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Abstract

A neural network based predictive controller design algorithm is introduced fo nonlin-
ear control systems. It is shown that the use of nonlinear programming techniques can be
avoided by using a set of affine nonlinear predictors to predict the output of the nonlinear
process. The new predictive controller based on this design is both simple and easy to
implement in practice. An on-line weight learning algorithm based on neural networks
is introduced and convergence of both the weights and estimation errors is established.
Predictive controller design based on the new procedure is illustrated using a growing
network example.

Keywords: Neural networks, nonlinear systems, predictive control, on-line iearning.
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1 Introduction

Predictive control is now widely used by industry and a large number of implementation
algorithms, including generalized predictive control [4], dynamic matrix control [5], extended
prediction self-adaptive control [9], predictive function control [19], extended horizon adaptive
control [24] and unified predictive control [21], have appeared in the literature. Most predictive
control algorithms are based on a linear model of the process. However, industrial processes
usually contain complex nonlinearities and a linear model may be acceptable only when the
process is operating around an equilibrium point. If the process is highly nonlinear, a nonlinear
model will be necessary to describe the behaviour of the process.

Recently, neural networks have become an attractive tool in the construction of models
of complex nonlinear processes. This is because neural networks have an inherent ability
of learning and approximating nonlinear functions arbitrarily well and a large number of
identification and control structures based on neural networks have been proposed (see, for
example, [1] [3] [6] [12] [16] [20]). Neural networks have also been used in some predictive
control algorithms that utilize nonlinear process models [8] [25]. Alternative design of non-
linear predictive control algorithms have also been studied ([14] [15] [18]). However, in most
algorithms for nonlinear predictive control performance functions are minimized using non-
linear programming techniques to compute the future manipulated variables in the on-line
optimization. This can make the realization of the algorithms very difficult for real time
control.

This paper introduces neural network based affine nonlinear predictors so that the prédic-
tive control algorithm is simple and easy to implement. The use of nonlinear programming
techniques to solve the on-line optimization problem is avoided and a neural network based
on-line weight learning algorithm is developed for the affine nonlinear predictors. It is shown
that using this algorithm, both the weights in the neural networks and the estimation error
converge and never drift to infinity over time.

The paper is organized as follows. Section 2 presents the structure of the affine nonlinear
predictors using neural networks. The predictive neural controller is given in Section 3.
Section 4 develops the on-line weight learning algorithm for the neural networks used for the
predictors and includes analysis of the properties of the algorithm. The design of nonlinear
predictive control by growing neural networks is illustrated in Section 5. Finally, Section

6 gives a simulated example to show the operation of the neural network based predictive
control.
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2 Neural Network Based Predictors

The fundamental idea in predictive control is to predict the vector of future tracking errors
and minimize its norm over a given number of future control moves. It is therefore clear that
predictive controller design mainly consists of two parts: prediction and minimization. This
section discusses the prediction part. The minimization part will be considered in the next
section.

Only discrete-time affine nonlinear control systems will be considered with an input-output
relation described by

Yt = F(x:) + G(%x¢)ss—d (1)

where F(.) and G(.) are nonlinear functions, y is the output and u the control input, respec-
tively, the vector x; = [y4—1 ¥Yt—2 ... UYt—n ], nis the order of y(¢) and d is the time-delay of
the system. It is assumed that the order n and the time delay d are known but the nonlinear
functions F'(.) and G(.) are unknown.

Basically, there are two kinds of predictors which can be used to predict the future tracking
errors of nonlinear systems. One is the recursive predictor and the other is the nonrecursive
predictor. Here, the latter is used. According to the affine nonlinear system described by
Eq.(1), we present some (7 + d)-step ahead nonrecursive affine nonlinear predictors to com-
pensate for the influence of the time-delay, for ¢ = 0,1, ..., L. These predictors use sequences
of both past inputs and outputs of the process upto the sampling time ¢ to construct the
predictive models, which are of the following form:

Gevari = Fi(xe) + Y Gij(xe)ueys (2)

7=0

for i = 0,1,..., L, where ﬁ}(xt) and éij(Xg) are nonlinear functions of the vector x; to be
estimated. It can be seen from Eq. (2) that linearized predictors for nonlinear system which
are widely used in the literature (see, e.g., [22] [23]) are a special case of the above.

Due to the arbitrary approximation feature of neural networks, the nonlinear functions
Fi(x¢) and Gjj(x;) can both be approximated by single hidden layer networks. This is ex-

pressed by,
" Ni
Fi(xe) = Y firdin(xe) (3)
k=1
- nd N1'J
Gij(xe) = Y gijnije(Xe) (4)
k=1

for j <iandi,j =0,1,..., L, where ¢ik(x¢) and @5 k(x;) are basis functions of the networks,
N; and N;; denote the size of the networks. Define the weight and basis function vectors of

2
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the neural networks as

Fi=[fix fiz -~ fin]" (5)
Gij = 9iia Gz - GisNy |- (6)
B; = [gia(x) dia(xe) . Bi(xe)] (7)
O = [diga(xs) iga(xe) o digny (%) I (®)
The neural network based predictors can then be rewritten as
1
Jipayi = FL @; + Z Gg‘i’ijutﬂ (9)
3=0

ford = 0; Lissln

It is well known from the universal approximation theory for neural networks that the
modelling error of the predictor can be reduced arbitrarily by properly selecting the basis
functions and adjusting the weights. There are many types of basis functions which can
be selected, including radial functions, sigmoid functions, polynomial functions and so on.
Section 5 will discuss the selection of basis functions using a radial basis function network.
An on-line learning algorithm for the weight adjustment of the networks used in the predictors
will be given in Section 4.

3 Predictive Neural Control ,

This section presents a predictive control strategy based on the neural predictor described
in the previous section. In order to define how well the predicted process output tracks the
reference trajectory, there are many cost functions used in predictive control. This section
uses a cost function which is of the following quadratic form.

1 i
Jp = 5“ Rivarr — Yerarr |5 + Ea“ AUsr ||§ (10)
where
Revasr = [Tepd Terdsr - Terasr]® (11)
Yirarr = [Ge+d Geratr - Gerarn]” (12)
U‘t+L = [’U.t U4l -+ UL ]T (13)

Riarr, Yivarr and Ugygy1 are the future reference input, predicted output and control input

vectors, respectively, L is the control horizon, L 4 d is the prediction horizon, and « > 0 is
the weight.

The optimal controller output sequence over the prediction horizon is obtained by mini-
mizing the performance index Jp with respect to Uyyr. This can be carried out by setting

aJ,
=0 14
UL s}

3
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Taking the derivative of the performance function J, with respect to the control input vector
Uiy results in

T T
6}};+d+L aAUt-l-L AUt-{»L i 0 (15)

Cdblilipp 0 ) e D
3Usss (Yitasr — Reqdrr) FTi

Using the neural network based predictors (9), the derivatives of Yi4447 with respect to the
control input vector Uy4r are given by

— T
GT®00 0
YL ior T GTo®10 Ghi®n
D . T = | \ (16)
aUt-i—L : 3 4
GT, @0 GL,91, ... GI ¥
Let
Hy=[FT8, FT& ... FT&," (17)
Eq.(15) can be compactly expressed by the following matrix equation:
QE(HL + QrUisr, — RigasL) — OtflTUt-1 + GD%DLUHL =0 (18)
where I; = [1,0,...,0] is an identity vector and the matrix Dy, is of the form
1 0
-1 1
Dy = , (19)
0 -1 1
It is clear from Eq.(18) that the controller input vector U4z, can be calculated by
Uiz = (Q1QL + @DT D) QL Reyayr — QL Hr + I uiy) (20)
Thus, the control input u; minimizing the performance function J, is given by
w = 11(QTQr + aDID1) QT Revarr — QT Hr + alf us) (21)

The predictive neural controller is therefore relatively simple and easy implement using the
affine nonlinear predictors. There is no need to solve a nonlinear programm'ing problem to
obtain the optimal control input u; unless additional constraints are imposed on the control
signal and/or output of the system.

4 On-Line Weight Learning of Neural Networks

Here, we consider the on-line adjustment of the weights of the i-th predictor. The weight
estimation of the other predictors are similar. It will be assumed that the basis functions

4
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of all the networks which are used in the predictors are given and the required prediction
accuracy can be achieved by adjusting the corresponding weights to those functions.

Using the available output data y;_g_;—1,..., Ys—d—s—n and the input data w;_q, ..., Us—d—s,
the output of the ¢-th predictor at time ¢ can be written as

ye = (BT @i(Xemami) + D (G5) T @ij(Remdmi)Utmdits + €2 (22)
s

where F* and C_ij are the optimal estimates of the weight vector F; and G;;, for j = 0,1, eyt
respectively, &; is the approximation error of the predictor using the neural network and is
assumed to be bounded by a positive number § for all time, that is

max 4] < &. (23)
teN*t

The i-th estimated predictor can also be compactly expressed by
Gt = i’VtT‘I’tul (24)

where the weight vector W; and the basis function vector ®; are

We=[Ef G &% ... GLIF (25)
i D, (X¢—g—s)
Do (Xt it Vb

By = | Pia(Re—d—i)W—d—it1 (26)

L ®ui(X¢—di)ti_a

The estimation problem is then to find a vector W belonging to the set defined by

2(w)={w: |yt - WTét_ll <6VEN*]. (27)

In recent years, many estimation algorithms have been presented for fixed, growing and
variable structure neural networks (see, for example, [10] [11] [13]). Based on the recursive
least squares algorithm, an new on-line weight learning algorithm of neural networks is de-

veloped for the affine nonlinear predictors. The algorithm and its properties are given by the
following theorem.

Theorem 1: Consider the i-th predictor and the learning algorithm:

Wiy=Wi_1 + aifiPi19:_164 (28)
fi= P, - ﬁt')’tpt-nlq’t—l‘z)gl1pt—l (29)
ar = (1—6leg| ™)1+ 0T , P, 18, 4)" (30)

5
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T —1
7o = (leel = 6) (Jeel + (2lee] = 6) 8T 1 Pra @i (31)
er =y — W1 @41 (32)
1 ]6:] > 6
=9 33
A { 0, le: <6 (34)
Then
. Be (les] — ‘5)2
=0, 34
Z) f—’r& 14 q)g‘_lpt—l D 1 ( )
i) lim [Wy = W] =0, (35)
iii) | W, < mas (F5) [ o], (36)
* Amin (Po_l) 2
where )
We=w"-w, (37)

Amaz(+) and Apmin(-) denote the maximum and the minimum eigenvalues of the matrix (-),
respectively, and W* is the optimal estimate of the weight vector W;.
Proof: (i) Consider the Lyapunov function:
Vo= WIPTMW,. (38)
Combining (22) and (28) - (33) yields
Wi = (Wt—l = atﬁtpt—lq’t—let)TPt_l(ﬁf -1 atﬁth-1q’t-1€t)
Vit + @By [ — o el (39)

Il

Since it is assumed that the approximation error &; of the predictor satisfies |¢;| < 6, it is
known from the above that

AV, < afy (82 - a7l ye?)

ﬂ (|6t|3 s 5 |€t| 52 4 53) (1 + @?_1-&“1@12—1) i 52
= -
s lec| + (2 ]es| — 6) O Pim1Ps1 s

< —Beve (el — 2 lec] 87 + 6%) e (40)
In addition, for |e;| > 4,
53
6?—252+m 2 |€t|(|€g|—5). (41)
t

It is straightforward to show that

Vi < Vier — Beveles|(lee] — 6)

B (|es| — 6)°
< Vo1 — . 42
= TN 21497, P10, ) (42)

6
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It can therefore follow that

= B
o Bulled =02
t—oo | 4 ¢t——1Pf—1¢f-1

(i) From (28),

Il

| Ws = Wi |I3 o} Bi®7_1 P} 1 &y 1€}

ﬁtAmam(Pt-l)
- 14 @?_1Pt—1@:—1

It is clear from (29) that Amez(P:) € Amaz(Piz1) < ... € Amaz(Po). Then (44) can be written

o ﬁt'\ma.:r(PO) (Eetl i 6)2

Wiy — Wi |2 <
L = llz 14 @E_lPt—-I‘I’t-l

which, together with (43), proves (ii).

(iii) From the matrix inversion theorem [7], it follows that

B® 197, (1 _ i)
1+ 87 P 19, 4 lex]

Pt_lzpt_—11+

Then
)"m.'in(-Pt—l) 2 )\min(Pt_._11) 2 v 2 /\min(Pg_l)

Equation (42), together with the above, gives
Vi<W

which results in g -2
Amin(B5 )| We [ < Amao( 72| W |

Thus,
[, < St

37 Xl By ” Wo ”

2
2

This establishes (iii).

Property (i) of the theorem above shows that if 1 + ® ; P,_;®;_; is finite for all time,
which is true if the closed-loop system is stable, the estimation error e; converges to §. Also,
it can be seen from Property (ii) that the weights converge as time ¢ approaches infinity. In
addition, Property (iii) implies that the weights will never drift to infinity over time.

5 Predictive Controller Deéign Using Growing Networks

This section introduces growing neural networks. Consider the i-th predictor to show how to
design the predictive control. For the sake of simplicity, the basis function vectors of the i-th

7
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predictor are assumed to be
;= Q=9 =...= (51)

This means all neural networks for the i-th predictor have the same basis functions. which
are of the form

B, = [gia(xe) Gia(xs) o dini(x4)]T (52)

where N; is the number of the basis functions and the basis functions ¢;z(x;) are the Gaussian
radial basis functions (GRBF), i.e.

in(xt) = exp {737 xe — cix [[3} (53)
i is the width of the (ik)-th basis function and ¢;; is its centre.

The i-th predictor is now given by

N; . N;
Gevati = Y Jip@in(Xe) + D > GijuPin(Xe) et s (54)
k=1 71=0k=1

If the prediction error of the i-th predictor is greater than required, according to approx-
imation theory more basis functions should be added to the networks to improve approxima-
tion. In this case, denote the structure of the i-th predictor at time ¢ — 1 as g}t(_:!i)z and the
structure immediately after the addition of a basis function at time t as g}ﬂ_)d +;+ Based on
the structure of the function {4444 in equation (9), the structure of the i-th predictor now

becomes,

i=1

g = @Ei}ﬂ,; + (fi,N‘-+1¢i(M+l)(xt) +Y gij.Ne-i-lQ-"i(N,--i-l)(xt)utﬂ') (55)

where f; v,41 and gij n,+1 are the weights corresponding to the new (N; +1)** Gaussian radial
basis function ¢;(n,41)(x:).

The growing network is initialised with no basis function units. As observations are
received the network grows by adding new units. The decision to add a new unit depends on
the observation novelty for which the following two conditions must be satisfied:

© minllxe = el > 6
(ii) lei(B)] > G (56)

where e;(?) is the prediction error of the i-th predictor which may approximately be measured
by e; defined by (32), 6. is the required distance between the basis functions and &,,,, is chosen
to represent the desired maximum tolerable accuracy of the predictor estimation. Criterion
(i) says that the current observation must be far from existing centres. Criterion (ii) means
that the approximation error in the network must be significant.

8
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If the above conditions are satisfied, the new centre is set to be c;,41) = X¢. In order
to assign a new basis function ¢;,11)(x;) that is nearly orthogonal to all existing basis
functions, the angle between the GRBFs should be as large as possible. The width ryy,4q)
should therefore be reduced. However,reducing 7y, 1) increases the curvature of ¢;(n, 41)(X¢)
which in turn gives a less smooth function and can lead to overfitting problems. Thus, to
make a trade-off between orthogonality and smoothness, a good choice for the width r;(,41),
which ensures the angles between GRBF units are approximately equal to the required angle
Biins 18 [11],

1
1 z .
TiNe+1) = (QIOE(I/ cos? Hmm)) k=111.1.1.EN;{|[q’° — civi+1)ll2} (57)

where 6,,;, being the required minimum angle between Gaussian radial basis functions.

The above assignments are the same as those for the resource allocating network (RAN)
[17] which is defined based on observation novelty heuristics. When a new unit is added to
the network at time ¢, the dimension of the vectors W; and ®; and the matrix P; should
increase by 1. The on-line learning algorithm for the i-th predictor is still the same as that
given in Section 4.

After the above consideration, the matrices ¢ and Hp, are of the following form:

GT B, 0 s
G®1 Gfi®

QL= . : . (58)
GT8, GL&, ... GI.8,

Hp = [FT®, FT®, ... FTa.)" (59)

The predictive controller are still given by the form (21). In this way, the design of the
nonlinear predictive neural control is completed by growing networks.

6 Simulation

In this section, consider the following affine nonlinear system [2]:

_ 2.5yt 1Yt—2
W Ty, e, T e OS et ma)) L (60)
The reference input 7(t) = sin(7t/500). The initial condition of the plant is (y_1,¥-2) =

(0,0).

The goal is to control the plant (60) to track the reference input r(t) using a predictive
control strategy so that the following quadratic cost function is minimized.

1 Tt41 G ] | Au 17
a1 || Rl ] I3 1o i
4 2( Ti+2 Yi42 2+ Augyy 2 (61)

9
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It is well known that if the variables of a nonlinear function are in compact sets, the
nonlinear function can be approximated arbitrarily well by neural networks. To ensure y; is
in a compact set, we used the following one-to-one (1-1) mapping [13]:

g = — (62)

It is clear from equation (62) that § € [—1,1] for y; € (=00, +00). Thus x; is replaced by
the vector X; = [#—1, Je—2].

We used growing networks to model the one-step and two-step ahead predictors. The
growing networks were initialised with no basis function units. As observations were received
the network grew by adding new units. The required distance and minimum angle between
the basis functions were set to be 6. = 0.011, 0,,:, = 20°, respectively. The required and
maximum tolerable estimation accuracy of the predictor were § = 0.008 and 6,,,. = 0.012,
respectively.

In the simulation, the performance of the neural network based predictive control is shown
in Figs.1-5. Fig.1 shows the output y; and the reference input r; of the system. The tracking
error 7; — y; is shown in Fig.2. The estimation errors of the one-step and two-step ahead
predictors using growing networks are illustrated in Figs. 3 and 4, respectively. The number
of basis functions in the neural networks with respect to time ¢ for the two-step ahead predictor
is given in Fig. 5.

It can be seen from the simulation results that the tracking error, the one-step and two-step
prediction errors converge with time ¢. It is also clear that the growing neural network based
prediction models grow gradually to approach the appropriate complexity of the predictors
that are sufficient to provide the required approximation accuracy. Moreover, the nonlinear
system is successfully controlled using the predictive neural controller. -

7 Conclusions

This paper has developed a neural network based predictive controller design procedure for
nonlinear systems. A set of affine nonlinear neural predictors was used to predict the output of
the nonlinear process so that the difficulty of applying nonlinear programming techniques to
minimize the performance function for nonlinear predictive control is avoided. The resulting
predictive neural control algorithm is relatively simple and easy to implement in practice.
Based on least squares techniques, an on-line weight learning algorithm for the neural networks
based affine nonlinear predictors has been given. The properties of the algorithm have been
studied and it has been shown that both the weights and the estimation error converge as
time approaches infinity. An analysis of the stability of the closed-loop nonlinear predictive
neural control system remains an open question for future research.

10
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Figure 1: The output y; and the reference input r; of the system.
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Figure 2: The tracking error y; — r; of the system.
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Figure 3: The modelling error of the one-step ahead predictor.
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Figure 4: The modelling error of the two-step ahead predictor.
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Figure 5: The number of the basis functions of the growing neural networks for the two-step
ahead predictor.
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