This is a repository copy of Deterministic Scheduling of Time Petri Nets.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/80379/

Monograph:

Hayat, A. and Bennett, S. (1996) Deterministic Scheduling of Time Petri Nets. Research
Report. ACSE Research Report 457 . Department of Automatic Control and Systems
Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Deterministic Scheduling of Time Petri Nets

A. Hayat and S. Bexjnett
Deptt. of Automatic Control and Systems Engg.

University of Sheffield
Mappin Street, Sheffield S1 3JD.

June 05, 1996

Research Report No. 628

629

(S)

20036161

(I

Deterministic Scheduling of Time Petri Nets

Abstract
Time Petri nets (TPNs) can be viewed as a natural time-extension of causal PNs for
modeling of discrete event systems. In this report we define states and firing rules for
TPNs, and give a reachability algorithm to enumerate states under arbitrary decisions for
s;:heduling time of events. Deterministic Scheduling of TPNs involve defining a rule for
these decisions, and the resulting model may be called a DSTPN. Beside the modeling of
non-determinism, zero-testability is another important feature of TPNs, which has been the
base of undecidability results about some important properties of TPNs. We show that
while DSTPNs retain the modeling power of TPNs, reachability analysis similar to causal
Petri nets is possible for some DSTPNs having important applications. We also point out a

flaw in the proof for undecidability of TPN properties, which renders it invalid.

Index Terms : Time Petri nets, discrete event systems, scheduling, reachability analysis,

decidability, boundedness, verification, transited-states, transition age vectors, zero

testability.

1 Introduction

A discrete event system (DES) consists of a number of activities or conditions, each of
which starts o‘r ends by an instantaneous event. The temporal constraints on each activity
may be expressed either by its duration or by delays and time-outs on its associated events.
The activities, and their associated events, also have causal relations such as concurrency,
conflicts, precedence and synchronization, with one another. An event is called enabled
when all of its constraints are satisfied. The number of events in a DES, which are
simultaneously enabled, and the time interval in which given event must occur are usually
bounded. However, DESs are generally non-deterministic with respect to occurrence of
the events because, most of the time both: (i) the next event to occur (or selection of
evenr) among a number of simultaneously enabled concurrent or conflicting events, and
(ii) the time of occurrence (or scheduling time) of the event, are undecided. This degree of
non-determinism complicates the analysis of DESs with respect to properties such as

safeness, liveness etc., as well as other performance measures.

Petri nets [1][2] are a mathematical tool which support modeling and analysis of the causal
relations of activities and events in a DES. The nondeterminisn of DESs about the
selection of events (modeled as transitions) is expressible by Petri nets, but being a causal
model, time is not relevant to Petri nets and therefore temporal constraints and scheduling
time of events can not be considered. In order to express temporal constraints and to
study their effect on the qualitative properties as well as to compute other quantitative
performance measures, such as completion time or periods of cyclic activities and resource

utilization, causal Petri nets need time extensions.

Several extensions to the Petri nets have been reported, with different objectives. Timed
Petri nets (TdPNs) [3], Time Petri nets (TPNs) [4], and Stochastic Petri nets (SPNs) [5]
are the three b‘asically different time extensions, whose theory and applications is reviewed
by Freedman [6]. In TdPNs the firing rule of transitions of causal Petri nets is changed to
allow the specification of fixed duration or delay of activities and events; the resulting
model is completely deterministic with respect to scheduling time of the events. Temporal
constraints like time out and due dates can not be specified in TdPNs, however, the model
has been useful to study cyclic processes [7][8]. SPNs and their variants, allow
specification of probability distributions with the firing of transitions, making them suitable
for markovian analysis to compute probability distribution of markings and other average
performance measures. TPNs can be viewed as a natural extension to Petri nets in
temporal space which allow realistic time bounds for the scheduling time of any event.
These are expressed as (o) (both being real numbers, with o < B) that is, a lower bound
‘0’ and an upper bound ‘B’. Causal Petri nets, under the assumption of being in temporal
space, can be considered as a special case of TPNs by setting (c,B) equal to (0,00). TdPNs
can also be expressed by TPN, by setting o equal to B, while the converse is not true.
TPNs require an extension, rather than a change, to the firing rule of transitions, so that
the non-determinism of PNs in both respects is preserved, and most of the temporal
constraints, particularly time-outs, can be specified. TPNs have been used for verification

of communication protocols [9][10], and safety analysis of real time systems [11].

Due to continuous nature of time, the non-determinism of scheduling time implies the

existence of an infinite number of schedules for a given event. Berthomieu and Diaz [9]

therefore, introduce state-classes as the infinite set of all states resulting by an infinite

number of schedules from a given state. They enumerate the state-classes of a TPN to
verify the correctness of the timing values specified for the system. However, termination
of the enumeration process is guaranteed only for the TPNs whose underlying causal PN
is bounded, which means unreliable verification of some properties for other TPNs. The
state-class graph also, being a representation of an infinite number of schedules, can not be

used for control and scheduling problems.

In this work, we introduce a re§triction on scheduling time of transitions. We show that
the TPN properties under the restriction, are decidable as for the causal Petri nets, and for
the general case we invalidate the undecidability proof given by Jones et. al. [12]. Our
approach makes the scheduling problem solvable for most of the quantitative and
qualitative performance measures, and it may also provide a step towards solving the

problem of the reliable verification of timing values.

2 Time Petri Net
ATPN at time 1=0, is a tuple (7, My), where 77 is a 6-tuple (P, T, B, F, o, B) defining

structure of the TPN, as:

* Pis a finite nonempty set of places Dis

« Tis finite nonempty set of transitions #;;

B is the backward incidence function with signature

B:TxP—=N

F'is the forward incidence function with signature

F:TxP—=N

« o and B are the minimum and maximum time functions with signatures
0: TR
B:T—> R respectively,
and VeeT: a@)<B()
e M) is the initial marking function with signature

My:P—N
where N is the set of nonnegative integers, R is the set of nonnegative real numbers, and
all values are static. The entries of o and B, will be denoted as a pair of values (a;, B;) for

transition #, where o; and ; represent the minimum time and maximum time, respectively,

to be elapsed before firing 7.

Definition 1
A transition t; is called mark enabled, iff:

V pe{pePI|B(t,p)>0}: M(p)2B(t,p) 9

A transition #; is called k-bounded if there exists a finite natural number k such that it can

not be mark-enabled more than k times simultaneously, in any state of the TPN. That is, if 4 '

R(So) is the set of all states of 2 TPN;

A pe {pe P 1 B(1, p) > 0}; YM(p)eR(So): M(p) <k- Bt , p) (1)

A transition may be called unbounded, if k can not be defined and (1) does not hold. A }
TPN is called t-bounded if (1) holds for all transitions, and it is called t-safe if k=1 for all
transitions. Correspondingly a TPN is t-unbounded if there is at least one unbounded ‘ i
transition. We will restrict our discussion in the following for r-safe TPNs. ‘

2.1 Statesin a TPN

The definition of TPN suggests that the causal Pétri nets can be handled as a special case
of a TPN. Hence, to facilitate our discussion, we need to keep a distinction between the
terms. We will consider ‘causal Petri nets’ as the Petri nets which do not involve
consideration of time in any way, and ‘Petri nézs’ as the special case of TPNs for which
the following holds:
VieT: (o), B(r)) = (0,)

'I:he effect of unbounded firing interval in Petri nets is that the possible firing sequences
(and the resulting markings) are independent of the transition firing time. However, the
firing sequences of a TPN, with one or more transitions with bounded interval, may vary
by firing a transition at different times. This means that, while the state of PNs (or causal
PNs) could sufficiently be described by its marking, we generally need to incorporate time
based parameters as well as marking, to express the state of TPNs. The time related
parameter, used by Berthomieu and Diaz [9], is called the remaining enabling time (RET)
vector, which is conceptually the same as the residual firing time vector used for TdPN
models [8]. In the following, we use a time parameter which leads to a natural definition
of TPN states. It also allows simple rules for transition firings and a reachability algorithm
similar to causal Petri nets.
Definition 2

The state § of a TPN at time T, can be defined as a pair § = (M, U):

» M is the marking vector,

« U is the age vector, which gives duration of a transition for which it has been mark-

enabled continuously;

U:T—R &

R

. \ R, LK I‘lA- 8 .
e . il AR B X Dt TR
—ws%‘hi..wum~mm'%'.u-m EL A £ & el B -

P

SRR T
e B %

An entry of U may be denoted by u; for brevity, and we call it the age of the transition.
Unlike the marking vector (where zero value of M(p;) means absence of any token at p;),

for the age vector U, when 1; is not mark-enabled, ; is non-existent and is denoted by ‘¢ .

The Definition 2 implies that, being a continuous time model, every state of a TPN is an
instantaneous state, and there may be infinite number of states between any time interval.
At a given time 7, if no transition fires then the TPN is in one state only, denoted as S; .
The firing of one or more transitions at time T, will result in a number of valid states at the
‘$ame instant, which may be denoted as Sy, with i = 1,2,3, - - - . The maximum number of
states at given time, by firing of n transitions, is (1+ n). The actual number may be less due

to possible simultaneous firing of transitions.

Definition 3
A transition 1; is called time enabled or fireable, iff:

o S u <P 3
The times o; and B; for transition t; are relative to the moment at which transition t; is
mark-enabled. Assuming that transition ¢ is mark-enabled at an absolute time T, then #; can
not fire, while being continuously enabled, before time (T + ;) and must fire before or at
the latest time (T + B,). If transition #; does not remain mark-enabled, this means that
another transition #» has been fired; firing 7, may lead to a new marking, at a different

absolute time 7’.

In a TPN model, the firing of a transition is instantaneous. This means that, the duration of
the event to be represented by a transition, must be zero or negligible with respect to all

other time values specified in the model, otherwise it should appear as a time label of the

y et

SEPRTORR SRS S & SR

g

e

transition. Furthermore, the pair (o, , ;) may not be specified for a transition 1, if the

modeled event has an unbounded time interval of (0,).

As an example, consider the TPN given in Figure 1, representing a producer-consumer
system. Process ‘A’, described by transitions #; and 1, sends a message, that is consumed
by process ‘B’, in a single action represented by ;. Each transition has its associated firing
interval. The place py, is to implement the restriction on simultaneous multiple enableness
of t;. The initial marking M, = [1, 0, 0, 1], and age vectoratt=0.0,isU=[0,0, ¢],

hence initial state is S = (M,, U), where only t; is mark-enabled, and will be fireable

between T = 1.0 to 6.0.

t3(2.0. 4.0)

Figure 1

2.2 Firing Rule Between States

Like causal Petri nets, there may be more than one mark-enabled or fireable transitions in
a TPN, simultaneously. The choice as to which should fire may be made by a transition
firing control algorithm. However, the change in the state, simulating the dynamic

behavior of the system, occurs according to the following transition (firing) rule:

Assuming that a transition £, is fireable at time 1 from state § = (M, U). Then the state S’

=(M", U"), reached from § by firing #; at time T can be computed in two steps.

1) M’ is computed, for all places:

VpeP: M (p)=M(p)- B, p)+ F(, p)

2) U’ is updated, for all transitions:
Vie {1eT | (1is mark-enabled) A ((U(t)=¢) v (t=1))): U ()= 0.0
Vie {teT| (tisdisabled) }: U’ () = ¢

Note that step-1 is the only step required for Petri Nets, the step-2 is required to avoid
violation of time bounds on the transitions by the control algorithm. The condition of (z =
1;) in step-2, is required, because if ¢ is the transition which was fired and is again mark-
'e_nabled then its age u; should be reinitialized to pass its minimum period of ¢, before it is
fireable. This is also in accordance with the restriction on simultaneous multiple enableness
of transitions. When ¢ is not the fired transition, the condition (U(t) = ¢) is to confirm that

only the age values of those transitions which are mark-enabled by the firing of #;, are

initialized.

For instance, for the net in Figure 1, as shown above, if M, = [1, 0, 0, 1] and only ¢,
satisfies the condition of being mark-enabled, then ¢, can fire any time between T = 1.0 to

6.0. Let it fire at T = 4.25, then the two states at same instant in order of occurrence are;

Sl 4.25) = (MU] [425’ ¢‘, q)])
S2u29= ([0,1,1,1], [¢,0.0,0.0])

In the final state of T = 4.25, 1, and t; are mark-enabled. The time margins for ¢, and 1;, to

fire are

T=425+1.0 to 4.25+6.0=5.25 to 10.25 and
T=425+20 to 425+4.0=6.25t08.25 respectively.

However, these margins may be changed after the decision is made by the given control

algorithm which may require to fire 1, and 1;, simultaneously, or prioritize one over the

10

=%
o
i

other. Let the algorithm select 1, to fire first, then its reduced time margin is from T = 5.25
to 8.25, because firing of #; can not be delayed more than T = 8.25, and if 7, is to fire at the
Jast instant of the reduced interval then z; will also fire at the same time instant.

Let 1, fire at T = 6.8, the two consecutive states are:
S 6.8) = ([0, 1,1,1], [¢s 2.53, 2.55])
SZ(6.8)= ([1’ 07 l,]-] 1 [001 ¢$ 255])

In S; 8 » and 13 are mark-enabled, but only 7; is fireable. Again, to meet some
performance objective, firing of #; may be delayed further for a period of 1.45 time units,
ahd t; may fire at/after 1="7.8 .

If ¢, fires at T = 8.0, then
S}(B.U)'-_ (I]-!Osly]]![l'zv ¢, 375])
SZ (8.0) = ([0, 11 2a 1] ’ {¢v OO? 375})

where only ; can fire between 1= 8.0 to 8.25,

By firing ¢; at same instant T = 8.0,

S;e0= ([0,1,1,1],1¢,0.0,0.0])

and so on.

Note that T = 8.0 has three states, and there is no fireable transition in its final state that is
S3.07 For some TPN models this may not be the case and at a certain time there may
always exist at least one fireable transition, and a given control algorithm may be locked
into a loop of firings at this instant, or an independent time advancing mechanism may
allow the algorithm to exit the loop with different states for different runs of the algorithm.
To avoid such a condition, the structure of a TPN model may always be restricted from

having any loop so that the sum of earliest firing times of all transitions in the loop is zero.

11

3 Reachability Algorithm for TPNs
The reachability tree of causal Petri nets [1][2], gives the set of all markings or states

reachable from M. It follows from Definition 2, that for TPNs, without the firing of a
transition, an infinite number of states can be reached. Hence, to obtain a meaningful
reachability tree for TPNs, we need to distinguish the states immediately reached by firing

of transitions, from the states reached by aging of transitions.

Definition 4
The state Siy = (M, U) fori=2,3,4- - -, which occurs by firing of a transition, is
zalled a transited-state, denoted as .§} withj=1,2,3, -, thatis Sj =M, U). %

Initial state Si) = (M, , Up) is the initial transited-state R, , assumed to be result of some

firing before 1= 0.

Definition 5
A transited-state S, is called reachable from a state S, if there exists a sequence

of firings that transforms Svg to S,. ¢

v

A firing sequence is denoted by =38, 1, §; , S; 5. 8; --- 1, §,, orsimplycs= 1
t3 - -+ 1,. In this case, S, is reachable from $, and we write So[6>3,. The set of all
possible transited states reachable from So, in a TPN “7 * is denoted as R(, $,) or
simply R(S,), and the set of all possible firing sequences from S, is denoted by L(57, Sp) or

simply L(S,).

Definition 6
Two transited-states § = (M, U) and §' = (M’, U’) are identical iff:

VpeP: M(p) = M’ (p)

12

and VeeT:U@)=U (1) &
An essential step for a state reachability algorithm is to check repeatedly for any unfired
transitions fro;n the previously enumerated states, which may be selected next to fire, that
is scheduleable. For (causal) Petri nets we do not distinguish between a mark-enabled

transition and a fireable transition, hence every mark-enabled transition is scheduleable.

However, for time Petri nets we need the following definition.

Definition 7
o A transition 1; is called scheduleable, iff;

Vie {teT| (t is mark-enabled) }: (o(t) - Ut) < B@) - U@2)))
The reason for above condition is that, if a transition is not fireable in the given state, due
to its age being less than its a-value, then it still can be selected to fire provided that a
valid state where ¢, is fireable, can be obtained. The above condition is always true when
U(t) =2 aut)), that is ¢; is fireable in the given state. When U(t;) < a(z;) then to fire #;, we
need to age all mark-enabled transitions at least by (ou(t;) — U(1;)) to reach a state where L

is fireable. The above condition confirms that this minimum increment will not let the age

of any transition exceed its B-value.

Assuming that #; is scheduleable in S, there may exist an infinite number of states where #;
is fireable without requiring to fire any other transition before it, during the time interval

bounded by (T + v;) and (T + v,), where

V= max(O y Ol — U) (2)
v, =min(Vte {te T| (¢ is mark-enabled in §) }: B(t) - U(r)) (3)
and, wiandU € §

13

Since v; and v, depend only upon the age vector in the given state Si,and not the absolute
time T, hence we will refer to this interval as (v; , v;) or scheduling interval, for a given
scheduleable transition in §. Any of the possibly infinite number of values ‘v’ in the interval
(v1 , v2) can be added to the age vector of S, to obtain a fireable state S for t;, as follows;

Vie (te T (1 is mark-enabled in §) }: Us(t) = Us(t) + v 4)

The distinction of fireable and scheduleable transitions in TPNs, therefore, require the
addition of Step 2.4.1 in the following transited-state reachability algorithm, which

otherwise is similar to the algorithm for causal Petri nets, given by Murata [2].

Algorithm for Transited-States Reachabilitv Tree of a TPN

Step 1) Label the initial state S, as the root and tag it ‘new’.
Step 2) While ‘new’ transited-states exist, do the following;
Step 2.1) Select a new transited-state S.
Step 2.2) If § is identical to a transited-state on the path from the root to S, then
tag S ‘old’, and go to another new transited-state.
Step 2.3) If no transitions are scheduleable at S, tag § ‘dead-end’.
Step 2.4) While there exist scheduleable transitions at S, do the following for
each scheduleable transition t at §:
Step 2.4.1) Obtain the state S, from S, where t should fire.
Step 2.4.2) Obtain the transited-state § that results from firing tat S.
Step 2.4.3) Introduce §' as a node, draw an arc with label t from S0 S,
and tag §’ ‘new’.

Figure 2, shows the (partial) transited-state reachability tree, representing the arbitrary
choices we made in Section 2.2, for the TPN of Figure 1. The arc labels represent the fired
transitions and the increment ‘v’ chosen to reach its fireable state. Each occurrence of the

symbol ‘v’ represents a different value, depending upon its parent transited-state and the

transition being fired.

7 b
b Mo, %

([1.0,0,1],[0.0, ¢, ¢])

@ 4.25)1
(O.LL1).1 6,00,00]) _ (1. v)
| T
(2, 255)
([1,0,1.11,1 0.0, ¢, 2.55)) (. v)

T~

(1), 1.20) “-.
([0,1,2,13, [¢,0.0,3.75]) (n,0.0)
([0.1,1.1], [4, 0.0,0.0D

Figure 2. A transited-state reachability tree.

4 Deterministic Scheduling Time Petri Nets

The example of Figure 2, shows that by arbitrary choices in the scheduling interval an
infinite number of different transited states can be enumerated for the same firing sequence
from the initial state. This makes the tasks of finding schedules or verifying most of the
system properties by its reachability tree, unrealizable. However, these tasks can be
performed for a TPN model which has some restriction about selection of time in the
scheduling interval. This is, particularly, fruitful for the problem of finding schedules to
optimize some regular performance measure. A performance measure is called regular, if it
can not be improved by an arbitrary delay in the occurrence of any event [13], which
means that we caﬁ find an optimal schedule from the reachability tree drawn by firing
every transition at the earliest time in the scheduling interval, that is v,. Application of any
rule governing choices from the scheduling intervals, reduces the non-determinism of the
TPN model with respect to the scheduling time of events. Particularly, when the rule is
such that there exists only one instant in the scheduling interval for the selected transition,
the scheduling time is decided as soon as a scheduleable transition is selected. The model
may, therefore, be called Deterministic Scheduling Time Petri Net (DSTPN). Note that

DSTPNs are still non-deterministic as compared with TdPNs [3], for which the scheduling

15

time is decided as soon as the transition is mark-enabled. It is obvious that an unlimited

number of different rules can be described to produce different DSTPNs.

For the reachability tree of any DSTPN to be a useful analysis tool it shquld be of a finite
size, but as we will see in the next section that, though a DSTPN has reduced
nondeterminism, it can still generate an infinite number of transited-states. Finiteness of
the reachability tree of a DSTPN is the problem which we address in the next section. Due
to their practical importance our discussion \-Nill be limited to DSTPNs with earliest firing
Tule (to be called earliest scheduling TPNs or ESTPNs for brevity). However, our
arguments can be found valid for most of the other DSTPNS.

4.1 Finiteness of Transited-State Reachability Tree

A transited-state reachability tree may be infinite, that is the state enumeration process
does not terminate, if the number of distinguishable marking or age vectors is infinite and
the check for identical states (Definition 6) fails to keep the tree bounded. Figure 3 shows
an example where an infinite number of age vectors may be generated by the above
reachability algorithm. By drawing an arc from transition #, to p,, in the example, the
reachability tree will also have an infinite number of marking vectors. However, the
number of age vectors in the transited-states (for brevity we will call them transited-age
vectors) for the ESTPN in Figure 3, is finite if the transition #, has finite value of B.
Alternatively, the tree can be made finite by extending the set of nonnegative real numbers
with symbol ‘@’, which can be thought of as “infinity” having the properties that for each
real number r: @ >r, @+ r = @, and ® 2 W. We know that the reachability tree is

constructed by finding and firing the scheduleable transitions (Definition 7) in each

16

transited-state. The number and fireability of the scheduleable transitions in a given state,

remain unaffected if the age of any transition with infinite value of B, is replaced by the

symbol ‘@, whenever it is greater than the corresponding a-value. This is illustrated for

the given example in Figure 3(c).

((1,1.00.0,0.0D_ (,,0.0)

(,1.0) l [1.01.100.6]) (1.1.0)

M= |
e)
(0.1.100. 10D _ (5, 00) (110,100,601
t IO)l > ol
0.1 b (110, 100,0) __ (1.1.0)
y (1.0, 1.0} 1 ""‘-l
¢

([L13.10.0,200)_ (1,,0.0) ([1,01,10.0, D
(0.0, =) 1 .10) l old

(11,0, 00,61 (1,10
(a) An ESTPN model ; ([1,0],[0.0,¢1)

' () An infinite Reachability tree ‘old’
([1.1,10.0,0.0)_ (1. 0.0)
(”'“”l (1.01,10.0,0)) (4,10
\‘
(L1.100.8) _ (.00 ({1.0].[0-0.4»11(?
2, 0. old"
(n.1.0)
(1,0, [0.0,¢D_ (n.1.0)
\-\-‘
([1.1],1 0.0, @) ([1,0,[0.0,0])
‘old’ ‘old’
(¢) A finite Reachability tree
Figure 3

The step 2.4 of the reachability algorithm is therefore modified as follows;

Step 2.4) While there exist scheduleable transitions at S, do the following for

each scheduleable transition t at S:

Step 2.4.1) Obtain the state S, from S, where t should fire.

Step 2.4.2) Obtain the transited-state 8’ that results from firing t at S.

Step 2.4.3) Replace U’ (1) by ® for each transition t for which B(t)= e
and U’ (t) > aft).

Step 2.4.4) Introduce 8’ as a node, draw an arc with label t fromSto S,
and tag S’ ‘new’.

17

Due to our inability to prove the finiteness of the transited-age vectors when either of the

o and P values is an irrational number, we will restrict the following discussion for
ESTPNs with ‘a and B values from the set of rational numbers. However, examples may

be given of ESTPNs where the time bounds are irrational numbers and the number of

transited-age vectors is finite.

Lemma 1

For a finite set of rational numbers there exists a sizable (non-infinitesimal) number
“x’ so that each member of the set is an integer multiple of ‘x’, and difference of any two
members of the set is also an integer multiple of ‘x’.
Proof:

A rational number can be written as a quotient ”/,, where p and q are integers. If

there are n members in the set then each member ‘i’ can be written as

r 19, 1
—L£de sothat x=—2-—
H‘h H‘b‘

=1 J=1

=i
Theorem 1

For a r-safe ESTPN with an extended set of nonnegative real numbers (the

nonnegative real numbers plus the symbol @), the number of transited-age vectors is finite.

Proof:
In the reachability tree of a r-safe ESTPN, at a given time and with any marking

vector, the entries in the transited-age vectors are either null (that is ‘"), or nonnegative
real numbers from a bounded domain of 0 and B values, or @. That is, there are either a
finite number of symbols or real numbers from a bounded domain, to appear at any entry

in the transited-age vector. The number of distinguishable instances of such vector can be

18

VT Y

infinite if and only if the difference of entries of any two instances is infinitesimal. We

know that the difference of ‘¢’ and a real number ‘r’ is undefined. The difference of
‘@'and a ﬁnite real number ‘r’ is. ‘@’, which is also not infinitesimal. The difference of two
entries both with finite real numbers can be infinitesimal in the space of states of a ESTPN
but not in the space of the transited states, because starting from the initial state the age
vectors of all successive transited-age vectors are generated by applying (2) and (4). That
is the real number values in all transited-age vectors are an integer multiple of the non-
infinitesimal real number ‘x’ (Lerﬁma 1), hence the difference of finite real numbers at the
corresponding entries in any two vectors is also an integer multiple of ‘x’. Hence, the

number of transited-age vectors is finite. |

As mentioned above, the second cause which makes the reachability tree infinite is the
number of distinguishable marking vectors. We know that in the enumeration process of
causal Petri nets, the marking of a place(s) is decided unbounded if there exists a firing
sequence which can occur infinitely often, and each occurrence of the sequence produces
the marking vectors where the marking of the place(s) is increased and the recurrence of
the sequence is possible. The state from where starts the first occurrence of the sequence
is called coverable by the state which has increased number of tokens and cause
recurrence of the sequence. For causal Petri nets presence of coverable states (marking
vectors) is checked as follows on the path from the root marking to every lately generated
state (marking vector) M’, [1];

For causal Petri nets, a marking M is coverable by marking M ” iff:

DM =M

19

ii) VpeP: M’ (p)2M (p)

Since mark-enableness of a transition in causal Petri nets, does not guarantee that it will
fire, hence the above definition does not check whether the increase in marking can mark-
enable some transition. However, due to bound on the maximum age of a transition in
TPNs, decision of unboundedness of any place(s), require to ensure that the increase in
marking will not enable any transition, which has not fired yet in the recurring sequence,

because firing of any new transition in the previously recurring sequence may change the

-
T

course of future firings and keep a place from being bounded or unbounded. Accordingly,
we extend the definition of coverability for TPNs in the following;
Definition 8
A transited-state § = (M, U), of a Time Petri Net, is called coverable by another
transited-state §' = (M’, U’) if all of the following conditions hold;
VE
ii) Vpe P: M’ (p) = M(p)
ii) Vpe {pe P IM’ (p) > M(p)) Vi { teT1B(1, p)> 0}: (B()= =) v (M(p) 2 B(t, p))
wv)VieT: U @=U®
¢
The condition (iv) is required to confirm that § generates the same firing sequence as $".
Note that for Petri nets the condition (iii) is always true and the coverability may be

decided, as for the corresponding causal Petri nets, under the earliest firing rule.

The number of marking vectors for reachability tree of ESTPNs can be made finite, in

similar way as for causal Petri nets [1] by extending the set of nonnegative integers with

symbol ‘@', which can be thought of as “inﬁm’ty” having the properties that for each

integer n: @>n, ®Efn =@ and ® 2 @ The step 2.4 of the reachability algorithm is
further modified as follows;
Step 2.4) While there exist scheduleable transitions at S, do the following for
each scheduleable transition t at S:
Step 2.4.1) Obtain the state S, from §, where t is fireable.
Step 2.4.2) Obtain the transited-state S’ that results from firing tat S.
Step 2.4.3) Replace U’ (t) by @ for each transition t for which B(t)= o
and U’ (1) > af1).
Step 2.4.4) On the path from the root to §' if there exists an state §”,
-~ which is coverable by §’ then replace M’ (1) by w for each p
considered in the condition (iii) of coverability.

Step 2.4.5) Introduce §' as a node, draw an arc with label t fromSto§,
and tag §' ‘new’.

We can now prove the finiteness of the transited-state reachability tree by following

lemma.

Lemma 2

For a r-safe ESTPN, the ordered set of different transited-age vectors reachable for
a marking vector M, in a transited-state reachability tree is the same as that for the
marking vector M’, whenever M and M’ satisfy the following conditions
1) VpeP: M (p)2M(p)
ii) Vpe {pe P IM’ (p) > M(p)} Vie { te T 1B(t, p)>0}: M(p) 2 B(t, p)

Proof:

The given conditions assert that both M and M’ has a number of tokens equal to,
or greater than the minimum number of tokens required to mark-enable a certain sub-set
of transitions. Since mark-enableness (Definition 1) of transitions in z-safe ESTPNS, is

unaffected by the excess of tokens, hence the null ‘¢’ entries in the two sets of the age

21

vectors remain the same. Similarly, the real number entries in the two ordered sets are

obtained from (2) and (4), which also does not depend upon the number of tokens
contained by the input places of the mark-enabled transitions. Hence, the two ordered sets

of the transited-age vectors are same. [

Theorem 2
For a t-safe ESTPN with extended set of nonnegative integers (the nonnegative

integers plus the symbol), the number of marking vectors on any path in the reachability
tree is finite.
Proof:

First assuming that all places of given ESTPN are bounded. That is there is a lower
and upper bound for the integers to occur at any entry of the n-dimensional marking
vector, hence the number of instances of such vector are finite. Now we assume that on a
given path from the root of the reachability tree, some of the places are unbounded, so
that the marking vector can be considered as composed of two sub-marking vectors one
of bounded places and the other of unbounded places. The number of marking vectors on
any path can be infinite if and only if the number of unbounded sub-marking vectors are
infinite, that is new sub-marking vectors are generated where markings of the places are
increased and at least one of the coverability conditions always fail, so that marking of the
unbounded places can not be replaced by symbol ‘@’. But: Condition (i) of coverability is
always true because a marking vector with increased number of tokens represent a
different transited-state. Condition (ii) is always true for marking vectors with equal or

increased number of tokens at all places. Given that the weights of all backward incidence

~ Yy

arcs from any transition, are finite numbers, the Condition (iii) also becomes persistently
true after the marking of unbounded places exceeds a finite number. Finally, due to
Lemma 2, thc;, ordered set of transited-age vectors is same for two marking vectors
satisfying conditions (ii) and (iii), hence Condition (iv) is always satisfied at each step in
the recurrence of any firing sequence. Since at least one entry of the unbounded sub-
marking vector can be replaced by ‘w’ after a finite number of increased markings, hence
all finite number of entries will be replaced by ‘@’ after a finite number of the unbounded
'.{ub—markjng vectors are generated. Since the number of both sub-marking vectors are

finite, hence the number of marking vectors on any path is finite. =

To this point, following (1) we have restricted the (ES)TPNs to be t-safe, for convenience
in the discussion and to keep the notations simple. However, its easing off may be
desirable in some applications. The multiple mark-enablness of a transition means that we
have multiple records or instances of the transition in the age vector, each of which is
invoked, possibly at different times by arrival of the minimum number of extra tokens
required for mark-enableness (Definition 1). Our previous discussion can easily be
extended for r-bounded (ES)TPNs, and the arguments remain valid because the age vector
require only finite number of additional records for any transition. The case of f-
unbounded (ES)TPNs however, has a peculiar annotation; a transition can be unbounded
if and only if all of its input places are unbounded, but a place can not be declared
unbounded if it does not have the minimum number of tokens required to enable all
instances of its output transitions. This means that unless the term ‘unboundedness’ of a

transition implies the unboundedness of its input places, it can not be applied to a

23

o

s

i
i

i,

i -;:{‘,}iﬁ :
TR

.
ple

bt e

A

ik

1

i

.,.:;‘g*a-:i“é;.i?-?ﬂ”‘;\':m FRETAT , Bk L.‘:.;;x’;_ o : =8 _‘. i ~.‘-:. ""._ —:-‘ T D i

Ehg Ria s

g 7 : """

S L 8 S i L

transition and its input places at the same time. Hence, we need only consider t-bounded

case, by making k greater than the Jargest number specified for any k-bounded transition.

Theorem 3
For an ESTPN with extended set of nonnegative integers (the nonnegative integers

plus the symbol @) for the marking vectors, and the extended set of nonnegative real
numbers (the nonnegative real numbers plus the symbol @) for the age vectors, thg
transited-state reachability tree is finite.

Proof:

The number of transited-states is the product of the number of marking vectors
and transited-age vectors. Hence, it follows from Theorem 1 and Theorem 2 (both being
valid for t-bounded ESTPNs) that the number of transited-states on any path of the tree is
finite. It can be shown that for a tree with a maximum of n number of nodes on any path,
and m number of branches from any node (the number of scheduleable transitions from the

transited-state), the maximum number of nodes in the tree is given by

» 5
S

4.2 Properties of ESTPNs

The transited-state reachability algorithm produced after the modifications has strong
similarities with that of causal Petri nets. This means that we can decide at least the same
properties of ESTPNs as of causal Petri nets, by reachability analysis [1]. Boundedness of
buffers in manufacturing and communication systems, is one of the important properties
which can be tested using the reachability tree. An ESTPN or any place p, is bounded if

and only if the symbol w never appears for M(p) in the coverability tree. Conversely, if

24

the ESTPN is unbounded, then the number of reachable transited-states is infinite. Since
the reachability tree is finite, the symbol ‘@’ must appear to represent the infinite number
of marking vectors. However, as for causal Petri nets, since represents unlimited number

of markings at a place, hence reachability of a particular marking can not be decided from

the reachability tree.

TPNs have the ability to test a single place for zero, hence they can simulate Turing
machine. This capability lead Jones et. al. [12] to prove the reachability and boundedness
of TPNs undecidable. They argue that these properties can be decided if and only if the
halting problem of TPNs is decided, since TPNs simulate Turing machines for which the
halting problem is undecidable hence the given properties are also undecidable. It is
obvious that by restricting TPN transitions to fire at their earliest firing time, we do not
lose its modeling power, hence the argument of Jones et. al. applies to boundedness of
ESTPNs as well, which we have shown decidable. This contradiction is due to an invalid
assumption in [12]. The reachability problem considered in Petri net literature, may be
stated as: ‘is a given marking reachable?’ or ‘can a given marking be reached?’, and the
boundedness problem about a place: ‘does there exist a finite natural number to be
specified as the maximum number of tokens which the place can have?’ It is obvious that
the two problems are of determining the capability of the model, whereas the halting
problem is a problem of predicting the future behavior of a Turing machine or TPN, which
may be stated as: ‘will it ever halt?’ Jones et. al. assume the logical similarity of the two

questions, which is not true. If the ‘can’ and ‘will’ questions were equivalent then halting

25

problem become trivially decidable, because the former asks about the capability of a

Turing machine to halt, which it is known 1o have.

5 Conclusion

There may exist an unlimited number of DSTPNs for any TPN. Computational cost aside,
the reachability analysis can be performed, at least for some of the DSTPNs. Similar
analysis for TPNs is apparently not possible due to non-determinism of the scheduling time
of transitions, but the undecidability of its properties is not confirmed and it is very
probable that some of them can be defined as a function of the decidable properties of a

finite number of DSTPNs.

REFERENCES

(1] J.L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs, N.J., 1981.

[2] T. Murata, “Petri nets: properties, analysis, and applications,” Proc.of the IEEE, vol. 77,
pp. 541-580, Apr. 1989.

[31 C. Ramchandani, “Analysis of asynchronous concurrent systems by Petri nets,” Ph.D.

dissertation, L.C.S/M.1.T., Cambridge, MA, Feb. 1974.

[4] P. Merlin, “A methodology for the design and implementation of communication

protocols,” IEEE Trans. Commun., vol. COM-24, pp. 614-621, 1976.

[5] MK. Molloy, “Performance modeling using stochastic Petri nets,” IEEE Trans.

Comput., vol. C-31, pp. 913-917, 1982.

26

;
5
-
3

(6]

(7]

(8]

9]

[10]

(11]

[12]

[13]

P. Freedman, “Time, Petri nets, and robotics,” IEEE Trans. on Robotics and Automat.,

vol. 7, pp. 417-433, 1991.

C. Ramamoorthy and G. Ho, “Performance evaluation of asynchronous concurrent

systems using Petri nets,” JEEE Trans. Software Eng., vol. SE-6, pp. 440-449, 1980.

J. Carlier and P. Chretienne, “Timed Petri net schedules,” Advances in Petri nets,

Lecture Notes in Computer Science, vol. 340, pp. 62-84, 1988.

B. Berthomieu and M. Diaz, “Modeling and verification of time dependent systems

using Time Petri nets,” IEEE Trans. Software Eng., vol. 17, pp. 259-273, 1991.

T. Yoneda and Y. Tohma, “Acceleration of timing verification method based on Time

Petri nets,” Systems and Computers in Japan, vol. 22, pp. 37-52. 1991.

N.G. Leveson and J.L. Stolzy, “Safety analysis using Petri nets,” IEEE Trans. on

Software Eng., vol. 13, pp. 386-397, 1987.

N.D. Jones, L.H. Landweber, and Y.E. Lien, “Complexity of some problems in Petri

nets,” Theoretical Computer Science, vol. 4, pp. 277-299, 1977.

S. French, Sequencing and Scheduling - An Introduction to the Mathematics of the Job-

shop. Ellis Horwood Ltd., Chichester, 1982.

