The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Structure Detection for Nonlinear Rational Models Using
Genetic Algorithms..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/80349/

Monograph:

Billings, S.A. and Mao, K.Z. (1996) Structure Detection for Nonlinear Rational Models
Using Genetic Algorithms. Research Report. ACSE Research Report 634 . Department of
Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Structure Detection for Nonlinear Rational
Models Using Genetic Algorithms

S.A.Billings K.Z.Mao

Department of Automatic Control and Systems Engineering
University of Shefield
Mappin Street, Sheffield S1 3JD

United Kingdom

Research Report No. 634

July 12, 1996

=
ot

University of Sheffield




Structure Detection for Nonlinear Rational
Models Using Genetic Algorithms

S.A.Billings K.Z.Mao
Department of Automatic Control and Systems Engineering
University of Sheffield
Sheffield S1 3JD, UK

Abstract

A new nonlinear rational model identification algorithm is introduced based on
genetic algorithms. Compared with other rational model identification approaches,
the new algorithmn has two main advantages. First, this algorithm does not require a
linear-in-the-parameters regression equation, and as a consequence the severe noise
problems induced by multiplving ont the rational model are a‘?oided. Second, the
new algorithm provides near-optimal global parameter estimation. Unfortunately,
this is balanced by an enormous computational load even when identifying models
which consist of modest parameter sets. Simulated examples are included to illus-
trate that the new algorithm works well on simple simulated examples but can fail

when applied in more realistic situations.

Introduction

In the past few years, nonlinear polynomial models have received considerable attention
(Leontaritis and Billings 1985a, 1985b, Billings and Chen 1989a, Chen and Billings 1989,
Haber and Unbehauen 1990). Nonlinear polynomial models are fine for many applications
(Billings et ol 1988, Hernandez and Arkun 1993, Proll and Karim 1994, Sriniwas et al
1995, Thomson et al 1996) but alternative expansions may provide a more concise approx-

imation for severely nonlinear systems (Billings and Chen 1989b). The nonlinear rational
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model formulation, defined as the ratio of two nonlinear polynomial expansions, was re-
cently introduced as an alternative to the polynomial model. Parameterization of systems
with rational models offers substantial advantages compared with linear or nonlinear poly-
nomial expansions (Ratkowsky 1987, Ponton 1993). However the rational model is much
more difficult to identify because of the inherent nonlinear-in-the-parameters model ex-
pression. One of the first algorithms for nonlinear dynamic rational model identification
was the prediction error estimation algorithm'introduced by Billings and Chen (1989b).
The main disadvantage of this approach was that nonlinear optimization was an inherent
part of the algorithm. The second approach was the Rational Model Estimator (Billings
and Zhu 1991, 1994a, Zhu and Billings 1993). This method involved multiplying out
the rational model to form a linear-in-the-parameters regression equation so that linear
least squares estimation algorithnis can be applied to identify nonlinear rational models.
But multiplying out the model induces a severe noise problem which will result in biased
estimates even if the noise on the output is additive and white. This was overcome in
the Rational Model Estimator (RME) by reformulating the least squares estimator using
a new iterative procedure to essentially estimate and remove the bias terms induced by
the noise. Structure detection was also incorporated to determine the significant terms in
the model prior to final estimation. The third approach is the smoothed data identifica-
tion algorithm derived by Billings and Mao (1996). This is based on smoothing the raw
data using a NARMAX smoother and then performing the identification based on the
smoothed data. If the smoother is properly constructed, preprocessing the data alleviates
the severe noise problems which arise from multiplying out the model and allows all the
well developed structure detection and parameter estimation algorithms for polynomial

models to be applied to rational models.

In the present study, a new rational model identification algorithm based on genetic al-
gorithms (GAs) is introduced. Genetic algorithms are a class of randomized search and
optimization techniques motivated by the principle of natural evolution and population
genetics (Goldberg 1989). Unlike other optimization methods, GAs can be applied to

a very wide range of problems and the solution is less likely to be forced into a local




minimum because of the random multi-point parallel search mechanism. These two char-
acteristics make GAs highly suitable for nonlinear rational model identification. There is
no need to multiply out the rational model to apply GAs, and consequently the severe
noise problems are avoided and the local minima problem which arises in the prediction
error estimation algorithm is overcome. However, our simulation studies showed that
these advantages were achieved at the expense of excessive computations. The new al-
gorithm worked well on simple simulated systems with modest candidate term sets. But

failed when applied to more realistic examples and to industrial data.

The paper is organized as follows. Previouly developed rational model identification al-
gorithms are briefly reviewed and analysed in §2.1. The basics of genetic algorithms
are introduced in §2.2.1. Genetic algorithms for nonlinear rational model parameter es-
timation and structure detection are discussed in §2.2.2. §3 presents several numerical

simulation examples to demonstrate the application of GAs in dynamic nonlinear rational

model identification.

2 Nonlinear rational model identification based on

genetic algorithms (GAs)

2.1 Nonlinear rational model identification algorithms: a brief

review and analysis

Consider the dynamic nonlinear rational model given by:
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where Fi(e) and Fy(e) are nonlinear polynomials functions of (s), u(k) and y(k) denote
the input and output at sampling instant k(k =0, 1,...) respectively, {e(k)} is an unob-
servable independent noise sequence with zero mean and finite variance which accounts
for uncertainties, possible noise and unmodeled dynamics, n, denotes the order, ¢,(k)

and 0, denote the regressor and the parameters respectively.

Because the nonlinear rational model is nonlinear in the parameters, ordinary least squares
algorithms can not be applied directly. So far three types of algorithm have been developed

to address the rational model identification problem.

2.1.1 Rational Model Estimator (RME) (Billings and Zhu 1991)

The motivation of RME is to multiply out the rational model to form a linear-in-the-
parameters regression equation so that linear least squares algorithms can be applied to

nonlinear rational model identification. Multiplying out equation (1) yields

Y(k) = Fy(e) = y(K)[Fu(o) — par(k)bar] + Fu(e)e(k)

= nf i (k)Bn; — w_zn i (k)y (k)04 + E(k)
= #(k)O +¢(k) )

where:

Y(k) = y(k)(,aﬂ(k)ﬂdl |9d1.—.1
(k) = Fy(e)e(k)
B = War oo Brnin Dl » oo Gdndm]T

(k) = [ni(R) - Prnpn (), —022(R)y(R) ... = Gun,,, (k)y(k)]

Notice that multiplying out the model induces a severe noise problem, because the residue




£(k) becomes highly correlated with the regressor ¢(k). This occurs even when the nojse
in eqn (1) is purely additive and white because of the term Fy(e)e(k) in eqn (2). This
is unique to the rational model and does not apply to the linear and polynomial model
forms. As a consequence estimates based on eqn (2) will be biased if ordinary least squares
algorithms are applied directly to eqn (2). The Rational Model Estimator (RME) was
derived as a reformulated least squares estimator to overcome this problem by iteratively
estimating and removing the bias terms caused by the correlation between (k) and ¢(k)

Billings and Zhu 1991, 1994, Zhu and Billings 1993).
g g

2.1.2 Smoothed Data Based Estimation Algorithm (Billings and Mao 1996)

Eqn (2) can also be written as

Mnum Nden Tden
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where

iree(k) = [pm (k) . Crnpur(k), —@a2(R)F(R) - . = Punye, (R)F(E)]

(k) = par(k)e(k)
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and F(k) is the current time noise free part of the noisy output y(k), which is uncorrelated
with the residue & (k). If 7(k) is initially extracted from the raw signal and the estimator
is then formulated based on eqn (3), most of the noise problems arising from multiplying

out the model can be avoided, and all the well developed nonlinear polynomial model




identification algorithms can be applied directly to rational models. Billings and Mao

(1996) showed that this idea works well in practice if a NARMAX smoothing algorithm
is used to preprocess the raw data to yield the signal (k) which can be used in eqn (3)

above.

2.1.3 Prediction Error Estimation Algorithm (Billings and Chen 1989b)

The prediction error estimation algorithm does not require a linear-in-the-parameters
regression equation and can be applied directly to eqn (1). The disadvantage of this algo-
rithm is that the estimates are determined using a nonlinear optimization procedure and

local minima can be a problem.

Structure detection, or determining from the raw data which are the significant terms
in the model, is an important step in any nonlinear identification procedure and all the
above algorithms incorporate some form of structure detection to ensure that parsimonious

models are identified.

2.2 Rational model identification using genetic algorithms
2.2.1 Genetic algorithms: Basic principles and features

Genetic algorithms (GAs) are a class of randomized search procedure which were initially
motivated by the principles of natural evolution and population genetics. Individuals
which fit the environment better will survive and hand down their chromosomes to their
descendants while less fit individuals will become extinct (Goldberg 1989, Davis 1989,
Fonseca and Fleming 1995). Basic genetic algorithms involve three operators: reproduc-
tion, crossover and mutation. Reproduction is a process in which a new generation is

produced by randomly selecting strings from an existing population according to their fit-




ness. This process means that individuals with a high fitness value obtain more copies in
the next generation, while less fit individuals may become extinct. Crossover is the most
dominant operator in GAs. Under this operation, a pair of strings are randomly selected,
a random point is chosen, and the right parts of the parents’ chromosomes are exchanged
to produce two new offsprings. Although this does not add any new genetic material to
the population, crossover allows recombining of good population chromosomes. Mutation
is a local operator which acts with a very low probability. Its role is to produce new genes
and to help the population evolution. Through successive applications of these three op-

erators the solution should converge to the global minimum.

Genetic algoritms (GAs) are distinguished from most other gradient based optimization

approaches by the following characteristics:

* GAs work with a coding of the parameter set, not the parameters themselves. Binary
encoding is normally used and has been suggested as being optimal in some cases.
But this is not a requirement of GAs and other encoding modes such as decimal

encoding can also be used (Billings and Zheng 1995).

e GAs are a class of multi-solution parallel search methods. Instead of pushing one
single candidate towards the optimal solution, GAs act on a candidate solution set
to explore several zones of the search space simultaneously. Consequently GAs are

capable of providing global near-optimal solutions.

® GAs use only the fitness function to guide the search, and can be applied to various

problems with no specific requirements on the problem forms.

* GAs are randomized algorithms because the search mechanism uses a probabilistic

operator.




2.2.2 GAs for dynamic rational model parameter estimation and structure

P
[

detection

Two of the attractive features of GAs are the simplicity and the multisolution parallel op-
timization mechanism. Unlike ordinary least squares estimation algorithms which require
linear-in-the-parameters regression equations, GAs are not restricted to specific forms of
problems. Moreover, the solution is less likely to be forced into a local minimum because
of the random multi-point parallel search mechanism. These two characteristics make
GAs suitable for nonlinear rational model identification. If GAs are applied, there is no
need to multiply out the rational model, and consequently the local minima problems
which can arise in prediction error estimation, and the severe noise problems which arise

if the model is multiplied out are both avoided.

(i) Cost function and fitness function

In system identification, a quadratic cost function is usually employed
N
A(N,0) = 3 u() - 1) @
=
where j(k) is the one step ahead predicted output. The objective is to find an estimation
O so that this cost function is minimized. However, models obtained by minimizing the
cost function J;(N, ©) might fail to capture the underlying dynamics in the data in cases
where the data is noisy and/or the model structure is unknown. Recently, regularization
was introduced to improve estimation accuracy (Hoerl and Kennard 1970, Barron and
Xiao 1991, Bishop 1991, Orr 1995, Mao et al 1996) and this approach can be used to
advantage in the new GA based algorithm for rational model structure detection. The

regularized solution for O is defined as the value which minimises

N
TN, 3,0) = = S [y(k) ~ G(K) + 6720 (5)
k=1




where A =diag{);, 1 =1,2,...,um + Tden }, A; > 0 is a scalar regularization parameter,

and diag(e) denotes a diagonal matrix.

Regularization helps to improve the structure detection to some extent. It has been
found, however, that using only this constraint does not yield a parsimonious model. To
overcome this problem, the model size is constrained by including the number of model

terms in the cos_’g 7f1}1j1c_tion
N
JB(N AaFYa @ nT Z y('lv ]\-)]2 GTA@ + ynr (6)

where ny denotes the number of terms included in the candidate models, and v is a

positive real number.

The GA search is guided by fitness, and therefore the value of the cost function should
be mapped into a fitness function. The fitness value is a measure of the minimization of
the cost function. The smaller the cost function value, the higher the fitness. Thus, the

fitness function should be inversely proportional to the cost function

f(e) 20

The windowing mapping scheme (Davis 1989) is employed in the present study to map
the inverse relation. A zero or a constant minimum fitness value is initially assigned to
the worst individual, then each individual of the population is assigned a fitness value

proportional to the amount of the cost less the cost of the worst case

fmaz(®) = frmin(e)

o) = frmaclo) = 8 = Toenle)

[J3(e) — J3min(0)] (7)

where J3in(e), J3maz(), and fmin(®), fmaz(®) denote the minimum and maximum cost
values, and the minimum and maximum fitness values respectively. & is a positive pa-

rameter which tunes the mapping between cost function and fitness function and which




is typically set in the range [1 10].

(ii) Encoding

Genetic algorithms work by coding the parameters, rather than with the parameters
themselves. Binary coding is normally used and has been suggested to be optimal in
many applications. A standard encoding is to concatenate the binary string of each real

parameter (assume there are n parameters and each parameter is represented by m bits)
FragPrgo s« Bymy o ony By Piga « « Bipns s+ § PP o0 P

where P;; denotes the jth bit of the ith parameter, this is either 1 or 0. In nonlinear
dynamic model identification, if the model structure is not known a priori , the number
of candidate terms will be excessively large even for simple rational models. For example,
a rational model with just two lagged outputs, inputs and noise terms will produce 56
candidate terms in a model of nonlinearity degree two. The presence of many insignificant
terms can affect the selection of the significant model terms. This problem can be solved
by using a variable length string coding mode and by constraining the model size. Variable

length coding is equivalent to forcing some parameters to be zero

m

—_——
FaaFomsss Baows s vl i oo « s Pt Bt « v o B,

How many and which parameters are zero are all unknown in the initial population set
and hence the number and position of the zero parameters is uniformly and randomly

distributed in the ranges [0,n — 1] and [1,n — 1] respectively.

(iii) Reproduction

The roulette wheel approach issemployed to implement the production procedure in this
study. Each string is allocated a slot of the roulette wheel subtending an angle propor-

tional to its fitness to the center of the wheel. A random number in the range of 0 to 27

10




is generated. A copy of a string goes to the mating pool if the random number falls in
the slot corresponding to the string. For a population with size I, the process is repeated

[/2 times and [ strings go into the mating pool.

(iv) Crossover

Multiple point crossover is applied in this study. After a pair of parent strings are ran-
domly selected, the parameter from which the two strings exchange the right parts should
be determined first. If any of the determined parameters in the two strings is zero, the
two strings exchange bits from the begining bit of the selected parameter in order not
to change the zero value of that parameter. If both of the two selected parameters are
not zero, the right parts of the two strings from a randomly selected bit in the selected
parameter are exchanged. The above procedure is repeated several times. This can be

brifely demonstrated by the following example.

First randomly selected a pair of parent strings

m

Pnl---an;---;R+11---P£+1maPi1---Pij—l-Pij-Pij+1---Pim;---PH---le

m
A

! ’ ! # r’ 1 7 I ’ I r
Pnl"'anu"'!Pi+11"'Pi+1mrpil"'Pij—lpijjjij+1"'Pimv"'Pll"'le

Then randomly select the parameter from which the two strings exchange their bits, for

example the ¢-th parameter P,.

If P; in one of the two strings is equal to zero, exchange the bits from the beginning bit

of that parameter to produce two offsprings

m
! [ i ' ’ [ '
Pﬂl"'an!"')R‘i'll"‘H‘l‘lm?Pil“‘Pij—IPijPij+l"'Pimi“'Pll"‘le

m

1 ’ 1 1
Pnl"‘anl"'JP;‘-}.ll""Pi+]m!Pi1"'Pijhlpijpfjﬁ-l"'Pim;"'Pll"‘le
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If P; in both strings is not zero, randomly select a bit from the parameter, for example

the j-th bit and exchange the bits from the j-th bit

m

et

1 I ) ! I
Pur...Pumy. o, Piyay oo Poyam, P .. . Py 1 PP, . P ...Pl,...P,

m

m

) ! I !

' I
Pnl"'an""’Pi-i-ll"'Pi+1m’Pi1"'Pij*lpijpij"'l"'Pim?"'PII"'le

The aim is not to change the zero parameter terms. The objective in combining this
crossover mode and the cost function Js(e) is to try and ensure that the algorithm pro-

vides a parsimonious model.

(v) Mutation

Mutation is a local operator that transfers the bits of a string. If the string is binary
encoded, 1 is replaced by 0, and 0 is replaced by 1. The operator is applied bit by bit
according to a predetermined mutation probability. The mutation operator enables GAs
to overcome local minima. The mutation probability is taken as 0.06 in the present study.

In order not to change the zera parameters, the mutation operation does not act on these.

(vi) Termination

- Usually the GA search procedure is terminated when the search arrives at a pre-specified
generation. In dynamic system identification, another termination rule based on model
validaty tests should also be satisfied. Two recently introduced tests (Billings and Zhu
1994b) based on higher order cross-correlation functions between the output, input and

residual are given by

D.2(7) = Z?:l(ﬁ(k)—g)(ez(kb‘r)_&) 05
(S (ek) - 22) (Zha(e2(k) - 2292))
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where

If the residues satisfy

B,.2(7) =

(9)

L3

€= — > ¢(k)
N k=1

— 9 i": .

ne = — U (k)
N k=1

7= L3 o

e = —
N k=1
kl >0 lf =10
0 otherwise

®,.2(r)=0 for any 7.

the estimated model is considered to be an unbiased representation of the system other-

wise the search procedure should be continued. In practice, the 95% confidence limits at

approximately 1.96/v/N are used to determine if the model is valid.

The successive application of these operators can be summarized as follows

(i) Generate an initial population set P consisting of [ individuals, where [ is the so

called population size. Set the current generation number 7 = 1.

(ii) Calculate the fitness value of each individual in set P. Form a mating pool .M

using all individuals in the population set P at the probabilties assigned to each

individual according to the corresponding fitness value.

(iii) Randomly select a pair of parent strings from the mating pool M. Choose a random

crossover point and exchange the parent string bits to produce two offsprings and

put the offsprings in the offspring set O. Repeat the procedure 1/2 times.

13




(iv) Mutate each bit of the non-zero parameters in each offspring in the set O with a

predefined probability, and calculate the fitness value of each offspring.
(v) Select the | fitest individuals from sets P and O by comparing fitness values.

(vi) Reset the set P with the newly selected I individuals, reset the number of generation

i = i+ 1, and nullify the offspring set &

(vii) Steps (ii)-(vi) are repeated until the residue termination conditions are satisfied.

Remark 1

In almost all practical cases, the noise e(k) in equation (1) will be coloured. Therefore
2 noise modelling procedure should be included as part of the parameter estimation al-
gorithm in order to obtain unbiased parameter estimates. This can be done by using
an iterative procedure (Billings and Zhu 1991). Notice that the noise estimation at the

current iteration will be based on the noise sequence computed at the previous iteration.

In genetic algorithms, this iterative procedure can be carried out together with the popu-
lation evolution. But there is a problem. When the gene of two parent strings is exchanged
in a crossover operation, two pairs of new parameter estimates are creg.ted. It is difficult
to clarify which of these the noise estimation should be based on to produce the new noise
estimation corresponding to the newly created parameter estimate. Fortunately, genetic
algorimths tend to be insensitive to the moise estimation error, and in the present study all

the individuals at one generation have the same noise estimation as the best individual.

Remark 2

In the present study model size was introduced as a penealty term in the cost function
to provide a balance between the prediction error and the model size. A proper choice of
the weight  will help to build a model of a suitable size and with a satisfactory accuracy.

However, the selection of weight v was found to be very difficult and in practice this was

14




done by a lot of trial and error.

The peneaty on model size helps to solve the non-parsimonious model problem to some
extent but this kind of implicit method does not solve the problem completely. An ex-
plicit constraint on model size would be preferable. Hypothesis tests have proved to be an
efficient tool for term deletion/selection for nonlinear polynomial models (Leontaritis and
Billings 1987), but this approach cannot be applied in the present algorithm. In the case:
of polynomial models, the parameter estimates under a specific model structure can easily
be obtained by using a least squares type estimation routine, but in the GA algorithm
both the model structure and the parameter estimates are uncertain in the search process
and it is impossible to determine if an unacceptable prediction error is caused by the
wrong model structure or by incorrect parameter estimation. Methods of introducing a
proper explicit term deletion procedure into the genetic algorithm is the subject of future

research.

Remark 3

If the model structure is unknown, the number of candidate terms is usually excessively
large. For example a model with 3 lagged inputs, outputs and noise terms will produce
440 candidate terms for a single-input-single-output (SISO) rational model of nonlinear
degree 3, and 2660 candidate terms for a two-input-two-output system with the same
specifications. Searching for the model structure and parameter estimates in high di-
mensional space is computational expensive. Even a search over only 56 candidate terms
(Example 2) will typically take a few hours on a Sun Sparc Station 20. This is a ma-
jor disadvantage of the GA approach which for rational model structure detection and
parameter estimation is not as efficient as the forward regression orthogonal estimation

algorithm (Billings and Zhu 1991, Zhu and Billings 1993, Billings and Mao 1996).
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3 Simulation Examples

Three examples will be used to test the new GA algorithm for nonlinear rational model
identification. In all the examples, the input u(k) was a uniformly distributed random
sequence with zero mean and amplitute £1, and the noise e(k) was a normally distrubuted
disturbance sequence with zero mean and variance 0.01. In Examples 1 and 2, 600 pairs
of input/output data were produced, where the first 500 pairs were used for identification
and the last 100 pairs for testing. In Example 3, 2000 pairs of input/output data were

used for identification, and 100 pairs for testing.

Example 1

Consider the following dynamic nonlinear rational model

_ y(k = 1) +u(k — Du(k —2) +u(k —1)

y(k) L+ 92k — 1)+ u2(k — 1) + o)

To initialise the algorithm it was assumed that the maximum lags in the input and
output was 2, and the degree of nonlinearity was also 2. This model specification
will produce 15 candidate terr.ns for both the denomiﬂna.tor and numerator. The working
parameters of the GA algorithm were as follows: )\f = 0.05 (#=1,2,:.,30), v =4, the
population size was set to 70, and the mutation rate was equal to 0.06. Each parameter
was represented by an 8 bit binary number, where 1 bit represents the sign (positive or
negative), 3 bits are used for the integer part and 4 bits for the fractional part. At the
200™ generation the model structure and parameter estimation were as shown in Table 1,

the model validity tests were as shown in Fig.1, and the one-step ahead predictions were

as shown in Fig.2.

Example 2

16




Consider a more realistic system which is disturbed by coloured nonlinear noise

y(k—l)y(k—Z)—{—u(kn1)u(k—2)+u(k—-1)e(k—1) ]
s L+y*(k 1) +y%(k - 2) +eR)

Assume that the maximum lags in the input, output and noise are all equal to 2. The

element set

{y(k=1),y(k—2),u(k - 1),ul(k —2),e(k—1),e(k—2)}

will produce 28 terms in both the numerator and denominator for a rational model of
nonlinear degree 2. The working parameters of the GA algorithm were defined as follows:
A =0.05 (z=1,2,...,56), v = 4, the population size was set to 100, and the mutation
rate was equal to 0.06. Each parameter was represented by an 8 bit binary number
as defined in Example 1. At the 200** generation the model structure and parameter
estimation were as shown in Table 2, the model validity tests were as shown in Fig.3, and

the one-step ahead prediction were as shown in Fig.4.

Example 3

Consider a more complex nonlinear dynamic system

Pk = 1) uk— Vulh—2) + w3k ~ 4) + u(k - 5) + u(k — 3)e(k — 1) e.
u(k) = 1+ %k — 1) + w2(k — 2)y(k — 3) et

It was assumed that the maximum lags in the input, output and noise were 5, 5 and 2

respectively. The element set

S = {y(k—1),y(k —2),y(k - 3),y(k — 4),y(k — 5)}
U{u(k —1),u(k —2),u(k - 3),u(k —4),u(k — 5)}U{e(k—1),e(k—2)}

produces a total of 910 terms for a rational model with nonlinear degree 3. The working
parameters for the GA algorithm were defined as follows: ); = 0.05 = L. BRI,

7 = 4, the population size was set to 100, and the mutation rate was 0.06. Each parameter

LiF




was represented by an 8 bit binary number as defined in Example 1. At the 20000t*
generation the model still had several hundred terms. The genetic algorithm failed to
build a parsimonious model when the number of candidate terms was large. This result
was typical of all the examples we tried with a large candidate set and seemed to be a

result of the problems discussed in Remark 2.

Our experience of analysing real data shows that it is quite usual to have to search over
quite a broad range of lags and to a lesser extent degree of nonlinearity. This inevitably
leads to large candidate sets even for SISO systems. The genetic algorithm introduced in
the present study requires significant computations in such cases and the extension of this
to MIMO systems does not seem realistic at the present time. Indeed we tried to use the
GA algorithm to identify a model of a diesel engine but failed despite several attempts.

Yet this system can quickly be identified using the orthogonal estimator (Billings et al
1989c).

4 Conclusions

A new rational model identiﬁéaﬁion algorithm based on genetic algorithms has been de-
veloped in this study. Details of nonlinear model structure detection and parameter
estimation using GAs have been discussed. The algorithm works well on simple simu-
lated examples where the range of allowed lags is small. But this is an unrealistic test
since most analysis of real data sets often involves a search over quite a broad range of
lags and degree of nonlinearity. In the latter case the GA routine involves an enormous
computational load and despite several attempts we failed to identify a relatively simple
simulated system and an industrial diesel engine. This suggests that more research is

required before genetic algorithms can be successfully used to identify MIMO nonlinear

models from real data sets.
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numerator polynomial | true value | estimate
y(k—1) 1 1.0000
u(k — Du(k — 2) 1 1.0625
u(k—1) i 1.0000
denominator polynomial | true value | estimate
yi(k—1) 1 1.0000
u?(k—1) 1 0.8725

Table 1: Model structure and parameter estimates for Example 1
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Figure 1: Model validity tests for Example 1 (a —®,,2 b—®,,.2)

L L N L L 1
‘So00 510 520 530 540 550 580
time

1 L L
570 580 590 sS00

Figure 2: The one-step ahead prediction for Example 1 (dashed line—prediction

solid line—measurement)
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numerator polynomial | true value | estimate
y(k—1)y(k —2) 1 1.0000
u(k — Du(k - 2) 1.0625
u(k —1)e(k — 1) 1 -1.0000
denominator polynomial | true value | estimate
yi(k—1) | 1.0000
yi(k —2) 1 1.0000

Table 2: Model structure and parameter estimates for Example 2
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Figure 3: Model validity tests for Example 2 (a —&... b—&,,2)
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Figure 4: The one-step ahead prediction for Example 2 (dashed lme—pre ]

solid line—measurement)
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