q, ι, in),

• out ′ ∈ OUTi, and either

– ϕ′(ι, in ,m) = (m ′, o′, out ′, 〈in ′
m〉

n
m=1), where in 6= λ and in ′ = λ;

– ϕ′(ι, λ,m) = (m ′, o′, out ′, 〈in ′
m〉

n
m=1) and in ′ = in.

It is communicating if there exists some i 6= k such that

• c′j = cj for all j 6∈ {i, k},

• outk = out ′i = λ,

• q ′i ∈ Q′
i (the next state in the sending machine is ordinary),

• σ′
i = σi, γ

′
i = γi, σ

′
k = σk, γ

′
k = γk (all input and output streams are unchanged)

• there exists some communicating function ϕ′′ ∈ Procs′′i which can be applied in the current
state, and which generates the symbol that appears in the target machine’s input port, i.e.

– q ′i ∈ Nexti(qi, ιi, ini), and

– ϕ′(ιi, in i,mi) = (m ′
i, null, λ, 〈in

′
m〉

n
m=1)

where ci = (mi, qi, σi, γi, ini, out i), etc.

Remark 1 A CSXMS, Pn = (Π1, . . . ,Πn), functions as follows:

(i) each Πi starts with both the input and output ports containing λ. The only function that can
be applied initially should be an ordinary processing function, ϕi ∈ Procs′i. Hence, the initial
state q0 ∈ Starti from which ϕi emerges must be an ordinary state;

(ii) an ordinary function ϕi can process a symbol from INi if one is present, or it can proceed
by ignoring the input value in which case the content of INi remains unchanged. A similar
behaviour is expected for the OUTi port;

(iii) after a communicating function is applied, the machine state will be an ordinary one, and
so the next function to be applied (if any) will also be ordinary.

2.3 X-machine Testing

The fact that an SXM can be regarded as an augmented version of its associated automaton means
that well established automated finite state machine test-set generation strategies (e.g., based on
Chow’s W-method [Cho78]) can be ‘lifted’ to provide SXM testing strategies. The goal of SXM
testing is to establish whether two SXMs, S (the specification) and I (the implementation under
test, or IUT) compute the same behaviour. We assume that the complete structure of S is known
and that S has been minimised, that S and I use the same set Procs of processing functions
(if not, we define Procs to be the union of their respective process sets), and attempt to find a
finite test set, Tests ⊂ In∗, with the property that, if [|S|](t) = [|I|](t) for every t ∈ Tests, then
S and I must necessarily compute the same relation. In general, the ability to store data in
memory during a computation means that this problem is well-known to be uncomputable; it is
therefore necessary to impose certain constraints, called design for test (DFT) conditions, as to
which implementations I are considered valid candidates for testing. In particular, we generally
assume that some estimate is available as to how many extra states I has relative to S.

DFT conditions for stream X-machines are well known, and an adequate set of conditions to
ensure testability is [HI98]:

• deterministic specification: the behaviours of I and its associated automaton A should
both be deterministic, i.e., given any state and any two processing functions, ϕ1 and ϕ2,
applicable in that state, we require dom(ϕ1) ∩ dom(ϕ2) = ∅;

5

• Procs-completeness: given any ϕ ∈ Procs and m ∈ Mem, there exists some ι ∈ In such that
ϕ(m, ι) is defined;

• Procs-output distinguishability: examining the output of a processing function should tell
us which function it is, i.e. given any ϕ1, ϕ2 ∈ Procs, if there exist m,m1,m2 ∈ Mem, ι ∈ In

and o ∈ Out such that ϕ1(m, ι) = (o,m1) and ϕ2(m, ι) = (o,m2), then ϕ1 = ϕ2.

Since the SXM testing methodology requires us to examine the outputs that are produced when
certain test inputs are processed, extending the technique to include CSXM systems requires the
designer to ensure that every function application consumes an input and produces an output. As
the communicating functions act only on memory symbols these must therefore be extended to
handle input and output symbols. To do this, an additional input symbol a /∈

⋃
Ini is introduced

and for each communicating function ϕ′′
j ∈ Procs′′i an output symbol [i, j] is added. We now

formally redefine ϕ′′
j to take the input symbol a (this is a communication event) and generate

the output symbol [i, j] (I have just applied Πi’s communication function, ϕ′′
j). As before, each

component CSXM, Πi, should be deterministic, Procsi-complete and Procsi-output distinguishable
(the extensions applied to the communicating functions mean that these automatically satisfy the
last two conditions). The entire CSXMS, Pn, is then converted into a single SXM, PT , and
standard SXM testing is applied; however, although the CSXM components are deterministic, the
resulting SXM need not be and consequently a testing approach for non-deterministic SXMs is
used [IH00].

The SXM, PT = (In,Out,Q,Mem,Procs,Next , Start, Stop,m0), is obtained from the CSXMS,
Pn, with the additional extensions mentioned above, as follows [IH02]:2

• In = ((In1 ∪ {a, null})× · · · × (Inn ∪ {a, null})) \ {(null, . . . , null)}

• Out = ((Out1 ∪ {[1, j]|j 6= 1} ∪ {null}) × . . .
. . . × (Outn ∪ {[n, j]|j 6= n} ∪ {null})) \ {(null, . . . , null)}

• Q = Q1 × · · · × Qn, Start = I1 × · · · × In, Stop = T1 × · · · × Tn

• m = (IN1 ×Mem× OUT1)× · · · × (INn ×Mem× OUTn).

• m0 = ((λ,m0
1, λ), . . . , (λ,m

0
n, λ)).

• Procs = {(ϕ1, . . . , ϕn)} | (∀i)(ϕi ∈ Procsi ∪ {idi})}

The SXM PT is the product of the CSXMS components. A processing function, ϕ, describes
a set of functions that are simultaneously applied in the CSXMS components. However, some
components might not execute any processing functions during a particular computation step; in
this case ϕi = e.

The associated test set consists of input sequences obtained by applying a so-called fundamental
test function, t : Procs∗ −→ In∗, to a sequence of processing functions derived from the associated
automaton by applying one of the many known state machine based testing methods [LY96].
Formally, a test set for an SXM is a finite set of input sequences

Tests = {ι1 . . . ιp ∈ In∗ | ∃ϕ1 . . . ϕp ∈ Procs s.t. t(ϕ1 . . . ϕp) = ι1 . . . ιp},

where we require, for each processing function fi = (ϕi,1, . . . , ϕi,n) and each associated input
element, ιi = (ιi,1, . . . , ιi,n), that

• when ϕi,j is either an ordinary or communicating function, then ιi,j ∈ (Inj ∪ {a});

• otherwise, when ϕi,j = idj then ιi,j = (i.e., when the current configuration of the j−th
component remains unchanged, then there is no input to this machine component).

According to the testing strategy devised for stream X-machines [IH97, HI98, IH00], such a test
set can always be constructed for any SXM – and hence, by extension, for any CSXMS – that
satisfies the relevant DFT conditions.

2A similar testing approach is proposed in [IBE03] for a slightly different CSXMS concept.

6

3 P system models

The P system (membrane system) [PRS09] is a model of computation based on eukaryotic cell
structures in biology, and the mechanisms used within and between cells to enable communication
between their various sub-parts. Since its introduction in [Pău98], the model has diverged into a
number of different variants, each modelling a different combination of biologically-inspired com-
putational mechanisms. In this section we describe a basic variant of the model, and provide a
simple example to illustrate its use for computational purposes. We then show how a testing strat-
egy for a system comprising a P system Base and an SXM Control can be defined, corresponding
to the basic heterotic framework discussed in Sect. 1.

3.1 Cell-like P systems

Eukaryotic cells are characterised by the presence of membranes, which separate different regions
of the cell into a hierarchically organised system of distinct nested compartments. At any given
time each compartment will contain a mixture of biochemicals, and this mixture changes over time
as a result of the coordinated exchange of biochemicals across membrane boundaries. This basic
structure is captured by one of the best known and most utilised types of P system, the cell-like
P system, using non-cooperative evolution rules and communication rules [GID10]. In the sequel
we call these models simply P systems.

Definition 4 A P system with n compartments is a tuple

PSn = (V, µ, w1, . . . , wn, R1, . . . , Rn),

where

• V is a finite alphabet.

• µ defines the membrane structure, a hierarchical arrangement of n compartments, identified
by integers 1 to n.

• for each i = 1, . . . , n, wi represents the initial multiset in compartment i.

• for each i = 1, . . . , n, Ri represents the set of rules utilised in compartment i.

The rules capture the way that a chemical species in one cell compartment can be used to trigger
the production of new chemical species in both that compartment and others. A typical rule has the
form a→ (a1, t1) . . . (am, tm), where a, a1, . . . , am ∈ V and t1, . . . , tm ∈ {here}∪{1, . . . , n}. When
this rule is applied in a compartment to the symbol a, it is replaced in that compartment by the
collection of symbols ai for which ti = here (by convention, symbols of the form (ai, here) are often
written ai, with the destination being understood). Those symbols ai for which ti = k are added
to the compartment labelled k, provided this is either a parent or a child of the current one. The
rules are applied in maximally parallel mode in each compartment; for example, if a compartment
contains two copies of the symbol a, then the rule above will be fired twice (simultaneously), once
for each occurrence.

A configuration of the P system, PSn, is a tuple c = (u1, . . . , un), where ui ∈ V ∗ for each
i = 1, . . . , n, which represents the instantaneous disposition of chemical species within the cell’s
compartments. A computation from a configuration c1, using maximally parallel mode, leads to a
new configuration c2; this process is denoted c1 =⇒ c2.

We now discuss, following [GI08], a testing strategy for P systems which is inspired by the test-
ing principles developed for context-free grammars [Läm01], called rule-coverage. Other methods
for testing P systems also exist, for example mutation-based testing [IG09a]; some are inspired by
finite state machine testing [GID10], others by X-machine testing [IG09b]. Approaches combining
verification and testing have also been investigated [GILD10, IGL10].

7

3.2 Rule coverage testing in P systems

We introduce first some new concepts.

Definition 5 A configuration c = (u1, . . . , un) covers a rule

ri : ai → (ai1 , j1) . . . (aih , jh)vi(aig , jg) . . . (aif , jf)

if there is a computation path starting from the initial configuration and resulting in configuration
c, during which rule ri is used. Formally,

c0 = (w1, . . . , wn) =⇒
∗ (x1, . . . , xj1 , . . . , xjh , . . . , xiai, . . . , xjg , . . . , xjf , . . . , xn)

=⇒ (x′
1, . . . , x

′
j1
aj1 , . . . , x

′
jh
ajh , . . . , x

′
ivi, . . . , x

′
jg
ajg , . . . , x

′
jf
ajj , . . . , xn) =⇒

∗ c = (u1, . . . , un)

Definition 6 A test set, in accordance to the rule coverage principle, is a set Testsrc ⊆ (V ∗)n,
such that for each rule r ∈ Ri, 1 ≤ i ≤ n, there is c ∈ Testsrc which covers r.

The strategy involved here is to find a test set Testsrc which unavoidably covers every rule
used in the P system, so that when we observe one of the configurations in Testsrc we can safely
deduce that the rule must have been fired during the computation. For example, let us consider
the P system with 2 compartments, PS2 = (V, [[]2]1, s, t, R1, R2). This has compartment 2 inside
compartment 1, and the alphabet V is the set of symbols that appear in the rules of R1 and R2.
Compartment 1 initially contains symbol s, compartment 2 contains t, and the rules associated
with each compartment are

R1 = {r11 : s→ abe; r12 : a→ d; r13 : a→ c(a, 2); r14 : bc→ cc; r15 : e→ f}, and

R2 = {r21 : t→ b; r22 : ab→ c}.

A test set for PS2 is Testsrc = {(dbe, b), (ccf, c)}, as can be seen from the following two
computations:

c0 = (s, t) =⇒(r11,r21) (abe, b) =⇒(r12,null) (dbe, b)

and
c0 = (s, t) =⇒(r11,r21) (abe, b) =⇒({r13,r15},null) (cbf, ab) =⇒(r14,r22) (ccf, c).

One can easily observe that Testsrc is a test set. All of the rules in both R1 and R2 are covered
by at least one element of Testsrc, and there is no way to obtain these configurations without firing
each of them at least once.

3.3 Testing a heterotic P system/SXM system

We turn now to our first example of heterotic testing. We will assume for this example that
Base is the P system representation of a biocomputational process, while Control is an SXM
representation of a classical digital computer. As prescribed in [KSS+11], we assume that the
biosystem generates an output which the computer inspects; the computer then provides the
biosystem with new initial configuration, and the process repeats.

The example above shows that Base can be tested in isolation, and we saw in Sect. 2 that
general test strategies also exist for testing Control (subject, in both cases, to certain DFT condi-
tions being satisfied). From a testing point of view, this means that unit testing can be assumed
to have taken place before the components are combined to form the overall system. The question
we now address is how to devise an integration test strategy for the combined system.

The simplest approach is to show that Base and Control can be represented as components
of a CSXMS which models their full combined behaviour. Since this CSXMS is testable, it will
follow that the Base + Control heterosystem is also testable. Recall that for integration testing
purposes, our goal is to test the system generated by composing the P system component (Base)
with the controller (Control). However, we can easily build communicating SXMs to stepwise-
simulate these two agents (Fig. 1). The Base simulation holds and manipulates the P system’s

8

Figure 1: A CSXMS that models the interactions between Base and Control components in a
heterotic system.

configurations in memory using an ordinary function that simulates rule execution. Once the
computation has run to completion, a second function moves the current memory value (i.e. the
final configuration) to the output port, and a communicating function then sends the configuration
to Control . This uses an ordinary function to examine the input port, decides how Base should be
re-initialised, and sends the relevant configuration to its output port. A communicating function
then transfers this back to Base , which uses it as its new initial configuration and the whole
process repeats.

Since the simulation of Base is now part of the CSXMS construction, and we require this to
satisfy the stream X-machine DFT conditions, the same should also be true of the P system, and
hence of any biological system it may describe. While this may potentially be experimentally
unreasonable, we should note that the simulation is doing more work than is required, since we
do not need to check, for example, that the P system has computed its terminal configuration
correctly (this has already been addressed at the unit testing stage). For integration testing
purposes, we can instead regard Base and Control as ‘black boxes’, and focus simply on their
mutual interactions. In general, abstracting away the components’ detailed internal behaviours in
this way will considerably simplify the task of ensuring the DFT conditions are satisfied.

4 Shortcomings and ongoing research

The construction outlined in Fig. 1 is entirely general, provided both Base and Control can be
stepwise-simulated as components of a CSXMS. This is generally possible, because the underlying
SXM model is Turing-complete. However, it is not enough that the components’ behaviours can
be simulated; it is also important that the simulations are efficient; it would rarely be reasonable,
for example, to require companies to build SXM simulations of quantum components in order to
test their behaviours as part of a larger system. Apart from the intractability problems that would
likely arise, this would introduce a new layer of processing (construction of the simulation itself),
which would itself require verification.

As we have noted above, however, the simulations are doing more work than is actually re-
quired for integration testing purposes. Indeed, the use of simulations in Fig. 1 above was only
introduced for theoretical reasons, to allow us to establish that testability is indeed possible. For
practical purposes it would be more sensible to use physical implementations of Base and Control
as experimental oracles. Instead of simulating a P system, for example, we could instruct Control
to pass details of the next initial configuration to an automated biochemical assembly, causing it

9

to run a physical instantiation of the P system. Having run the experiment, automated machinery
could be used to determine the concentrations of relevant chemicals in the resulting mix, and use
these to determine the next signal to be transmitted to Control ’s input port (in terms of the formal
model, we would modify the example above so that configurations are passed to Control as ele-
ments of In rather than via the communications port). This approach has the obvious advantage
that each component can be implemented in the form in which it was originally manufactured
for unit testing, so we can be confident both that the integration and unit test methodologies are
consistent with one another, and also that no additional testing is required due to the introduction
of an additional simulation stage.

Nonetheless there are situations in which the CSXMS approach proposed above cannot easily be
applied in its current form, even ignoring intractability problems that are likely to arise in systems
which combine simulable systems to generate non-simulable ones. Following [KSS+11, SAB+12] we
have so far assumed the simplest possible design of heterotic system, in which a single Control unit
repeatedly coordinates the configuration of a single Base unit, and where each unit’s computation
is allowed to run to completion before control passes to the other. In such a system it is always
possible to say which component is running ‘now’, and which will be running ‘next’. But one
can easily envisage situations in which the concept of a ‘next’ computation step is essentially
meaningless. For example, consider a future nano-bot system designed to deliver medication to
a specific site in a patient’s body. One can envisage a scenario in which the bots (Base) form a
swarm of independent magnetically detectable agents, which continually adjust their motion by
interacting with the ambient electromagnetic field in their vicinity. To make the system work, an
external apparatus monitors the bots’ positions in real time, and uses this information to make
continuous adjustments to the electromagnetic field surrounding the patient. In such a system the
continuity of interaction is an intrinsic part of the specification, and it would not be appropriate
to simplify the system by assuming alternate executions of Base and Control . Doing so might
well allow us to generate a CSXMS-based test set, but it would not allow us to test the intricacies
of the system’s underlying real-time functionality.

In situations like this, where the concept of a ‘next computation step’ has no meaning, it is not
possible to model system changes using the kind of next-state relation associated with automata
or stream X-machines. Instead, we need a model in which mutually interacting processes can be
defined and combined, no matter whether their operation assumes discrete time, analogue time,
linear time, branching time, or even some combination of temporal structures. Our research in
this direction is ongoing, and involves the construction of a generalised X-machine model which
preserves the essential features of the SXM model, while allowing computations to be defined over
arbitrary temporal structures.

Since the relevance of applying a processing function ϕ in a state q is determined solely by the
configuration change induced once traversal of the associated transition has completed, we can
describe the transition by a relation Trans : 2→ (Cfgs←→ Cfgs), where Cfgs is the set of possible
configurations for the SXM in question, and

Trans(0) = idCfgs Trans(1) = ϕ̂ (1)

where idCfgs is the identity relation on Cfgs (we assume idCfgs ∈ Procs), and ϕ̂(c) = {c′ | c ⊢ϕ
c′)}.

Writing the transition in this way highlights the role of the timing structure, in this case
2 = {0, 1}, in determining the effect of firing the transition. Firing a transition changes the
configuration from c ∈ Trans(0)(c) to some c′ ∈ Trans(1)(c). If we wish to include instead a
continuously evolving analogue procedure for computing ϕ, we can do so formally by replacing
the existing transition with any continuous function Trans ′ : [0, 1] → (Cfgs ←→ Cfgs) that also
satisfies (1). Similarly, transfinite models of computation can be instantiated using Time = β + 1
for suitable limit ordinals β (where we regard β, the maximal value in β + 1, as the value “1” in
(1)).

More generally, given any timing structure, Time, we can replace any transition in an SXM with
a function of the form Trans ′′ : Time → (Cfgs ←→ Cfgs) without changing its overall behaviour,

10

provided Trans ′′ has a minimum element 0 and maximum element 1, and satisfies (1). Since we are
considering physically realisable computations, we also impose the condition that Trans ′′ should
be continuous when regarded as a function on Time (we regard this as a defining property of what
it means for Time to be a sensible model of time for the computation in question, rather than a
constraint on Trans ′′).

Formally, however, the notion that Trans ′′ is continuous presupposes the existence of topologies
on both Time and Cfgs. For philosophical reasons we assume that Time is partially ordered, and
assign it the associated compact Hausdorff topology. Similarly, we can define a natural Tychonov
topology on Cfgs [Sta14]. In this way, we postulate, we can instantiate each transition function
using which ever paradigm is most appropriate for the function being modelled, thereby allowing
truly general heterotic systems to be brought under the SXM testing umbrella [Sta13, Sta14].

5 Summary and conclusions

In this paper we have considered the problem of constructing test-sets for integration-testing a
heterotic system H, composed of two interacting systems, Base and Control . For Turing-simulable
systems, this can be achieved by re-expressing Base and Control as communicating components
within a CSXMS model. Since all such models have an associated test-set generation strategy,
this allows us to generate adequate test sets for H, provided the relevant design-for-test conditions
are satisfied. We illustrated our approach by describing how a test set can be generated for
a heterotic system combining an automaton-based Control system with a bio-related P system
(Base). It remains important that these components can also be tested in isolation, and we have
seen how unit testing of a P system can be achieved.

It will also be important to validate our method experimentally, since many of the systems
we envisage being included in practical heterotic systems cannot be simulated efficiently using
traditional SXM-based models, and would be better included as experimental oracles. Such ex-
periments could be conducted both in silico and in the laboratory. For example, we can perform
various mutation tests on the combined system H, by deliberately seeding Base and Control with
faults and testing our method’s ability to detect them.

The technical structure we presented to deduce the existence of a test set is quite general, but
while it can easily be generalised to include several interacting components, it cannot cope with
situations involving processes whose interactions are sufficiently complicated that the question what
communication event comes next? is essentially meaningless. In such cases it is necessary to devise
an extended model of X-machine computation which is sufficiently general to allow computations
and communications with any temporal structure. In this context it is also important to remember
that physical systems are invariably noisy, and it will be especially important when devising a
fully general testing strategy to ensure that tolerances and thresholds can be specified, and more
importantly, tested for. Work on this topic is continuing, and we hope to report positive results
in due course.

References

[AB09] J. Anders and D. Browne. Computational power of correlations. Phys. Rev. Lett.,
102:050502, 2009.

[BC96] O. Bournez and M. Cosnard. On the computational power of dynamical systems and
hybrid systems. Theoretical Computer Science, 168(2):417–459, 1996.

[BCT12] E. J. Beggs, J. F. Costa, and J. V. Tucker. The impact of models of a physical oracle
on computational power. Math. Struct. in Comp. Science, 22:853–879, 2012.

[BGG+99] T. Bălănescu, H. Georgescu, M. Gheorghe, M. Holcombe, and C. Vertan. Communicat-
ing stream X-machines are no more than X-machines. Journal of Universal Computer
Science, 5(9):492–507, 1999.

11

[Cho78] T. S. Chow. Testing software design modelled by finite state machines. IEEE Trans-
actions on Software Engineering, 4(3):178–187, 1978.

[Eil74] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, London,
1974.

[GI08] M. Gheorghe and F. Ipate. On testing P systems. In D. W. Corne, P. Frisco, G. Păun,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, volume 5391 of Lecture
Notes in Computer Science, pages 204–216. Springer Berlin Heidelberg, 2008.

[GID10] M. Gheorghe, F. Ipate, and C. Dragomir. Formal verification and testing based on
P systems. In G. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, and
A. Salomaa, editors, Membrane Computing, volume 5957 of Lecture Notes in Computer
Science, pages 54–65. Springer Berlin Heidelberg, 2010.

[GILD10] M. Gheorghe, F. Ipate, R. Lefticaru, and C. Dragomir. An integrated approach to
P systems formal verification. In Proceedings of the 11th International Conference on
Membrane Computing, CMC’10, pages 226–239, Berlin Heidelberg, 2010. Springer.

[HI98] M. Holcombe and F. Ipate. Correct Systems: Building a Business Process Solution.
Springer Verlag, 1998.

[IBE03] F. Ipate, T. Bălănescu, and G. Eleftherakis. Testing communicating stream X-
machines. In Proceedings of the 1st Balkan Conference in Informatics, pages 161–174,
2003.

[IG09a] F. Ipate and M. Gheorghe. Mutation based testing of P systems. International Journal
of Computers Communications & Control, 4(3):253–262, 2009.

[IG09b] F. Ipate and M. Gheorghe. Testing non-deterministic stream X-machine models and
P systems. Electronic Notes in Theoretical Computer Science, 227:113–126, 2009.

[IGL10] F. Ipate, M. Gheorghe, and R. Lefticaru. Test generation from P systems using model
checking. The Journal of Logic and Algebraic Programming, 79(6):350–362, 2010.

[IH97] F. Ipate and M. Holcombe. An integration testing method that is proved to find all
faults. International Journal of Computer Mathematics, 63:159–178, 1997.

[IH00] F. Ipate and M. Holcombe. Generating test sets from non-deterministic stream X-
machines. Formal Aspects of Computing, 12:443–458, 2000.

[IH02] F. Ipate and M. Holcombe. Testing conditions for communicating stream X-machine
systems. Formal Aspects of Computing, 13:431–446, 2002.

[KSS+11] V. Kendon, A. Sebald, S. Stepney, M. Bechmann, P. Hines, and R. C. Wagner. Het-
erotic computing. In Unconventional Computation, volume 6714 of Lecture Notes in
Computer Science, pages 113–124. Springer, Berlin Heidelberg, 2011.

[Läm01] R. Lämmel. Grammar testing. In Proceedings of the FASE 2011, volume 2019 of
Lecture Notes in Computer Science, pages 201–216. Springer, Berlin Heidelberg, 2001.

[Lay93] G. Laycock. The Theory and Practice of Specification Based Software Testing. PhD
thesis, Department of Computer Science, University of Sheffield, UK, 1993.

[LY96] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State Machines
- A Survey. Proceedings of the IEEE, 84:1090–1123, 1996.

[Pău98] G. Păun. Computing with membranes. TUCS Report 208, Turku Centre for Computer
Science, 1998.

12

[PRS09] G. Păun, G. Rozenberg, and A. Salomaa, editors. The Oxford Handbook of Membrane
Computing. Oxford Handbooks in Mathematics. OUP, Oxford, 2009.

[SAB+12] S. Stepney, S. Abramsky, M. Bechmann, J. Gorecki, V. Kendon, T. J. Naughton, M. J.
Pérez-Jiménez, F. J. Romero-Campero, and A. Sebald. Heterotic computing examples
with optics, bacteria, and chemicals. In J. Durand-Lose and N. Jonoska, editors,
Unconventional Computation and Natural Computation, volume 7445 of Lecture Notes
in Computer Science, pages 198–209. Springer, Berlin Heidelberg, 2012.

[Sie99] H. T. Siegelmann. Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhäuser, 1999.

[Sta01] M. Stannett. Computation over arbitrary models of time. Tech. Rep. CS-01-08, Dept
of Computer Science, University of Sheffield, Sheffield, UK, 2001.

[Sta13] M. Stannett. Specification, testing and verification of heterotic computers using gener-
alised X-machines. Poster presentation, Royal Society Workshop: “Heterotic comput-
ing: exploiting hybrid computational devices”, Chicheley Hall, 7–8 November 2013.

[Sta14] M. Stannett. Specification, testing and verification of unconventional computations
using generalized X-machines. International Journal of General Systems, 43(7):713–
721, 2014.

[TB07] J. Tucker and E. Beggs. Experimental computation of real numbers by Newtonian
machines. Proc. R. Soc. A, 463(2082):1541–1561, 2007.

13

This figure "psystem-sxm.png" is available in "png"
 format from:

http://arxiv.org/ps/1408.2674v1

http://arxiv.org/ps/1408.2674v1

	1 Introduction
	2 The X-machine testing methodology
	2.1 Stream X-machines
	2.2 Communicating Stream X-machine Systems
	2.3 X-machine Testing

	3 P system models
	3.1 Cell-like P systems
	3.2 Rule coverage testing in P systems
	3.3 Testing a heterotic P system/SXM system

	4 Shortcomings and ongoing research
	5 Summary and conclusions

