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Abstract 

The aerodynamics generated by a small small-scale vertical axis wind turbine (VAWT) are 

illustrated in detail as a NACA0022 rotor blade carries out a complete rotation at three tip 

speed ratios. These aerodynamic details are then linked to the wind turbine performance. This 

is achieved by using detailed experimental measurements of performance and near blade PIV 

and also using a 2D RANS based CFD model. Uniquely therefore, the CFD model is 

validated against both PIV visualisations and performance measurements.  

At low tip speed ratios ( = 2), the flow field is dominated by large scale stalling 

behaviour as shown in both the experimental results and simulations.  The onset of stall 

appears to be different between the experiment and simulation, with the simulation showing a 

gradual separation progressing forwards from the trailing edge, while the experiment shows a 

more sudden leading edge roll-up. Overall, similar scales of vortices are shed at a similar rate 

in both. The most significant CFD-PIV differences are observed in predicting flow 

reattachment. At a higher tip speed ratio ( = 3), the flow separates slightly later than in the 

previous condition and as occurs in the lower tip speed ratio, the main differences between 

the experiment and the simulation are in the flow reattachment process, specifically that the 

simulations predicts a delay in the process. At a tip speed ratio of 4, smaller predicted flow 

separation in the latter stages of the upwind part of the rotation is the main difference in 

comparison to the experiment. 

 

 

 

 



Nomenclature 

 

1 Introduction 

In recent years, interest in the VAWT design has been boosted by an increasing desire for the 

integration of wind energy into the built environment, where the VAWT presents several 

potential advantages over the more common HAWT (horizontal axis wind turbine): the 

VAWT avoids the requirement for yaw (turn to face the wind), may have lower sound 

emission (due lower tip speed ratio operation, [1]), and shows increased performance in 

skewed flow [2] - a likely flow scenario over a roof-top. However, while the HAWT is highly 

developed and is currently used for all large-scale wind farms and numerous small-scale 

applications in rural locations, the VAWT concept is considerably less-developed.  

Simple consideration of the vectors of the blade velocity due to rotation, VB (=RȦ) and 

the freestream velocity, V∞, yield a skewed-sinusoidal variation of the angle of attack, Į, with 

c blade chord length (m) 

Cp power coefficient  

Cp-blade power coefficient, blades only  

Cp-max maximum power coefficient  

L blade length (m) 

N number of blades  

R rotor radius (m) 

T net rotor torque (Nm) 

TB blade torque (Nm) 

Tres resistive torque (Nm) 

VB blade velocity (m/s) 

V∞ blade velocity (m/s) 

Į angle of attack rads or deg 

Įc local corrected angle of attack rads or deg 

Ȝ tip speed ratio  

ȥ azimuth position rads or deg 

ı rotor solidity  

Ȧ rotational speed rads/s or RPM 

   



changing azimuthal position, ȥ. The tip speed ratio, Ȝ (=VB / V∞), dictates the range in Į 

experienced by the VAWT blade. At a given Ȝ, the overall performance is the time-averaged 

result of the continuously varying aerodynamic forces on the rotor blade within a rotation. 

Previous work by the authors [3] has shown that the actual local Į variation is affected by the 

rotor impedance, which increases with tip speed ratio and with increased energy extraction 

(higher power coefficient, Cp). Blades in the downstream region also operate in the wake of 

the upstream blade passes and the wake of the central drive shaft. Understanding the 

operation of a VAWT blade is a very complex problem which requires detailed inspection of 

the flow physics. CFD is well-placed to aid the understanding of the VAWT flow physics; 

however, the current state of model development is not sufficient to replace experiments [4], 

[5], [6], [7].  

Much of the knowledge of the stalling process on VAWTs has been developed from lift 

and drag polars obtained from pitching aerofoil studies and simulations, Lee [8], [9], [10] and 

[11]. This is due to the difficulty of carrying out complex experiments on a rotating turbine. 

While aerofoil studies have increased the understanding of stalling behaviour, they are still 

limited in their application because they do not reproduce the same flow conditions as found 

on VAWTs (lack of wake-wake and wake-support interaction, and a lack of flow induction).  

The only other directly relevant studies are due to [12], [13] who also conducted PIV 

experiments. Fujisawa and Shiubya [13] conducted experiments at extremely low Reynolds 

numbers but described the successive shedding of two pairs of stall vortices from the blade. 

The mechanism of dynamic stall was shown to be due to the successive generation of a 

separation on the inner surface of the blade followed by the formation of roll-up vortices 

from the outer surface. The work by [12] was on a larger VAWT at Re = 5 × 105 and 7 × 105 

and  = 2, 3, and 4. Although the convection of the shed vortices away from the blade was 

not shown, the roll up and magnitude of the vortices was clearly shown to be effected by , 

with large separations shown at =3 and =2. The flow remained almost completely attached 

for the =4 case. Both [12] and [13] showed no corresponding performance measurements so 

relation of the dynamic stalling behaviour to performance could not be made. 

It is interesting to note that while the fundamentals of the stalling behaviour is not yet 

fully understood, some researchers have gone on to develop control methods for the stalling 

process, using either synthetic jets [14], or plasma actuators [15] which do show 

improvements in turbine performance.  



It remains a fact that, to date, there is simply very little information about the stalling 

processes on VAWTs that comes with experimental validation from which the modelling 

accuracy can be assessed. This study aims to tackle these pertinent issues. In the following 

sections, the development of the CFD model is detailed, as well as the experimental 

methodologies. Following this, the aerodynamic and performance measurements are 

validated against both experimental PIV visualisations and performance measurements, 

which importantly allow the quality of the performance prediction to be assessed with respect 

to the simulated flow physics. 

2 Methods 

2.1 Performance Measurements 

2.1.1 Wind Tunnel Facility 

All experimental testing was conducted using The University of Sheffield, Department of 

Mechanical Engineering’s Low-Speed Wind Tunnel (commissioned in 2011) which is an 

open circuit suction tunnel with the flow driven by an axial fan located at the outlet. The 

working section is 1.2m wide, 1.2m high and 3m long. The inlet has a two-dimensional 

contraction with a ratio of 6.25:1, resulting in a maximum test section velocity of 25m/s and a 

turbulence intensity of 0.3% or below over the working region. For these experiments a 

turbulence grid was placed at the start of the working section which raised the turbulence 

intensity at the turbine to 1%, with approximately 0.01m maximum length scale. This 

turbulence intensity was chosen because it allows the turbine to generate both positive 

performance at high TSR as well as very well defined vortices and stalling behaviour at low 

TSR. Too low turbulence intensity (0.3%) causes negative performance (CP) all throughout 

the range of TSR tested, whereas higher turbulence intensity (2.6%) suppressed the formation 

of a leading edge separation bubble that would eventually form into the dynamic stall vortex. 

2.1.2 Turbine Model 

The straight-bladed VAWT rotor (Figure 1) features three NACA0022-profiled blades 

each having a chord length, c, of 40mm, and a blade length, L, of 600mm, giving a blade 

aspect ratio of 15. Each blade was mounted on two low-drag support arms at the 1/4 and 3/4 

blade span positions at a radius, R=0.35m, leading to a solidity, ı, of 0.34 based on the 

conventional definition (ı = Nc/R). An optical encoder monitored the rotational speed of the 

rotor, which was also fitted with a Magtrol hysteresis brake to provide a known braking 

torque when required. The frontal swept area blockage of the turbine is 29%; the literature 



has conflicting suggestions of whether this is significant or not in terms of Cp measurement 

[12], [17], [18]. The wind tunnel model is intended to address fundamental understanding of 

VAWT performance, and the Cp stated is not intended to represent any particular full-scale 

free-operating device. Absolute levels of performance were not important; only relative 

values of performance were needed as the paper’s aim is to elucidate the flow physics present 

for comparison to an identical computational model. 

 

 

 

Figure 1. Wind tunnel arrangement showing the VAWT and PIV system. 

 

The measurement equipment designed by the authors to measure torque was 

calibrated giving a maximum error 0.01Nm and corresponds to a maximum error of 5% in 

the maximum Cp value determined for tests at 7m/s. The error in measurement of turbine 

rotational speed was negligible. The pressure difference measured by the Pitot-static probe 

(and a Furness Controls Micromanometer model FC0510) gave an accuracy of the wind 

speed measurement estimated at 1.25%. The combined potential maximum error in the Cp 

measurement is therefore 7.25%. It should be noted that this is exceptionally accurate for a 

system of this scale. 

 

2.1.3 Power Curve Measurement 

When testing small wind turbine models, a number of practical problems may be encountered 

that would perhaps not occur in a ‘real-world’ deviceμ to obtain a desired Reynolds number, a 

small VAWT rotates at high speed resulting in large centrifugal forces relative to the turbine 



size. The apparatus, being required to withstand such loading, may give system resistances 

which prevent the turbine from ‘cutting-in’. Typically, a VAWT will have a band of Ȝ for 

which positive net torque, T, occurs. Outside of this band, T will be negative and a small 

turbine must be driven in order to maintain rotation. Only parts of the T- Ȝ curve with 

negative gradient can be measured without a control system to sense rotational speed and 

adjust opposing torque accordingly [17], [19].  

The turbine performance is first measured by allowing the rotor to spin down from a high 

rotational speed and the deceleration rate monitored using the optical encoder attached to the 

hysteresis brake. To fully determine the performance of the rotor blades, two spin down tests 

are required for each test condition. The first involves the spin down of the rotor system 

without the rotor blades but including the support arms. This is necessary to determine the 

system resistance (the drag induced by the support arms, as well as resistance of the bearings 

and hysteresis brake etc). It has been determined that the system resistance is independent of 

wind speed over the range tested here, i.e. the resistive torque curves from different spin 

down tests conducted at different wind speeds are identical [3]. The second spin down test is 

conducted with the rotor blades fitted and so measures the full turbine performance. For both 

spin down tests, the instantaneous torque is computed by multiplying the instantaneous 

rotational deceleration () by the turbine’s rotational moment of inertia (Irig). The rotor blade 

torque is then the difference between the rotor torque (TB) and the system resistance (Tres), 

see Equation 1. Instantaneous blade power is derived via Eq. 2. This system is used to 

determine the performance of the VAWT when it cannot self-sustain itself, i.e. the system 

resistance (due to bearing friction, and support arm drag) is greater than the torque developed 

by the rotor blades.  

B res app rigT +T +T =I ȟ  (Eq. 1) 

B BP =T  (Eq. 2) 

Usefully, this method allows TB to be measured so that the rotor blade performance alone can 

be evaluated, see Equation 2 which allows a direct comparison to be made to the 2D CFD 

where only the blades are simulated. A detailed assessment of the method can be found in [3]. 

 

2.2 PIV Measurements 

The flow in the wind tunnel was seeded at the inlet with olive oil droplets approximately 2ȝm 

in diameter which were generated by a TSI six-jet atomiser. The light sheet was generated by 



a Litron Nano L 65-15 Nd:YAG laser (65mJ/pulse) located outside of the tunnel (Figure 1) 

on an adjustable height platform. A CCD camera of 1600 x 1600 pixels was used together 

with a narrowband greenpass filter to cut-out interference from other sources of light. To 

minimise laser light reflection, the blade surface was treated with a Rhodamine 6G-based 

paint (produced by the authors). To avoid the support arm obscuring a portion of the field of 

view (FOV), the laser sheet was positioned approximately 3c away from the blade tip, and 

1.5c away from the support arm. It was confirmed through tests at various positions along the 

span that this position was a good representation of the flow along the majority of the blade 

length, [19]. For each test, the blade was centered in the reference FOV which was 

approximately 140mm x 140mm and the integration area used was 32 x 32 pixels, or 2.8mm 

x 2.8mm. The time interval between exposures was set to yield an approximately eight pixel 

displacement assuming V= 4 V∞ based on similar tests carried out by Ferreira et al [12]. 100 

ensembles were acquired for each condition tested. The measurements concentrated on three 

tip speed ratios which were chosen to cover the important and distinct regions of the Cp-blade-

Ȝ curve (Figure 20, discussed later in Section 3.2): 

1) Ȝ = 2 is near the minimum Cp-blade, 

2) Ȝ = 3 is on the part of the curve where the Cp-blade is rapidly increasing, 

3) Ȝ = 4 is near the maximum Cp-blade. 

Measurements were taken at 10° intervals in ȥ, following one of the rotor blades, for the first 

time, through an entire rotation, as illustrated in Figure 2.  

 

 

Figure 2. PIV results at different  positions showing the rotor blade and FOV. 

 

2.3 CFD Model 

The commercial CFD code Ansys Fluent 12.1 was used for all of the simulations detailed in 

this study. The Ansys Fluent 12.1 documentation [21] provides details concerning the 

governing equations and solver formulation which are not repeated here. Unless stated 



otherwise, the recommended values were used for solver settings and model coefficients. The 

pressure-based solver was used with absolute velocity and second order implicit transient 

formulation. The coupled pressure-velocity scheme was used, and a second order upwind 

discretisation was used for all solution variables. 

2.3.1 Mesh 

Earlier studies [4], [19], [22] have shown that the main flow characteristics of the VAWT can 

be represented using a two-dimensional CFD model. Such a model is unable to account for 

the effects of the support arms or the blade tip losses on performance; however, this study is 

concerned with the dominant flow physics of the VAWT, those are secondary effects. The 

computation time for a three-dimensional simulation would be excessive for a study of this 

detail. 

The model domain consisted of two mesh zones: an inner rotor zone and an outer zone 

(Figure 3). The mesh of the inner rotor zone rotates together with the blades and the central 

shaft. The outer domain is fixed and has a rectangular outer boundary (representing the wind 

tunnel) and a hole in the centre which accommodates the inner rotor zone. At each time step, 

the solution is interpolated across the sliding interface boundary. The geometry represented a 

mid-blade slice of the wind tunnel rotor. The simulation of a simple 2D-slice of the wind 

tunnel set-up would result in a significant over-estimation of blockage. A closer blockage 

approximation was achieved by matching the ratio of the rotor and wind tunnel widths in the 

CFD model to that of the rotor and wind tunnel cross-sectional areas in the experiment. 

 

 

Figure 3. Construction of the overall two-dimensional computational domain. 

 

A wider refinement of the wake region is necessary to resolve important flow structures, 

which arise due to the wide range in Į. This was most easily accomplished using a structured 

O-type mesh which was constructed around each blade (Figure 4) and extended outward 



towards the inner zone boundaries (Figure 5). The outer domain was meshed with a simple 

structured mesh (Figure 6).  

 

Figure 4. The blade ‘O’ type mesh. 

 

Figure 5. One third of the inner rotor mesh. 

 

Figure 6. Outer domain mesh. 

 

A mesh sensitivity study was conducted to establish the appropriate node density on the 

blade surface. Clustering of grid points on the leading edge and trailing edge regions was 

implemented to provide enough spatial resolution on these key areas. Wall normal spatial 

resolution was fixed starting with a first cell height small enough to result in acceptable y+ 

levels between 1 to 5 and all solutions were found to have a y+ of below 2.2 [21]. Growth 

rate of the inflated boundary layer on the blade surface was fixed to 1.05 and was determined 



to be fine enough to provide the required number of layers for boundary layer modelling. 

Beyond the near-blade mesh, maximum cell edge length within the central region bounded by 

the blade path was studied. It was concluded that the maximum edge length should be limited 

to less than half the blade chord to minimise unnecessary dissipation of wake and turbulence 

generated by the upwind pass of the blades. Blade torque was monitored for the sensitivity 

study. It was found that 400 points around each blade provided the required node density for 

accuracy without compromising computational time. A difference of less than 1% in 

instantaneous blade torque all around a rotation as can be seen in Figure 7. 

 

.  

2.3.2 Turbulence Model Selection 

The turbulence model selection was initially carried out by attempting to match flowfield 

visualisations and force measurements of a pitching aerofoil study, conducted by [22]. The 

range in Į tested results in the aerofoil undergoing dynamic stall and reattachment, which is 

also characteristic of the VAWT and the study therefore represents a simplified test case. It 

will be shown later that the excellent matching of the flow physics between the experiment 

and the simulations vindicates this approach. Obtaining force data (lift and drag) from a small 

VAWT rotor blade is extremely difficult and subject to significant errors [16] so data sets 

from pitching aerofoil studies are a useful source for validation. The lift and drag predictions 

of the three most suitable models are shown in Figures 7 and 8. Other models were tested 

(standard k-İ, k-Ȧ, and a laminar solution) but the quality of prediction was found to be poor 

and so, for brevity, the results are not presented here.  

 

Figure 7. Effect of nodal density around the blade on torque generated. 

 



 

Figure 8. Lift coefficient results for the turbulence model selection process shown compared 

to measurements of a pitching aerofoil study from [8] 

 

Figure 9. Drag coefficient results for the turbulence model selection process shown compared 

to measurements of a pitching aerofoil study from [8] 

 

The results of the study showed that the SST k-Ȧ model gave a the best prediction for the 

region of enhanced lift (Figure 8) which occurs due to the roll-up of the leading edge vortex 

which is then convected over the aerofoil surface. The early post-stall lift behaviour was also 

well-matched for the initial drop in lift occurring as the vortex begins to leave the surface. 

While the region of reduced lift and delayed reattachment was over-predicted by all of the 

models, the SST k-Ȧ model was again the closest to the experimental data. Drag prediction 

was also well-matched for the increasing region of the pitching motion (Figure 9). Again, all 

of the models struggled to accurately simulate the curve hysteresis, with the SST k-Ȧ model 

giving the closest match, particularly in the  Į = 15° to -5° region. It is interesting to note that 

in the predictions of the VAWT aerodynamics, the SST k-Ȧ model is actually significantly 



better performing that in this case indicating that, perhaps, the pitching blade is an even more 

challenging test case. 

Plots of the experimental and simulated vorticity flowfields were compared to further 

establish the suitability of the SST k-Ȧ model (Figure 10). Vorticity is plotted here and in 

figures which follow because it is a vector field that describes the local spinning motion of a 

fluid and is ideal for bringing out details of stalled flow and shear layers. 

 

Figure 10. A plot showing the stream lines for different angles of attack from [8]. 

Simulations are from the SST k- model showing contours of vorticity.  

 

The complete cycle of the development and shedding of the dynamic stall vortex was 

shown to be well-predicted by the model which correctly showed the flow reversal at the 

trailing edge, and the subsequent formation of a separation bubble at the leading edge which 

rapidly grew and eventually evolved into the dynamic stall vortex that was convected 

downstream and finally detached from the aerofoil surface.  

Overall, the results of the pitching aerofoil study indicated that the SST k-Ȧ model is the 

best choice for the prediction of the VAWT blade stalling process and it was chosen for all of 

the subsequently detailed simulations. This decision is further validated by the closeness with 

which the CFD predictions match the measurements taken with the PIV system.  

 



2.3.3 Time Step and Convergence 

The unsteady simulation was stepped forward in time, with up to 50 iterations carried out at 

each time step to achieve convergence. The chosen size of the time step and the number of 

iterations were a compromise between solution accuracy and computation time. The 

rotational position has the most significant influence on the VAWT blade flow physics, and 

so the solution was stepped forward using a time interval corresponding to a particular 

azimuthal increment angle. A sensitivity study using simulations with different azithumal 

angle steps indicated similar torque histories were achieved for time steps which 

corresponded to ȥ increments of less than 2°. A time step corresponding to an azimuthal 

displacement of 0.5°, at the particular Ȝ being simulated, was therefore chosen as the best 

compromise between solution accuracy and computation time, this value was used for all of 

the simulations presented in this study. Differences in torque output were less than 1% 

between time step corresponding to 0.5 and 1. 

The solution was initiated using the inlet velocity value, with a turbulent intensity of 1% 

and a length scale of 0.01m defined in order to match the wind tunnel case. A large starting 

vortex resulted from the onset of the rotation of the VAWT and a number of rotations needed 

to be completed before the initial transients were convected out of the domain.  

 

 

Figure 11. Torque generated with iteration showing periodic convergence. 

 

The torque curve history for a complete solution shows that convergence of the forces 

occurs in around 5 to 10 rotations depending on Ȝ, see Figure 11. At higher Ȝ, a higher 

number of rotations were completed before periodic convergence was achieved. The solution 

residuals were also checked to ensure that they were reduced by 6 orders of magnitude at the 

point at which the torque curve convergence was observed. 



 The aim of this study is to show what is possible by using a current commercial CFD 

package which is likely to be available to many current design engineers working on VAWT 

development. More importantly, this study aims to more fully explain the dynamics of the 

flow than has been achieved before and this is necessary for the progression of VAWT flow 

understanding and therefore future development. 

 

3 Results 

In this section, the results of the CFD simulation with the previously selected turbulence 

model are compared against both PIV visualisations and performance measurements. It is the 

aerodynamic physics that dictates the turbine performance so it is vital that the two are 

understood together. This is the first time this has been carried out in such detail and for a full 

rotor revolution over three TSRs. In the first subsection, the simulated and experimental 

flowfield is discussed in detail. Contours of vorticity are used to visualise the near-blade 

wake, (with the same contour levels maintained for all images). Following this, the 

performance of the turbine is analysed in relation to the flow field aerodynamics of both the 

simulation and experimental measurement. Differences between the experimental and 

computational Cp are also explained. 

 It should be noted that this paper details significant new results which build upon the 

only comparable previous study by Ferreira et al. [12] in which the flow field development 

around an entire rotor blade revolution is discussed at a small number of selected locations in 

[12]. Differences are expected due to the different solidity and profile the current study uses 

the NACA0022, whereas [12] uses the NACA015. The overall blockage between the studies 

is very close; currently 29% and 32% in [8]. 

3.1 Correlation of Experimental and Simulated Flowfields 

The geometrically derived value of Į becomes increasingly erroneous as Ȝ increases due to 

the greater impedance which is presented to the flow by the rotor. The rotor exerts a force on 

the incoming flow, slowing it down and forcing the streamtube to expand around the turbine, 

in order to conserve mass flow rate. To account for this, the discussion of the flow physics 

are discussed relative to a corrected angle of attack, Įc, which has been obtained from the 

CFD solution via the method detailed in [3]. For comparison and completeness, the 

geometrically derived value is also presented. 



3.1.1 Flowfield Analysis, Ȝ = 2 

At the Ȝ = 2 condition, the experimental PIV visualisations shows the onset of stall occurring 

around ȥ = 60° (Figure 13a), with the first leading-edge vortex leaving the surface at ȥ = 70° 

where roll-up at the trailing edge is also shown (Figure 13b). The CFD simulation shows a 

similar process with a very small lag behind the experiment (Figures 12f and 12g). Figure 12 

shows Įc = 17.3° at  ȥ = 60°, which is certainly above the static-stall angle. The rapid 

increase in Įc can be thought of as a ‘pitch-up’ motion; in tests on a pitching aerofoil such a 

motion is shown to increase the angle of attack at which stall occurs [8]. The simulation 

shows the stall process originating from a gradual trailing edge separation; this differs from 

the experiment which appears to show a more sudden separation at the leading edge. The 

vortex shedding between ȥ = 80°, and ȥ = 100°, is also similar between the experiment 

(Figures 13c to 13e) and the simulation (Figures 13h to 13j), with the simulation continuing 

to lag very slightly behind the experimental flowfield.  

 

Figure 12. A plot of   vs    for  = 2, with key positions in the rotation indicated. 



 

Figure 13. Plots of vorticity showing the onset of stall, as shown by the PIV measurements 
and as predicted using the CFD model for  = 2 
 

 

Towards the mid-rotation point (ȥ = 180°), both the sets of data show a significant 

delay in the flow reattachment as the angle of attack rapidly decreases. The simulation shows 

quite a sudden change from the shedding of large structures to a much smaller wake (Figures 

14f to 14h), whereas the PIV visualisations reveal this to be a more gradual process in the 

experiment (Figures 14a to 14c). Either way, this process is likely to keep the performance of 

the rotor blade lower than would be the case with a more rapid re-attachment of the flow. 

Despite Įc dropping to 5.9°, the flow has not yet attached by ȥ = 170°. As with the 

experiment, the reattachment of the flow is shown to occur at around ȥ = 190°, where Įc = 

−10.5°. Shortly after this, the flow is shown to stall in the early stages of the downwind part 

of the rotation. At ȥ = 230°, where Įc has already reached −26.7° (Figure 12), the CFD 

simulation shows the flow to be detached (Figure 14i), as did the PIV measurements (Figure 

14d). The shedding process is also shown to progress at similar rate between the CFD (Figure 

14j) and PIV visualisations (Figure 14e). The rapid decrease in Į can be thought of as a 

‘pitch-down’ motion; in tests on a pitching aerofoil such a motion is shown to lead to a 

delayed reattachment of the flow as part of the dynamic stall process, which results in 

significant hysteresis in the aerodynamic forces [8]. As the angle of attack reduces 



significantly from ȥ = 260° onwards (Figure 12), the CFD shows a gradually reducing depth 

of stall with the shed vortices also gradually reducing in size (Figures 15f to 15i), which 

matches the PIV measurements well (Figures 15a to 145).  

 

Figure 14. Plots of vorticity showing the mid-rotation reattachment process and downwind 
stall, as shown by the PIV measurements and as predicted using the CFD model for  = 2 
 

 



Figure 15. Plots of vorticity showing the downwind post-stall vortex shedding and eventual 
reattachment, as shown by the PIV measurements and as predicted using the CFD model for 
 = 2 

 

Understandably, the experimental flowfield varies in this region between rotations 

and so the individual vortex positions cannot be matched to the simulation due to the 

ensemble averaging of the 100 instantaneous experimental measurements. As a result there is 

some smearing of the experimental data. The simulation shows reattachment occurring before 

ȥ = 350° (Figure 15j), which is in advance of the experimental flow field (Figure 15e). This 

would result in lower drag being predicted for this part of the rotation. Averaged around an 

entire rotation the performance coefficient is very similar between the experiments and CFD 

(Figure 22) 

 

Summary of Simulated Flowfield at Ȝ = 2 

The CFD-simulated flowfield and the PIV visualisations have been shown to be very well-

matched for Ȝ = 2. The position that the flow detaches from the blade surface is closely 

matched for both upwind and downwind parts of the rotation, with only a small delay (<< 10° 

in ȥ) being observed for the upwind part. However, the onset of stall appears to be different 

between the experiment and simulation, with the simulation showing a gradual separation 

progressing forwards from the trailing edge, while the experiment shows a more sudden 

leading edge roll-up. The shedding behaviour is also well-matched, with similar scales of 

vortices being shed at a similar rate. The most significant CFD-PIV differences are observed 

in predicting reattachment: small differences between the experiment and simulation are 

observed in the first reattachment at the mid-rotation; however, the simulation predicts the 

second reattachment to occur at least 10° in ȥ earlier in the rotation when compared to the 

experiment. 

 

3.1.2 Flowfield Analysis, Ȝ = 3 

At Ȝ = 3, the experimental PIV measurements show the onset of separation and subsequent 

leading-edge vortex roll-up occurring between ȥ = 80° and 90° (Figures 17a and 17b). At the 

onset of stall Įc = 15.2° (Figure 16), which is slightly lower than for Ȝ = 2 condition; a drop 

in the rate of change of angle of attack would be expected to reduce the dynamic stall angle. 

Relative to the experiment, the CFD simulation (Figures 17f and 17h) again show a delay in 

the stalling process: the roll up of the first vortex is delayed by an approximate 10° difference 



in ȥ, which will result in incorrect lift and drag predictions for this region. Again, the 

simulation shows stall beginning with a gradual separation from the trailing edge. The post-

stall vortex shedding is show in the experiments (Figures 17c to 17e) and simulations 

(Figures 17h to 17j), with a similar vortex shedding rate observed, and similar reduction in 

the depth of stall shown as the angle of attack reduces in this region of the rotation (Figure 

16). The 10° in ȥ  phase difference is maintained for the measurements shown in Figure 17. 

 

Figure 16. A plot of   vs    for  = 3, with key positions in the rotation indicated. 



 

Figure 17. Plots of vorticity showing the onset of stall and post-stall vortex shedding, as 
shown by the PIV measurements and as predicted using the CFD model for Ȝ = 3 
 

As for the Ȝ = 2 condition, the reattachment prediction at Ȝ = 3 is reasonably well-

matched between the experiment (Figures 18a to 18e) and simulation (Figures 18f to 18j). 

The gradual reduction in the scale of the shed vortices also appears to be well-matched. 

Vortices shed by the upstream blade are visible in the CFD-predicted flowfield at ȥ = 190° 

(Figure 18j); some trace amounts vorticity of matching sign can also be seen in the equivalent 

experimental plot (Figure 18e) but the dissipation and collapse of the vortex structure in the 

experiment clearly happens at a faster rate, as would be expected versus a two-dimensional 

simulation. 

 



 

Figure 18. Plots of vorticity showing the post-stall flow recovery and mid-rotation 
reattachment process, as shown by the PIV measurements and as predicted using the CFD 
model for Ȝ = 3 

 

 Although Įc reaches a maximum of 16° at ȥ = 228°, the simulation predicts the onset 

of stall in the downwind portion of the rotation to occur around ȥ = 240° (Figure 19f), as do 

the PIV measurements (Figure 19a); however, the experimentally observed thicker wake 

(relative to attached flow at other positions) indicates partially-separated flow. The extent of 

the wake shown in the experiment at ȥ = 250° (Figure 19b) further suggests that full 

reattachment does not occur around the mid-rotation point. The simulation differs (Figure 

19g), instead showing a sudden separation to stall from a fully-attached condition, as was 

observed in the upwind part of the rotation (around ȥ = 90°). As the angle of attack reduces 

significantly beyond ȥ = 270° (Figure 16), the simulation shows a gradually reducing depth 

of stall with the shed vortices also gradually reducing in size (Figures 19h to 19j), which 

matches the experimental measurements well (Figures 19c to 19e). The reattachment of the 

flow in the simulation again precedes that which is shown by PIV in the experiment by 

around 20° in ȥ. 



 

Figure 19. Plots of vorticity showing the downwind onset of stall, vortex shedding, and 
eventual reattachment as shown by the PIV measurements and as predicted using the CFD 
model for Ȝ = 3 
 
Summary of Simulated Flowfield at Ȝ = 3 

For the Ȝ = 3 condition, the position that the flow detaches from the blade surface is slightly 

delayed, more so than for the Ȝ = 2 condition, in both the upwind and downwind parts of the 

rotation. The shedding behaviour is again well-matched between CFD and PIV, with similar 

scales of vortices being shed at a similar rate. The most significant CFD-PIV differences are 

once again observed in predicting the reattachment process: only small differences are 

observed in the first reattachment at the mid-rotation point, a much earlier second 

reattachment is observed in the downwind part of the rotation, with the simulation showing 

earlier reattachment by around 20° in ȥ. With a slightly delayed stall and earlier 

reattachment, the simulation is likely to over predict the performance measured in the 

experiment, this is indeed the case as shown later in Section 3.2. 

 

3.1.3 Flowfield Analysis, Ȝ = 4 

At this condition, the turbine is generating power so more attached flow is likely to be seen in 

both the simulations and experimental data. Later detachment of the flow is seen now, from 

between ȥ = 110° and ȥ = 120° where the CFD simulation shows a gradual detachment 

moving forward from the trailing edge (Figures 21f and 21g), which is similar to that in the 



experiment (Figures 21a and 21b). However, as the angle of attack reduces beyond as the 

rotor reaches ȥ = 130°, the simulation (Figures 21h and 21i) does not show the same vortex 

shedding as is shown in the experimental flowfield observations (Figures 21c and 21d). 

Figure 20 shows that Įc has already peaked ȥ = 105° however, at  ȥ = 130° Įc is beginning to 

drop rapidly and, in the experiment, a large vortex rolls up in the already separated flow as 

the ‘pitch-down’ motion occurs. In the experiment, the stalled flow eventually reattaches 

around ȥ = 180° (Figure 21e), but no large separation is shown in the CFD and the separation 

point simply retreats back toward the trailing edge as the angle of attack reduces (Figures 21d 

to 21e). As a result, the simulated drag between ȥ = 130° and 180° will be significantly 

higher than the experimental case, and the lift significantly lower. This is shown in the 

performance results at this TSR (see Figure 22) although the performance difference is also 

due to 3 dimensional effects not present in the CFD. Due to the significantly reduced relative 

velocity in the downwind part of the rotation, the range in  is greatly reduced (Figure 20), 

and attached flow is shown for all of the downwind part of the rotation. 

 

 

Figure 20. A plot of   vs    for  = 4, with key positions in the rotation indicated. 

 



 

Figure 21. Plots of vorticity showing the onset of stall, brief vortex shedding, and subsequent 
flow recovery as shown by the PIV measurements and as predicted using the CFD model for 
 = 4 
 

Summary of Simulated Flowfield at Ȝ = 4 

The lack of a flow separation in the latter stages of the upwind part of the rotation is the only 

main point to note when comparing the flowfields of the simulation and experiment for the Ȝ 

= 4 condition. The performance in this region of the rotation would certainly be very different 

between the CFD simulation and the experiment, with the simulation very likely to be 

predicting lower drag and higher lift than would be actually be experienced by the blade in 

the wind tunnel experiment. For the rest of the rotation, the flow is attached in both the 

simulation and experiment due to the lowered angle of attack. 

3.2 Linking Experimental and Simulated Performance 

Comparison of the CFD-simulated flowfield with the experimental observations by PIV has 

revealed a good match between the two, showing that it is possible to simulate the basic 

VAWT blade flow physics, which includes dynamic stall and reattachment. A good 

representation of the general flow physics is an important step towards a useful CFD VAWT 

model; however, a correct Cp prediction is likely to be the ultimate goal for most future 

studies. With this in mind, a comparison of the CFD-predicted Cp - Ȝ relationship with the 



experiment is made by adding Cp values from additional simulations to map-out the full 

curve.  

 Results of the CFD-predicted performance are shown alongside the experimental 

measurements in Figure 22. The first, and most obvious observation is that the maximum Cp 

is over-predicted in the simulation by a significant margin, but this is expected as the 2D 

simulation does not include all of the losses that exist in the experiment (which is of course 

3D) such as those due to blade tip effects and the interaction between the blades and the 

supporting structure. The simulation predicts Cp−max=0.36, whereas the experiment has 

measured Cp−max = 0.14, clearly the predicted blade forces are quite different between the two 

cases. However, it should be noted that from the perspective of this study the shape curve 

shape is well represented and that is most important: from Ȝ = 1 the Cp drops to form a 

negative trough in the performance curve just above Ȝ = 2, and from here performance 

rapidly improves with increasing Ȝ with both CFD and experiment crossing to positive Cp at 

similar Ȝ until a maximum Cp is encountered in both cases at around Ȝ = 4 after which, with 

further increases in Ȝ, a steep drop in performance in experienced.  

 

 

Figure 22. Cp−blade vs  as predicted by the CFD simulation and as measured in the 

experiment 

 

 The simulated Cp matches the experiment closely for low tip speed ratios, and the 

flowfield has previously been shown to compare well compared for Ȝ = 2. However, the 

differences in the Cp between CFD and experiment become more and more significant as Ȝ is 



increased. Increased stall delay and earlier flow reattachment were observed at Ȝ =3, and 

understandably the CFD predicts higher Cp at this tip speed ratio. Most significantly, no 

separation at all was predicted for Ȝ =4, which would be expected to lead to a significant 

over-estimation of Cp at this condition. Certainly, some differences are expected due to 3D 

effects: a similar comparison between experiment and 2D CFD has been shown by [7], whose 

blades had a similar aspect ratio of 17. Further to this, [18] show a much improved match 

between experimental results and their 3D CFD simulations while the equivalent 2D CFD 

results were shown to give substantial over-prediction. However, the model turbine used by 

Howell et al. had a very low aspect ratio of 4 (in this study it is 15), and so the substantial 2D 

CFD versus 3D CFD differences are not surprising. Induced drag effects increase with the 

square of lift, and so the wing-tip effect would be expected to become more significant as the 

blade reaches an optimum Ȝ and the blade spends more of the rotation at a high-lifting 

condition. Results obtained by [23] have shown an increased effect of aspect ratio with Ȝ, 

with a change in aspect ratio AR from 160 to 15 leading to an approximate Cp drop of 1/3 at 

Ȝ = 5 and only 1/5 at Ȝ = 3. This may, in part, account for why the flowfield visualisations 

match-up reasonably well, yet the Cp prediction does not. Further to this, a poor prediction of 

zero-lift drag, which has the most influence at high Ȝ [23] where the range in Į  is lowest, 

may also be the cause of differences. Additional investigations would be required to better 

evaluate the model’s ability to correctly predict the viscous drag, the contribution of which is 

most significant at low angle of attack. 

4 ωonclusion 

The comparison of the CFD-simulated and experimental flowfields have shown a good match 

at the three different tip speed ratios tested. The basic process of attached flow, stall, vortex 

shedding and reattachment is shown for the Ȝ = 2 and 3 conditions, although the brief stall at 

Ȝ = 4 is missing in the simulations. A small delay in detachment and earlier reattachment is 

shown in the simulation, indicating that the CFD-simulated flow is generally more inclined to 

be attached to the blade surface. 

 Significant differences between simulated and experimental Cp is noted at higher Ȝ. 

However, in general, the performance curve is well-formed, with the same basic trends 

observed with changing Ȝ (albeit they are scaled by larger amounts) and the gradients in the 

curve at each of these points are very similar. This all suggests that similar fundamental 

changes in the flow physics are contributing to the change in curve shape at each condition in 



both the simulation and the experimental case. Further work is required to assess the impact 

of three-dimensional effects on VAWT performance, particularly at higher tip speed ratios, 

this being crucial to correct prediction if aiming to realise any real-word device. 

 Based on the results and analysis in this study, the continued use of the CFD model is 

well-justified, particularly where supplemented with experimental data for validation.  
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