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Abstract: Dynamic contrast–enhanced (DCE) time-resolved magnetic resonance (MR) imaging is a tech-

nique whereby the passage of an intravenous contrast bolus can be tracked through the pulmonary

vascular system. The aim of this study was to investigate the prognostic significance of DCE-MR pulmo-

nary blood transit times in patients with pulmonary arterial hypertension (PAH). Seventy-nine patients di-

agnosed with PAH underwent pulmonary DCE imaging at 1.5 T using a time-resolved three-dimensional

spoiled gradient echo sequence. The prognostic significance of two DCE parameters, full width at half

maximum (FWHM) of the first-pass clearance curve and pulmonary transit time (PTT), along with demo-

graphic and invasive catheter measurements, was evaluated by univariate and bivariate Cox proportional

hazards regression and Kaplan-Meier analysis. DCE-MR transit times were most closely correlated with

cardiac index (CI) and pulmonary vascular resistance index (PVRI) and were both found to be accurate for

detecting reduced CI (FWHM area under the curve [AUC] at receiver operating characteristic analysis ¼ 0.91

and PTT AUC ¼ 0.92, respectively) and for detecting elevated PVRI (FWHM AUC = 0.88 and PTT AUC ¼
0.84, respectively). During the follow-up period, 25 patients died. Patients with longer measurements of

FWHM (P ¼ 0.0014) and PTT (P ¼ 0.004) were associated with poor outcome at Kaplan-Meier analysis,

and both parameters were strong predictors of adverse outcome from Cox proportional hazards analysis

(P ¼ 0.013 and 0.010, respectively). At bivariate analysis, DCE measurements predicted mortality indepen-

dent of age, gender, and World Health Organization functional class; however, invasive hemodynamic

indexes CI, PVRI, and DCE measurements were not independent of one another. In conclusion, DCE-MR

transit times predict mortality in patients with PAH and are closely associated with clinical gold standards

CI and PVRI.
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INTRODUCTION

Pulmonary arterial hypertension (PAH) is a condition as-

sociated with high morbidity and mortality.1,2 The increas-

ing recognition of the need for rationalized therapy in

patients with PAH has highlighted the need to develop

prognostic markers that can aid the clinician in the assess-

ment of disease severity at baseline and be used to follow

up response to therapy. Hemodynamic and physiological

measurements made at right heart catheter (RHC), such

as mean right atrial pressure (mRAP), pulmonary vascular

resistance index (PVRI), mixed venous oxygen saturation

(mVO2), and cardiac index (CI) are the key prognostic in-

dicators in PAH.3,4

Dynamic contrast–enhanced (DCE) time-resolved mag-

netic resonance (MR) imaging is a technique whereby an

intravenous contrast bolus can be tracked through the car-

diopulmonary vascular system in three dimensions with

time.5-12 Several previous studies have assessed DCE-MR

in patients with pulmonary hypertension,8,9,13-15 and sig-
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nificant correlations have been identified between time-

resolved DCE-MR angiography and invasive prognostic in-

dicators. However, the role of DCE-MR pulmonary vascu-

lar transit time (TT) measurements as prognostic markers

in PAH has not yet been determined. The aim of this

study was to investigate the utility of DCE-MR pulmonary

vascular TTs for the prognostic assessment of patients

with PAH.

METHODS

Consecutive patients between September 2009 and March

2011 diagnosed with PAH who underwent DCE-MR time-

resolved imaging were included in this retrospective study.

Fifteen age-matched patients with suspected pulmonary

vascular disease found not to have pulmonary hypertension

(mean pulmonary arterial pressure [mPAP] <25 mmHg)

were also included. Patients with PAH were followed up

to death or census on April 12, 2012. Patients were diag-

nosed following comprehensive assessment by a multi-

disciplinary team. Treatment was standardized based on

a National Commissioning Policy, with a phosphodiester-

ase type 5 inhibitor used as first-line monotherapy in

World Health Organization (WHO) functional class III

(unless a contraindication when an oral endothelin re-

ceptor antagonist is used) and intravenous prostanoid

considered in WHO functional class IV. Patients show-

ing no improvement on monotherapy were switched to

an alternative monotherapy or escalated to a combina-

tion treatment with either a phosphodiesterase inhibitor

and endothelin receptor antagonist or a phosphodiester-

ase inhibitor and prostanoid as recommended.16 This

study was conducted following institutional review board

approval; written informed consent was waived.

MR imaging
MR imaging was performed on a 1.5 T whole-body sys-

tem (HDx, GE Healthcare, Milwaukee, WI) using a time-

resolved three-dimensional (3D) spoiled gradient echo se-

quence with view sharing.17 An 8-channel cardiac receiver

array coil was used. The sequence parameters were as

follows: echo time 1.1 ms, repetition time 2.5 ms, flip an-

gle 30°, field of view 48 cm � 48 cm, in-plane parallel

imaging �2, in-plane resolution 200 � 80, bandwidth

250 kHz, slice thickness 10 mm, ∼32 slices, 48 time

points with an overall effective 3D frame rate of ∼0.5 s.

Images were acquired in a coronal orientation. Contrast

injection of a 0.05 mL/kg patient weight dose of Gd-BT-

D30A (Gadovist, Schering, Berlin) was injected at a rate of

4 mL/s, with the injection rate controlled using an acti-

vated pump injector (Spectris, MedRad) via the antecubital

vein using an 18-G cannula, followed by a 20-mL saline

flush.

Images were acquired at breath hold, with the same

automated breathing instructions given to each patient.

The subjects were coached on the breathing and breath-

hold maneuver and followed the instructions “breathe in,

breathe out, breathe in, and hold your breath” prior to

image acquisition.

Image analysis
All image processing was performed on a GE advanced

workstation using the proprietary “functool” software.

Time-resolved DCE-MR images of the cardiopulmonary

system were derived by the subtraction of the baseline

(precontrast arrival) images from each of the subsequent

3D image time frames acquired during the contrast pas-

sage. Signal enhancement versus time curves were gen-

erated by the placement of regions of interest (ROIs) at

the pulmonary artery (PA) and left atrium (LA; Fig. 1).

These were matched to the size of the vessel. Image analy-

sis was performed by a radiologist with 6 years’ experience

of clinical imaging (observer 1). A second observer ana-

lyzed 30 randomly selected cases for assessment of inter-

observer variability. Observer 1 reanalyzed these 30 cases

after an interval of 1 month to determine the intraob-

server variability of DCE-MR indexes. The observers were

both blinded to the clinical details and RHC data for im-

age analysis.

Signal-time curves were generated from ROIs placed in

the PA and LA (Fig. 2). The full width at half maximum

(FWHM) of the bolus passage was defined as the width of

the PA enhancement curve at half its maximum signal

intensity. Pulmonary transit time (PTT) was defined as the

time difference between the peak signal at the PA and the

peak signal at the LA (PTT ¼ time at peakLA − time at

peakPA).
5,15

Right heart catheter
RHC was performed via the internal jugular vein us-

ing a Swan-Ganz catheter. PAH was defined as mPAP

≥25 mmHg and pulmonary capillary wedge pressure

(PCWP) <15 mmHg. Cardiac output (CO) was deter-

mined using the thermodilution technique. Pulmonary

vascular resistance (PVR) was determined as follows:

PVR = (mPAP − PCWP)/CO. CI is defined as CI = CO/body

surface area. PVRI is defined as (mPAP − PCWP)/CI.

Statistics
Statistical comparisons of demographic information, cath-

eter hemodynamics, and DCE-MR parameters were made
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between survivors and nonsurvivors using the unpaired t
test for continuous data and the Fisher exact test for cate-

gorical data. Regression curve fitting was used to deter-

mine the best-fit relationship using linear, quadratic, expo-

nential, logarithmic, and inverse-linear models. Hazard

ratios and 95% confidence intervals were calculated using

the Cox proportional hazards regression for potential pre-

dictors of mortality: age, male ∶ female ratio, WHO func-

tional class, mRAP, mPAP, mVO2, CO, CI, PVR, PVRI,

PTT, and FWHM. Univariate parameters that returned a P
value <0.2 were entered into the bivariate model. Kaplan-

Meier survival curves were constructed with analysis per-

formed using the log-rank test. Continuous variables were

divided into two groups by the median value. Follow-up

occurred at 6 months and overall mortality of the group

was tested. A P value <0.05 was considered statistically sig-

nificant. To perform and display the statistics, SPSS 19

(SPSS, Chicago, IL) and GraphPad Prism 5.03 (GraphPad,

San Diego, CA) software were used.

RESULTS

Eighty-five patients were identified with PAH and had

DCE-MR imaging and RHC within 48 hours. Two patients

were excluded due to the nondiagnostic quality of images;

this was due to significant breathing motion artifact. Four

patients were excluded due to the presence of an intra-

cardiac shunt identified at multidisciplinary assessment.

Thus, 79 patients in total were included, comprising 35 pa-

tients with idiopathic PAH, 37 patients with PAH associ-

ated with connective tissue disease, and 7 patients with

PAH associated with congenital heart disease. During the

follow-up period, 25 patients with PAH died.

Group comparisons
The demographic RHC and DCE TT data are presented

in Table 1. As expected, patients with PAH had signifi-

cantly higher WHO functional class, mPAP, CI, PVRI, and

mVO2 than control patients (mPAP < 25 mmHg). DCE

measurements, FWHM (P ¼ 0.001), and PTT (P ¼ 0.001)

Figure 2. Signal-time curves are generated from regions of inter-
est (ROIs) placed in the pulmonary artery and the left atrium.
Pulmonary transit time (PTT) is calculated by subtracting the
time of peak signal intensity on the pulmonary artery curve
from the time of peak signal intensity on the left atrium. Full
width at half maximum (FWHM) of the pulmonary artery is cal-
culated by measuring the width of the pulmonary artery signal-
time curve at half its maximum signal intensity.

Figure 1. Dynamic contrast–enhanced subtracted time-resolved images showing the passage of contrast through the cardiopulmo-
nary system. Coronal images with region of interests placed in the pulmonary artery (A) and in the left atrium (B) are shown.
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were also significantly higher in patients with PAH when

compared to the control subjects. Control subjects were not

significantly different in terms of age or gender when com-

pared to patients with PAH (P ¼ 0.832 and 0.401, respec-

tively).

Correlations and receiver operating characteristic
(ROC) analysis
The strongest bivariate relationships were between 1/

FWHM and CI (inverse-linear: r2 ¼ 0.61, P < 0.0001)

and 1/PTT and CI (inverse-linear: r2 ¼ 0.58, P < 0.0001).

The next-strongest bivariate relationships were found be-

tween FWHM and PVRI (linear: r2 ¼ 0.56, P < 0.0001)

and PTT and PVRI (linear: r2 ¼ 0.52, P < 0.0001).

FWHM (linear: r2 ¼ 0.17, P ≤ 0.0001) and PTT (linear:

r2 ¼ 0.14, P ¼ 0.001) demonstrated relatively weaker cor-

relations with mPAP (Table 2).

FWHM and PTT both demonstrated reasonable diag-

nostic accuracy for the detection of PAH (area under the

curve [AUC] 0.80 and 0.79, respectively). Higher accuracy

was demonstrated for the detection of low CI (defined as

less than the median value; AUC at ROC analysis 0.91

and 0.92, respectively) and good accuracy for the detec-

tion of low PVRI (defined as less than the median value;

AUC at ROC analysis 0.88). PTT was also accurate for

detection of low PVRI (AUC 0.84). FWHM was less accu-

rate for detecting elevated mRAP (AUC 0.77), mPAP

(AUC 0.76), and lower mVO2 (AUC 0.83). See Figures 3

and 4.

Survival analysis
Cox proportional hazards regression analysis. During the

follow-up period to death or census, 25 patients had died;

these were significantly older (P ¼ 0.020) and had lower

CO (P ¼ 0.014) and prolonged PTT (P ¼ 0.007) when

compared to patients who survived to census. CO (P ¼
0.006) and PTT (P ¼ 0.010) were the strongest predictors

of mortality from Cox proportional hazards analysis. CI

(P ¼ 0.011), FWHM (P ¼ 0.013), WHO functional class

(P ¼ 0.028), age (P ¼ 0.034), and PVR (P ¼ 0.043) were

also significantly associated with adverse outcome at Cox

regression analysis (Table 3).

Table 1. Patient demographics, hemodynamics, and time-resolved three-dimensional magnetic resonance angiography con-
trast transit times for patients with pulmonary arterial hypertension (PAH), survivors, nonsurvivors, and control subjects
(mean pulmonary arterial pressure <25 mmHg)

Patients with PAH, n ¼ 79 Survivors, n ¼ 54 Nonsurvivors, n ¼ 25 Control subjects, n ¼ 15

Age, years 62 � 16 60 � 15 68 � 13a 63 � 15

Male ∶ female (female %) 31 ∶ 48 (61) 35 ∶ 19 (65) 13 ∶ 12 (48) 4 ∶ 11 (73)

Diagnosis, no. (%)

IPAH 35 24 (69) 11 (31)

PAH-CTD 37 25 (68) 12 (32)

PAH-CHD 7 5 (71) 2 (29)

mPAP, mmHg 47 � 12 46 � 13 48 � 9 20 � 3a

mRAP, mmHg 10 � 5 10 � 5 11 � 5 4 � 2a

mVO2, % 63 � 10 63 � 11 62 � 9 75 � 5a

CO, L/min 5.1 � 1.8 5.5 � 1.9 4.3 � 1.1b 6.4 � 1.4a

CI, L/min/m2 2.8 � 0.9 3.0 � 1.0 2.4 � 0.8b 3.7 � 0.8a

PVR, WU 8.7 � 5.1 7.9 � 5.1 10.3 � 4.7 2.5 � 1.1a

PVRI, WU/m2 15.6 � 9.2 14.3 � 9.4 18.4 � 8.4 4.5 � 2.2a

PTT, s 7.8 � 3.9 7.0 � 3.5 9.5 � 4.1b 4.5 � 1.7a

FWHM, s 9.1 � 4.7 8.4 � 4.6 10.6 � 4.8b 4.9 � 1.7a

Note: Data shown are means � standard deviations, unless otherwise noted. CI: cardiac index; CO: cardiac output; FWHM: full
width at half maximum; IPAH: idiopathic pulmonary arterial hypertension; mPAP: mean pulmonary arterial pressure; mRAP:
mean right atrial pressure; mVO2: mixed venous oxygen saturation; PAH: pulmonary arterial hypertension; PAH-CHD: pulmo-
nary arterial hypertension–congenital heart disease; PAH-CTD: pulmonary arterial hypertension–connective tissue disease; PTT:
pulmonary transit time; PVR: pulmonary vascular resistance; PVRI: pulmonary vascular resistance index; WU: Wood units.

a Tested value significantly different between patients with PAH and control subjects (P < 0.05).
b Tested value significantly different between PAH nonsurvivors and survivors (P < 0.05).
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Tables 4 and 5 present the results of bivariate analysis

of PTT and FWHM on covariate predictors of mortality.

Both PTT and FWHM predicted mortality independent

of age, gender, and WHO functional class. However, the

prognostic value of DCE indexes was not independent of

invasive hemodynamic measurements of PVR or CO.

Kaplan-Meier analysis. Table 6 presents the Kaplan-

Meier analysis results for demographic, hemodynamic,

and DCE-MR indexes. Patients with PTT greater than the

median value (>6.5 s) were associated with a poor out-

come when compared to those with PTT ≤6.5 s (P ¼
0.004). FWHM >8 s was also associated with poor out-

come (P ¼ 0.014) at Kaplan-Meier analysis (Fig. 5).

Reproducibility
The DCE parameters FWHM and PTT both showed good

interobserver reproducibility (intraclass correlation coeffi-

cient [ICC] 0.993 [range 0.979–0.997] and 0.960 [0.902–

0.984], respectively). Bland-Altman plots showed good in-

terobserver variability; measurement of FWHM had a bias

of 0.3 s (SD 0.6), with limits of agreement of −1.3 to 0.8 s.

PTT showed a bias of 0.1 s (SD 0.9), with limits of agree-

ment of −1.8 to 1.7 s. In addition, good intraobserver vari-

ability was demonstrated for both FWHM and PTT (ICC

0.982 [0.957–0.993] and 0.993 [0.983–0.997], respectively).

DISCUSSION

This study assessed the value of DCE-MR TTs in the

prognostic assessment of patients with PAH. PTT and

FWHM were found to be most strongly associated with

established invasive hemodynamic prognostic markers,

namely, CI and PVRI. Prolonged transit of contrast mea-

sured by PTT and FWHM predicted mortality. Specifi-

cally, patients with a PTT >6.5 s and FWHM >8 s were at

higher risk of adverse outcome.

Our study demonstrates a strong and significant inverse

relationship between CI and DCE TTs in patients with

PAH. Furthermore, FWHM and PTT measurements were

highly accurate for detecting reduced CI (AUC at ROC

analysis 0.91 and 0.92, respectively). The definition of TT

of a contrast bolus from dilution theory is equal to the

volume distribution of the contrast divided by the blood

flow.18 The volume distribution of contrast will be influ-

enced by the volume of the vessels and heart but also the

volume of contrast injected. Large right-sided cardiac vol-

ume and low CO are associated with longer TTs, a situa-

tion that will be encountered in patients with severe PAH.

Given that low CO3,4 and large RV volume19 have both

been linked with poor outcome in PAH, the prognostic

significance of DCE TTs is not entirely unexpected. Fig-

ure 6 shows example signal-time curves from a patient

Figure 3. Scatterplots showing the relationship of 1/full width
at half maximum (FWHM) versus cardiac index (CI; a) and
FWHM versus pulmonary vascular resistance index (PVRI; c).
Receiver operating characteristic curves: showing the accuracy
of FWHM for the detection of CI ≤ median values (b) and
PVRI ≥median values (d). AUC: area under the curve; WU:Wood
units. A color version of this figure is available online.

Figure 4. Scatterplots showing the relationship of 1/pulmonary
transit time (PTT) versus cardiac index (CI; a) and PTT versus
pulmonary vascular resistance index (PVRI; c). Receiver operating
characteristic curves: showing the accuracy of PTT for the detec-
tion of CI ≤ median values (b) and PVRI ≥ median values (d).
AUC: area under the curve; WU: Wood units. A color version of
this figure is available online.
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with severe pulmonary hypertension with prolonged tran-

sit and a patient with rapid transit of contrast.

The results have shown a significant linear relationship

between DCE TT measurements and PVR, supporting

work that has been performed previously.13,14 In addition,

established predictors of mortality mRAP and mVO2 also

correlated significantly with DCE data. At bivariate analy-

sis, DCE TT measurements were found to predict mortal-

ity independent of age, gender, and WHO functional class.

However, the prognostic significance of DCE indexes were

not independent of hemodynamic indexes of PVRI and

CI, which are important variables in assessment of disease

severity and risk stratification for patients with PAH.20

One explanation is the similar nature of the information

derived from DCE TTs and hemodynamic indexes, mask-

ing the prognostic significance of both TT and hemody-

namic indexes at bivariate analysis.

Alterations in DCE TTs have been shown in patients

with chronic obstructive pulmonary disease; worsening

spirometric indexes and increasing severity of emphysema

have been shown to relate to prolonged pulmonary con-

trast TTs,21 presumably as a result of increased vascular

resistance from capillary damage combined with increased

resistance associated with surrounding airway hyperinfla-

tion. Sergiacomi et al.14 studied a cohort of patients with

PH associated with combined emphysema and interstitial

lung disease. DCE TT values were measured using ROIs

placed in the distal main PAs. The authors identified good

linear correlations between DCE TTs and both CI and

PVR. In contrast, weaker correlation between MR contrast

TTs versus mPAP has been found in this study. Hence,

we recommend the use of DCE bolus hemodynamics in

the assessment of disease severity and risk stratification

rather than for the identification of PAH on the basis of

the results of our study. Quantitative DCE parameters of

blood flow and blood volume have been derived in previ-

ous studies.8,9,13 These parameters were calculated using

indicator dilution theory for intravascular contrast agents

where the arterial input function of the contrast bolus is

determined. Other studies have focused solely on the first-

pass contrast bolus TTs without deconvolution of the arte-

rial input function.5,14,15 The association of DCE-MR TTs

with left ventricular (LV) function has been studied,5,22

and cardiopulmonary TTs have been shown to be signifi-

cantly prolonged in heart failure, correlating directly with

LV end-diastolic and end-systolic volumes and inversely

Table 3. Univariate Cox proportional hazards regression analysis

Overall mortality (25 deaths), N = 79

Hazard ratio (95%
confidence interval) P value

Age 1.04 (1.00–1.07) 0.034

Male ∶ female 1.94 (0.88–4.27) 0.100

WHO FC 2.96 (1.13–7.76) 0.028

mPAP 1.01 (0.98–1.05) 0.484

mRAP 1.05 (0.97–1.14) 0.201

PVR 1.07 (1.00–1.15) 0.043

PVRI 1.04 (1.00–1.08) 0.058

CO 0.68 (0.52–0.89) 0.006

CI 0.54 (0.33–0.87) 0.011

mVO2 0.99 (0.95–1.03) 0.548

FWHM 1.08 (1.01–1.16) 0.034

PTT 1.10 (1.03–1.18) 0.010

Note: CI: cardiac index; CO: cardiac output; FWHM: full
width at half maximum; mPAP: mean pulmonary arterial pres-
sure; mRAP: mean right atrial pressure; mVO2: mixed venous
oxygen saturation; PVR: pulmonary vascular resistance; PVRI:
pulmonary vascular resistance index; PTT: pulmonary transit
time; WHO FC: World Health Organization functional class.

Table 2. Relationships between invasive right heart catheter
measurements and dynamic contrast–enhanced time-resolved
magnetic resonance data

PTT, s FWHM, s

R2 value P value R2 value P value

Age 0.026 0.175 0.008 0.458

WHO FC 0.084 0.026 0.130 0.005

mPAP 0.137 0.001 0.168 <0.0001

mRAP 0.212 <0.0001 0.348 <0.0001

mVO2 0.336 <0.0001 0.372 <0.0001

COa 0.504 <0.0001 0.490 <0.0001

CIa 0.578 <0.0001 0.608 <0.0001

PVR 0.462 <0.0001 0.476 <0.0001

PVRI 0.518 <0.0001 0.563 <0.0001

Note: CI: cardiac index; CO: cardiac output; FWHM: full width
at half maximum; mPAP: mean pulmonary arterial pressure;
mRAP: mean right atrial pressure; mVO2: mixed venous oxygen
saturation; PTT: pulmonary transit time; PVR: pulmonary vascular
resistance; PVRI: pulmonary vascular resistance index; WHO FC:
WorldHealth Organization functional class.

a Measurement correlated with the inverses of FWHM (1/
FWHM) and PTT (1/PTT).
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with LV ejection fraction.5 Skrok et al.15 studied the associ-

ation of DCE TTs with RV function and invasive pulmo-

nary hemodynamics, suggesting that such measurements

may prove useful markers in the prognostic evaluation of

patients with PAH. This study corroborates that hypothe-

sis, demonstrating that DCE TTs are of prognostic value in

PAH. Other MR measurements associated with adverse

outcome in PAH include a large right ventricle, small left

ventricle, and low stroke volume measured using dynamic

cardiac MR imaging.19 In addition MR imaging–derived

PA pulsatility23,24 and PA black blood imaging have also

proved useful in the prognostic evaluation of patients with

pulmonary hypertension.25

Our DCE TT measurements were found to be repro-

ducible. FWHM was the more reproducible of the two

measurements, with higher ICC and narrower limits of

agreement. One explanation for this is that FWHM re-

quires only a single ROI measurement, whereas PTT re-

quires ROI placement in both the PA and the LA. The ad-

dition of the second measurement is one explanation for

the reduced reproducibility. A second explanation for the

lower reproducibility of PTT could be the shape of the

left atrial signal-time curve, having lower signal intensity

and a broader peak; thus, identification of the exact time

of the peak signal is potentially more difficult. Both pa-

rameters can be automatically generated by parametric

pixel-pixel curve fitting (e.g., Gamma variate), and the ro-

bustness of this automated process is currently being as-

sessed for future routine clinical practice.

The lack of ionizing radiation and the noninvasive na-

ture of DCE measurements are potential advantages over

invasive prognostic indicators in the prognostic assess-

Table 4. Bivariate Cox proportional hazards regression analysis of mortality predictors versus full width at half
maximum (FWHM)

Bivariate analysis of FWHM
Hazard ratio of covariate

with FWHM P value
Hazard ratio of FWHM

with covariate P value

Age 1.039 (1.006–1.162) 0.034 1.081 (1.006–1.162) 0.033

Male ∶ female 0.483 (0.216–1.078) 0.076 1.089 (1.010–1.174) 0.026

WHO FC 1.865 (0.681–5.106 0.225 1.121 (1.011–1.242) 0.030

CO 0.689 (0.482–0.985) 0.041 1.007 (0.910–1.114) 0.895

CI 0.532 (0.254–1.113) 0.094 0.999 (0.887–1.124) 0.981

PVR 1.040 (0.949–1.140) 0.404 1.055 (0.958–1.163) 0.276

PVRI 1.014 (0.961–1.070) 0.604 1.062 (0.957–1.179) 0.257

Note: Data shown are mean (95% confidence interval). CI: cardiac index; CO: cardiac output; PVR: pulmonary vas-
cular resistance; PVRI: pulmonary vascular resistance index; WHO FC: World Health Organization functional class.

Table 5. Bivariate Cox proportional hazards regression analysis of mortality predictors versus
pulmonary transit time (PTT)

Bivariate analysis of PTT
Hazard ratio of

covariate with PTT P value
Hazard ratio of PTT

with covariate P value

Age 1.039 (1.002–1.077) 0.036 1.039 (1.002–1.077) 0.012

Male ∶ female 0.498 (0.224–1.105) 0.086 1.117 (1.027–1.216) 0.010

WHO FC 1.794 (0.647–4.976) 0.261 1.135 (1.011–1.275) 0.032

CO 0.750 (0.526–1.071) 0.114 1.049 (0.932–1.181) 0.424

CI 0.681 (0.921–1.215) 0.307 1.058 (0.921–1.215) 0.425

PVR 1.011 (0.913–1.121) 0.831 1.111 (0.983–1.257) 0.092

PVRI 0.992 (0.933–1.055) 0.805 1.138 (0.991–1.307) 0.068

Note: Data shown are mean (95% confidence interval). CI: cardiac index; CO: cardiac out-
put; PVR: pulmonary vascular resistance; PVRI: pulmonary vascular resistance index; WHO
FC: World Health Organization functional class.

Pulmonary Circulation Volume 4 Number 1 March 2014 | 67



ment of patients with PAH. This study has not shown

the incremental prognostic value of DCE measurements,

likely owing to the similarity of the information derived

from both invasive hemodynamic measurements. Another

advantage is that these measurements can be acquired in

addition to the standard sequences recommended as part

of an MR imaging protocol for assessment of patients with

PAH, adding weight to the role of MR imaging as the

future “one-stop shop” for the assessment of treatment

response and failure. An MR imaging protocol including

assessment of the cardiac morphology and function and

pulmonary flow analysis, with the addition of DCE imag-

ing, may provide a robust noninvasive alternative in the

clinic.

Limitations
This was a single-center study, the results of which should

be reproduced in other centers to validate the prognostic

value of the DCE hemodynamic measurements. A bivari-

ate model was used to test the independent prognostic

significance of DCE indexes. Due to the small number of

deaths, multivariate Cox proportional hazards regression

analysis has been performed. All images were acquired

at inspiratory breath hold. It is known that the phase of

respiration and lung inflation affects the rate of passage

of contrast medium through the pulmonary vasculature.

Fink et al.26 demonstrated shorter TTs and greater per-

fusion in expiration than in inspiration. Furthermore,

pulmonary DCE hemodynamic measurements could be

significantly affected if the subject performed a Valsalva

maneuver during the acquisition of the MR imaging scan;

the resultant increase in intrathoracic pressure would re-

duce venous return to the heart and alter contrast flow

dynamics.27,28 It is therefore important to educate the pa-

tient for lung inflation by practicing breathing maneuvers

prior to scanning and provide adequate instruction during

the MR scan. Standardization of contrast injection protocol

for intersite comparisons is required, and further work to

determine the utility of dynamic contrast measurements

in patient follow-up would be desirable.

Conclusions
DCE-MR TTs are closely related to the CI and the PVRI

and have prognostic significance in patients with PAH.

Table 6. Kaplan-Meier analysis

Overall mortality
(25 deaths), N = 79

Log rank test P value

Age >65 years 4.35 0.037

Male ∶ female 2.80 0.095

WHO (WHO II/III vs. WHO IV) 3.12 0.078

mPAP >40 mmHg 1.62 0.203

mRAP >8 mmHg 1.37 0.243

PVR >8.0 WU 5.95 0.015

PVRI >15.8 WU/m2 7.22 0.007

CO <5 L/min 8.71 0.003

CI <2.9 L/min/m2 0.54 0.011

mVO2 <65.5% 1.67 0.196

FWHM >8 s 6.10 0.014

PTT >6.5 s 8.83 0.004

Note: The threshold values presented in this table are me-
dian values. CI: cardiac index; CO: cardiac output; FWHM: full
width at half maximum; mPAP: mean pulmonary arterial pres-
sure; mRAP: mean right atrial pressure; mVO2: mixed venous
oxygen saturation; PTT: pulmonary transit time; PVR: pulmo-
nary vascular resistance; PVRI: pulmonary vascular resistance
index; WHO: World Health Organization; WU: Wood units.

Figure 5. Kaplan-Meier plots for pulmonary transit time (PTT) and full width at half maximum (FWHM) above and below median
values. MRI: magnetic resonance imaging.
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Hervé P, Rainisio M, Simonneau G. Long-term intrave-
nous epoprostenol infusion in primary pulmonary hyper-
tension: prognostic factors and survival. J Am Coll Cardiol
2002;40(4):780–788.

3. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G,
Gressin V, Yaı̈ci A, et al. Survival in patients with idiopathic,
familial, and anorexigen-associated pulmonary arterial hyper-
tension in the modern management era. Circulation 2010;
122(2):156–163.

4. Sandoval J, Bauerle O, Palomar A, Gómez A, Martı́nez-
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