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INTRODUCTION 

 

Interactions between CO2 and H2O fluids and the rocks that host them are of significance 

for Geological Carbon Storage (GCS) for several reasons. These interactions determine the 

amount of CO2 that can be trapped in solution and in minerals.  The petrophysical properties of 

reservoir and cap rocks, especially porosity and permeability, are also affected.  Carbon storage 

in fluids and minerals, coupled with potential changes to the petrophysical properties of rocks, 

have a direct bearing on the long-term effectiveness of GCS.  

 

Many potential reservoir rocks contain a range of minerals that may react at very 

different rates. In particular, carbonate minerals are widespread minor components of 

sedimentary rocks and react much more rapidly than silicates, while clay minerals are often 

much more reactive than minerals such as quartz or alkali feldspars. It follows that the evolution 

of pore fluid composition in a reservoir into which CO2 is injected may be strongly influenced by 
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kinetic factors. Dissolution of fast-reacting minerals may be limited by the transport of reactants 

to the mineral surface, while minerals whose surfaces react only slowly may persist out of 

equilibrium with pore fluid for extended periods. Some reactions, such as congruent dissolution, 

proceed until the reacting mineral is in equilibrium with the pore fluid, but other, incongruent 

reactions may involve unstable reactants which never attain equilibrium with the pore fluid, 

resulting in very extensive mineralogical transformations over time. 

 

This chapter examines interactions between CO2 and H2O fluids and the rocks and 

minerals that comprise GCS reservoirs, as well as the caprocks that seal these reservoirs, from 

the perspective of laboratory experiments.  Laboratory experiments determine thermodynamic 

and kinetic parameters and can identify fluid-rock reactions and processes that may have been 

previously unknown or unappreciated.  Experimental studies of equilibrium and kinetic aspects 

of mineral dissolution and precipitation relevant to GCS are now quite mature, and there is a 

growing body of work investigating petrophysical consequences of CO2 injection.  This chapter 

examines fluid-mineral and fluid-rock interactions that take place in water at a range of scales, 

from the micro- to the core scale.  Other chapters evaluate fluid-mineral interactions within 

supercritical CO2 (Rosso et al. 2013), at the nano-scale (DeYoreo et al. 2013), the field scale 

(Kharaka et al. 2013), and in natural analogues (Bickle and Kampman 2013).  In addition, this 

chapter focuses on abiotic CO2-water-rock interactions; Cappuccio and Ajo-Franklin (2013) 

evaluate the role of biological processes relevant to GCS. 

 

This chapter is divided into three major sections.  In the first section we discuss 

relationships between hydrogeology (i.e. flow paths, heterogeneities, porosity-permeability, etc.) 

and fluid-rock interactions.  We also discuss the influence that CO2 exerts on reactions and 

processes in a water-rock system.  Our discussion assumes that the reader possesses a basic 

understanding of the geochemistry and mineralogy of water-rock interactions and focuses on the 

changes that CO2 brings to these interactions.  The reader can consult any of a large number of 

books that provide the basic theory of mineral precipitation and dissolution, pH control of 

reactions, and other relevant subjects discussed in this chapter (e.g. Stumm and Morgan 1996; 

Drever 1997; Langmuir 1997). In addition, much of the kinetic rate data that we present has been 

recently tabulated (Palandri and Kharaka 2004; Brantley et al. 2008). The second section is a 

brief summary of the experimental equipment and techniques used to evaluate reactions between 

fluids and minerals.  The third section evaluates fluid-mineral behavior in laboratory 

experiments.  This section focuses on the important rock-forming minerals within reservoirs and 

cap rocks as well as accessory minerals that are pertinent to GCS.  Olivine and pyroxene are 

discussed because storage as carbonate is likely to be most important in mafic and ultramafic 

rocks. The common silicate minerals, feldspars, phyllosilicates, and quartz, are then addressed.  

We subsequently consider carbonate minerals, followed by sulfates, sulfides, and Fe-

oxyhydroxides.  The section concludes with discussion of fluid-rock behavior in laboratory 

experiments assessing both reservoir rocks and caprocks as opposed to individual minerals. It is 

worth noting that the results of experimental studies focused on GCS also provide insights into 

other geologic environments, including engineered geothermal systems, enhanced oil and gas 

recovery, and unconventional hydrocarbon resources.  The chapter concludes with a summary 

section and and a section that suggests directions for future work. 
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CARBON DIOXIDE IN A FLUID-ROCK SYSTEM 

 

Under all likely conditions for CO2 storage, H2O and CO2 are immiscible even in the 

absence of dissolved salts (Kaszuba et al. 2006). Carbon dioxide solubility in water decreases 

with increasing temperature and salinity at surface conditions, but increases with pressure 

(Todheide and Franck 1963; Takenouchi and Kennedy 1964, 1965).  Over the range of 

conditions relevant for GCS, CO2 solubility is almost independent of temperature, but does have 

a strong pressure dependency. It is also subject to “salting-out” effects (Takenouchi and Kennedy 

1965). In a rock-dominated system typical of most natural reservoirs, CO2 solubility is further 

influenced by mineral-fluid interactions. 

 

Under conditions likely to prevail in a GCS site, the pH of unreacted CO2-charged water 

is markedly acid (<4), and so the dominant carbonate species will be aqueous CO2 and 

undissociated carbonic acid. The effect of fluid-mineral interactions is almost invariably to 

neutralize some of this carbonic acid acidity, resulting in a rise in pH. Provided the pH remains 

below the apparent first dissociation constant of carbonic acid (pKa = c. 6 according to 

temperature and salinity of the fluid (e.g. Bodnar et al. 2013)), the dominant aqueous carbonate 

species remain as CO2(aq) and H2CO3
o
, and mineral dissolution has little effect on total 

dissolved inorganic carbon. If mineral reactions result in a rise in pH above pKa, however, 

significant additional CO2 may enter solution as bicarbonate, enabling additional carbon to be 

stored through solubility trapping. 

 

 

Targets for modeling 

 

In a storage environment, the starting condition involves rocks that contain formation 

water which is likely to be saline and already saturated with the minerals in the host rock. 

Injection of CO2 leads to the creation of a plume of CO2 which expands away from the point of 

injection along the most permeable horizons and whose ascent is prevented by a cap rock (Fig. 

1). In the direction of advance of CO2 along permeable beds, water ahead of the CO2 front 

becomes acidified and reacts with the host rock (Kharaka et al. 2009), but is pushed ahead of the 

advancing plume. The thickness of the zone of acidified water ahead of the plume is controlled 

by transport processes within the water phase (Kampman et al. 2013).  Although initially very 

reactive, this migrating slug of water will rapidly approach equilibrium with the more reactive 

minerals in the host rock, probably in a matter of days. Nevertheless, as the radius of the 

advancing plume increases, the volume of acidified water must also continuously increase.  

Consequently, there will always be reaction in the rocks at the front of the advancing plume (Fig. 

1, location A). While injection continues to drive the plume front forward, reactivity ahead of it 

will inevitably be limited to rapid reactions.  

 

Behind the advancing plume front, residually trapped water persists and can continue to 

react with host minerals. The capacity to directly dissolve minerals into this static, acidified 

water is strictly limited.  However, this water can persist for an extended period of time until all 

the water has completely evaporated into the CO2 or been consumed as a reactant in, for 

example, the formation of clays (Fig. 1, location B). In this situation, slow reactions may 

nevertheless have a significant impact on rock properties. Comparable reactions may be expected 
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in reservoirs where alternating CO2 and water injections have been used to stabilize CO2 through 

residual trapping (Qi et al. 2009), except that salinity is unlikely to reach extreme values as in a 

zone of evaporation. The upper and lower surfaces of permeable layers into which CO2 has 

preferentially migrated provide relatively stable sites for CO2-water-mineral interactions (Fig. 1 

locations C and D), and these may be particularly effective at the lower surface (location D) 

where the increase in density triggered by dissolution of CO2 in water can set up convection cells 

and enhance mixing (Riaz et al. 2006; Xu et al. 2006). Reactions near persistent interfaces have 

the potential to continue for extended periods, and could result in changes to the local 

permeability structure.  In addition to the different types of interaction between fluids and 

minerals that can take place in different settings, short term reactivity is also likely to be affected 

by temperature fluctuations caused by ongoing and very large scale injections of carbon dioxide. 

 

The significance of these different settings of reactivity is that they involve different 

timescales and degrees of disequilibrium. It is important to ensure that kinetic experiments 

address the relevant rate-limiting step for the part of the injection system of interest. For 

example, it is unlikely that CO2-water interactions will lead to significant dissolution of 

additional alumina and silica from aluminum silicates since the original formation water is 

already saturated with the host rock.  Indeed these elements may even be precipitated as a result 

of dissolution of CO2 causing a reduction in water activity. On the other hand, reactions 

involving cation leaching or exchange are likely to be triggered by acidification of formation 

waters and consequent dissolution of carbonates. 

 

 

Fluid- and rock-dominated reaction systems 

 

Injection of supercritical CO2 into a fluid-rock system alters the balance between rock- 

and fluid-dominated reaction systems (Kaszuba and Janecky 2009).  In general, rock-dominated 

systems such as deep brine formations are not affected by fluid infiltration such as recharge and 

mineral reactions control the aqueous geochemistry (Langmuir 1997).  In contrast, fluids control 

the mineralogy and aqueous geochemistry in fluid-dominated systems.  Examples include 

aquifers that are replenished by fresh water recharge as well as reservoirs and deep brine 

formations into which CO2 is injected.   

 

In experimental studies and in brine formations at GCS sites, injection of supercritical 

CO2 initially shifts the pore fluid composition from being dominated by the rock towards one 

dominated by the injected fluid (Kaszuba et al. 2003, 2005); CO2-H2O interactions result in acid-

dominated reactions and related mineral dissolution and/or precipitation (Kaszuba and Janecky 

2009).  This fundamental change from rock- to fluid- control triggers almost all emergent 

geochemical phenomena.  Subsequent mineral-fluid interactions counter carbonic acid acidity as 

the rock begins to reassert its control. 

 

Within the reservoir, the variability of flow properties due to structural heterogeneity can 

also lead to spatial variation of the type of reaction control: fluid-dominated reactions occur 

preferentially along main flow paths of higher permeability, while rock-dominated reactions are 

favored in more protected areas where flow is reduced.  With time, dissolution and precipitation 

reactions progressively modify flow pathways and may locally shift the reaction control. This 
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phenomenon induces chemical gradients at various scales that can affect the distribution of 

reactions, especially in multi-mineral reservoirs (e.g. Molins et al. 2012). Heterogeneity of 

reaction has even been noted at the micrometric to centimetric scale during the experimental 

percolation of CO2-enriched brine within olivine-rich sinters (Andreani et al. 2009). Local 

variations of fluid flow induce variable chemical gradients at the silicate surface and create 

microenvironments of dissolution (high flow regions) close to microenvironments of 

precipitation (low flow regions) (Fig. 2).  At the sample scale, dissolution reactions preferentially 

occur at the inlet of the core while carbonate precipitation is favored toward the core outlet until 

CO2 is consumed; phyllosilicates precipitate at the core outlet.  

 

It is evident that the departure from equilibrium of the solution can vary with space and 

time in massive rock samples. Many experimental studies investigate the reactivity and kinetics 

of water-rock interactions at conditions that are far from equilibrium (see section discussing 

olivine and pyroxene) whereas few experiments investigate water-rock reactions at saturation 

indices approaching equilibrium. The rate-free energy (r-ΔGr) relationship may be inadequately 

modeled within the classic Transition-State-Theory framework (Daval et al. 2010; Hellmann et 

al. 2010).  Indeed, experiments on diopside show a considerable departure from models that 

leads to an overestimation of the reaction rate in the case of CO2 storage (Daval et al. 2010). 

Hence, the dependence of the reaction rate of silicates upon ΔGr is fundamental for GCS. These 

processes have important implications for determining whether transport or reaction (kinetics) is 

the rate-limiting process at the macroscopic scale. 

 

 

Role of co-contaminants 

 

Geologic storage of CO2 that contains impurities such as SOx, NOx, H2S, Hg and 

potentially O2 and other constituents is known as co-sequestration, a term first used with 

reference to co-injected CO2 and H2S (Williams 2002).  While the body of literature regarding 

experimental evaluation of mineralogic and geochemical effects of CO2-water-rock interactions 

is quite extensive, experimental studies of co-injected impurities have only recently received 

attention (see sections discussing sulfate and sulfide minerals).  Chialvo et al. (2013) address the 

behavior of CO2-rich environments containing H2O, SOx, H2S, or NOx.  In this chapter we 

evaluate the limited data that is available for mineral precipitation and dissolution due to reaction 

with CO2-H2O fluids containing such impurities.  In general, SOx and other impurities provide 

new sources of acidity and dissolved solutes such as sulfate.  Additional acidity is almost 

invariably neutralized by mineral reactions and additional solutes may lead to precipitation of 

new minerals and growth of preexisting minerals.  

 

 

EXPERIMENTAL TECHNIQUES 

 

The various parts of the injection system differ in their physico-chemical conditions due 

to the pCO2 gradient created by the injection. Consequently, different CO2-water-rock 

interactions take place in different parts of the system. Initial reactions close to the injection well 

are dominated by acidification of pore waters; either the migrating formation waters pushed 

ahead of the CO2 plume or the residual water trapped behind the plume front and progressively 
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evaporated as additional CO2 is injected.  Mineral dissolution includes both direct dissolution 

(mainly of carbonates, e.g. Kjøller et al. 2011; Canal et al. 2013; Jun et al. 2013) and hydrolysis 

of feldspars and phyllosilicates leading to precipitation of clays and other secondary silicate 

minerals (Lin et al. 2008; Hangx and Spiers 2009). Precipitation of secondary carbonates is 

likely to take place further away, after the initial acidification of formation waters has been 

neutralized and silicate reactions have disturbed the initial carbonate-fluid equilibrium (Bateman 

et al. 2010). Interpretations of experiments relevant for GCS have to address these two settings, 

even if most experiments have been designed to measure dissolution rates under far-from-

equilibrium conditions, where reasonably consistent results can be obtained. Many differences in 

results between studies probably reflect different experimental approaches.  No one approach can 

be said to provide a universal best analogue for what will happen during injection and 

subsequent storage because of the range of settings in which reactions are possible within even a 

simple storage site and the range of injection scenarios that might be implemented. Injection of 

CO2 as a single continuous process disrupts the equilibria in an existing system in which 

formation waters are already at saturation with respect to aluminum silicates, whereas alternating 

injection of water and gas to enhance capillary trapping introduces water that is low in silica and 

aluminum. 

 

Variations of two different types of apparatus, batch and flow through, are used to 

reproduce as much as possible these different conditions.  Both are used in experiments for 

reactivity, thermodynamics, kinetics, and hydrodynamic investigations.  Schematic drawings of 

the major types of experimental apparatus we discuss are presented in Figure 3. 

 

 

Materials for experimental apparatus 

 

Experimental apparatus must be designed to span a wide range of pressure, temperature, 

and pCO2 conditions, up to and exceeding supercritical CO2 pressures, and should be constructed 

of inert materials so as not to participate in the reactions of interest. The latter is particularly true 

for experiments conducted with high pCO2 and high-salinity brines that are extremely corrosive. 

These conditions require the experimentalist to exercise caution on the nature of the reaction cell 

chosen for the experiments.  Metal alloys, like Hastelloy, titanium, and gold, are usually favored 

compared to steel.  Most laboratories rely on stainless steel or titanium pressure vessels that can 

be rated to several tens of MPa and used in an oven to several hundred degrees C. A liner is often 

used to contain the sample and solution, to minimize corrosion. For experiments with CO2, 

rupture discs of Inconel alloy prove susceptible to corrosion and must be frequently replaced 

unless first coated with gold. However, at pressures of just a few atmospheres, PTFE vessels 

have been used because they are cheap, allowing many experiments to be run simultaneously. 

While these pressures are well below the critical pressure of CO2, they are much greater than the 

partial pressure of CO2 in the atmosphere, and so they provide useful pointers to likely behavior 

at higher pressures.  

 

 

Specific surface area measurements 
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At the simplest level, in most of the apparatus, the samples investigated are in powder 

form, typically sieved to dimensions of 100-200 micrometers, and lie loose in the bottom of the 

reaction cell. Knowledge of the reactive surface area is essential to interpret the results of 

dissolution rate experiments.  Reactive surface area is most commonly determined by BET 

measurements of inert gas adsorption or by geometrical estimates. Typically BET surface areas 

are greater than simple geometrical estimates.  The magnitude of the difference varies greatly 

between different materials and is particularly sensitive to microporosity effects that may vary 

between samples of the same mineral species (Brantley and Mellott 2000). Brantley and Mellott 

(2000) reported BET surface areas between 10-40 times greater than geometrical surface areas 

based on a spherical approximation. Unfortunately, it cannot be assumed that BET surface areas 

provide an ideal measure of the reactive surface area available during hydrothermal reactions; 

access of dissolved species to surfaces of micropores beneath the surface may be transport-

limited in a way that access to surface sites is not.  At the core scale, not all available surface 

area necessarily reacts because of the variable connectivity of pores and because of localized 

reaction close to preferential flow paths. Additionally, it is clear from SEM images of grains that 

have undergone reaction that the surface area is not constant and commonly increases due to 

selective dissolution along cracks and cleavage planes as the experiment progresses.  

Dissolution-precipitation reactions may also modify the reactive surface area.  To further 

complicate matters, some studies perform kinetic calculations using surface areas determined 

before the experiment begins whereas others use surface areas of minerals determined after the 

experiment is terminated.  

 

A magnetic stirrer is generally used to ensure that the reactions taking place in the 

experiments are not inhibited by sluggish transport. Possible problems that can arise include 

changes in grain size due to vigorous stirring and clogging of the dip tube, especially by clay 

minerals. Some workers have used less vigorous forms of agitation, such as shaking tables, and 

the dip tube will normally be fitted with a filter. Clay-bearing samples may be retained in a 

membrane made from dialysis tubing to prevent clay clogging (e.g. Allan et al. 2011), although 

dialysis tubing material will disintegrate in the course of extended experiments, especially at 

elevated temperatures.  

 

An alternative solution to the problem of accurately determining surface area is the use of 

discs of monomineralic rock or part of a mineral single crystal, embedded in resin and with a 

polished surface of accurately known area (Sjöberg 1983). The disc rotates in the vessel, and by 

comparing rates at different rotation speeds it is possible to evaluate the importance of transport 

for the dissolution process (Pokrovsky et al. 2005). For minerals which react rapidly with fluid, 

notably calcite, mineral dissolution rate experiments produce results that are strongly dependent 

on the configuration inside the vessel and resulting hydrodynamic effects (Sjöberg 1983).  These 

factors emphasize the need for care before applying experimental reaction rates to GCS systems. 

The main lesson in the case of calcite is that it is not the surface reaction but the transport step 

that is rate controlling. 

 

 

Batch reactors  
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Batch experiments at specific CO2 pressures are carried out in closed vessels under 

elevated pressure, either for dissolution studies of single minerals, or to characterize reaction 

paths and equilibrium assemblages in more complex polymineralic assemblages in which 

dissolution and precipitation occur simultaneously (e.g. Hövelmann et al. 2012a).  A typical 

configuration (Fig. 3a) involves a sealed vessel with at least two ports. Carbon dioxide is 

introduced at the top of the vessel and water is sampled via a dip tube, which may be fitted with 

a filter to prevent clogging. Some configurations use an additional port to allow the headspace 

gas to be changed or flushed. The advent of pH electrodes capable of withstanding pressure-

temperature conditions appropriate to investigations of GCS permit in-situ measurement of pH 

(below).  If the fluid is not repeatedly sampled during the experiment, repeated runs of increasing 

duration are required to characterize the rate of reaction advancement by removing fluids and 

solids at different times. 

 

A major challenge for high-pressure experiments involving CO2 is sampling the fluid 

during the course of the run. It is necessary to take samples with considerable care to prevent 

water from degassing CO2 as it is sampled. For determinations of the dissolved CO2 content, 

samples may be bled off into a syringe containing alkali hydroxide solution, either using delicate 

human control of the sampling valve or a syringe pump to control back pressure.  Rosenqvist et 

al. (2012) reported that the pressure drop using manual sampling was measured to less than 

0.001 MPa by instrumenting the assembly with pressure transducers. An alternative method for 

determining dissolved CO2 content is accomplished by coulometric titration (Huffmann 1977; 

Kaszuba et al. 2005).  In this method, samples are bled off into a glass gas-tight syringe.  Carbon 

dioxide dissolved in brine and exsolved at ambient pressure and temperature are injected 

together into a carbon coulometer.  

 

Another type of batch reactor, initially described by Dickson et al. (1963) and improved 

later by different authors (e.g. Seyfried et al. 1979; Seyfried et al. 1987; Rosenbauer et al. 1993), 

consists of a flexible reaction cell, made of titanium or gold, with a detachable titanium cap (Fig. 

3b).  This cell is placed in a steel vessel similar to the previously described batch reactor. 

Pressure and temperature are externally controlled and water ensures pressure transmission to the 

cell. The cell is plumbed with an exit capillary tube linked to a sampling valve block. This 

system allows the isobaric and isothermal sampling of reacted fluids during the course of the 

experiment and permits the injection of fluids such as CO2 when required (e.g. Kaszuba et al. 

2003).  Samples are cooled and depressurized to ambient conditions in a few seconds to prevent 

retrograde reactions that may occur during a prolonged quench process.  Measurements of 

mineral solubilities and determination of coupled dissolution-precipitation rates can then be 

estimated using measurements of cation and anion concentrations. A related type of batch reactor 

is known as the Barnes-type rocking autoclave (Barnes 1971).  This is a fixed-volume 

hydrothermal system in which pressures are determined by the liquid-vapor curve for reactant 

solutions. 

 

With exceedingly few exceptions, solid samples can only be recovered from batch 

apparatus after the experiments are terminated. Batch apparatus that permit time sampling of 

solids are custom-made apparatus not available commercially, such as stacked-vessel autoclaves 

(Cole et al. 1992). Availability of solid samples only after termination of the experiment may 

affect the study of reaction mechanisms since some intermediate phases or processes may be 
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missed. In addition, fluid sampling does not always manage to correctly record the reaction in 

polymineralic assemblages because of assumptions made for mineral compositions and 

proportions for mass balance.  These limitations have motivated the development of 

‘microreactors’ capable of in-situ monitoring of fluid-rock interactions (Fig. 3c) (Béarat et al. 

2006; Schaef et al. 2011; Schaef et al. 2012).  Microreactors are a few microliters in size and 

contain transparent windows constructed of diamond or moissanite (SiC).  In-situ monitoring of 

reactions is performed using methods such as X-Ray diffraction of solid products, X-ray 

fluorescence for solid and fluid composition, or Infrared or Raman for solids and some dissolved 

species (e.g. carbonate, bicarbonate ions).  This type of approach has been limited so far to 

mineral physics for high-pressure experiments using diamond-anvil cells (DAC).  Development 

of low-pressure DAC or low-pressure reactors with an external control on the fluid opens new 

perspectives for the study of CO2-water-rock interactions using a wider range of characterization 

tools (e.g. Wolf et al. 2004; Daval et al. 2010). The main constraint of this type of experiment is 

that the size of the window may require the use of synchrotron radiation in order to get the 

required spatial resolution and beam intensity for analyzing small volumes of minerals and 

fluids. 

 

 

Mixed flow-through reactors 

 

Batch experiments provide measurements of dissolution rates in fluid-dominated settings 

in which the reaction affinity changes as equilibrium is approached. Progressive sampling of 

solution in the course of the experiment changes the proportion of mineral to fluid so that the 

amount of mineral dissolution needed to produce a given change in fluid composition gradually 

decreases as the experiment proceeds. An alternative approach is to carry out experiments in 

which fluid flows at a steady rate through the experimental vessel and is sampled at the exit point 

(Fig. 3d). The composition of the exit fluid is considered representative of that inside the vessel.  

Mixing ensures fluid homogeneity and stirring rate is fixed in order to avoid mass transport 

limitations on the reaction rate. In flow-through reactors, the composition of the introduced fluid 

remains constant, so that the reaction affinity reaches a steady state. As a result, conditions are 

likely to be further from equilibrium than is the case for batch experiments, but affinity remains 

constant. Dove and Crerar (1990) developed a hydrothermal mixed flow-through reactor capable 

of working over the range of pressure-temperature conditions appropriate to GCS. This approach 

was further developed by Carroll and Knauss (2005) for experiments with CO2-bearing fluids. 

Water (or brine) is first saturated with CO2 at the required pressure in a separate pressure vessel 

and is then injected into the stirred reactor vessel containing the mineral charge. Since a single 

fluid phase passes though the reaction vessel and a backpressure is maintained to prevent the 

dissolved gas from separating, issues with two-phase flow do not arise.  Hydrothermal mixed 

flow-through reactors arguably offer the best-constrained environment for determining far-from 

equilibrium mineral dissolution rates in CO2-bearing water. However, depending on the stage of 

the GCS process that is being investigated, these may not be the key reaction rates for the 

problem of interest.  

 

 

Plug-flow/flow-through reactors  
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Batch reactors and mixed flow-through reactors monitor the dissolution of small mineral 

volumes in large fluid volumes.  In order to predict the consequences of injection of CO2 into 

rock-dominated reservoir rocks, there is clearly a case for carrying out experiments where fluid 

flows through a rock or sediment plug, reacting as it moves.  However, it is not normally 

possible to back out absolute rate information from the results. This type of approach also better 

emulates the dynamics of CO2 injection in a natural reservoir where a coupling between 

chemical reactions and hydrodynamic properties is expected. Moreover, a rock is a chemically 

and physically heterogeneous media in which fluid flow and reaction may vary with space, even 

at the micrometric scale.  Most flow-through reactor experiments investigate the characteristics 

of specific rocks from prospective reservoirs or their caps, but it is also possible to carry out 

experiments on packed columns containing solids that are well-characterized (Bateman et al. 

2010).  

 

An example of a plug-flow reactor, also known as a flow-through or core-flood reactor, is 

shown schematically in Figure 3e. The fluid to be injected is prepared in a separate vessel and 

pumped into a cm-scale rock core held in a core holder. The confining pressure around the jacket 

containing the core is substantially greater than the fluid pressure at the point of injection to 

prevent leakage.  Reservoir conditions (greater than 200°C and 20 MPa) can be achieved within 

the core (e.g. Luquot and Gouze 2009). Fluid pressure at the outlet is adjusted to give a pre-

determined constant flow rate, and the measured difference of pressure across the core provides a 

continuous record of permeability (as calculated using Darcy’s law). Both dissolution and 

precipitation reactions can be investigated depending on the inlet fluid composition.  Initial 

porosity measurements correlated to mass balance calculations during the course of the 

experiment provide the porosity evolution and hence the determinant permeability-porosity (k-φ) 

relationship for reactive transport modeling as a function of fluid reactivity and fluid flow. Some 

apparatus are ported such that pH is continuously monitored on the outflow line and fluid 

samples may be collected during the run.  Some apparatus are constructed such that the entire 

assembly is set up in a CT scanner so that changes in the distribution of porosity can be 

monitored periodically as the run proceeds. NMR can also be used to monitor changes in 

porosity and pore size distribution. Further measurements can be made at the end of the run, 

including off-line measurements of permeability and seismic velocities (Vp, Vs). Noiriel et al. 

(2009) carried out experiments close to atmospheric pressure, which allowed the core to be 

removed periodically to be scanned in a micro-CT scanner.  This approach yielded high-

resolution spatial images of the evolution of reactive surface area, porosity and tortuosity while 

reaction progressed.  Experiments of this type do not readily yield fundamental kinetic data, but 

they do provide a test for the available theoretical models. 

 

 

pH measurements under GCS conditions 

 

A major consequence of CO2 injection is acidification of formation waters, but only 

recently have electrodes been developed to allow pH determinations at elevated pressure and 

temperature in experimental systems. Many studies with CO2 still measure pH as quickly as 

possible after reducing pressure to ambient, and rely on geochemical models to calculate pH at 

in-situ conditions. 
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Solid state pH and reference electrodes that can be inserted into a pressure vessel using 

additional ports in the lid were used by Pokrovsky et al. (2005), who combined a commercial pH 

electrode with a home made reference electrode. Comparable electrodes are currently available 

commercially from Corr Instruments. Because these electrodes remain in place for the entire 

duration of an experiment they must be both robust and stable, but if they meet this requirement 

they permit monitoring of pH throughout an experiment. An alternative approach employed by 

Rosenqvist et al. (2012) is to use small volume solid-state electrodes in-line on the dip tube, 

between the vessel and sampling syringe (Fig. 3f). This configuration allows measurements to be 

made whenever a sample is taken, and the same electrode assembly can be used during sampling 

from a number of vessels rather than being dedicated to just one. Rosenqvist et al. (2012) used 

Unisense micro pH electrodes, rated to 1 MPa, and so were unable to work at full GCS pressures. 

The same assembly can be used for plug flow experiments as well as for batch experiments. 

 

A growing number of studies do report high pressure pH measurements.  It appears that 

they are comparable to those obtained by careful thermodynamic modeling, although 

oversimplistic application of modeling codes can produce misleading results depending on the 

treatment of CO2 fugacity (Allen et al. 2005; Rosenqvist 2012). Until the release of PHREEQC 

v.3 in 2012 (http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/index.html), modeling 

codes did not allow for the non-ideal behavior of CO2.  To get meaningful results it was 

necessary to calculate CO2 fugacity off-line (e.g. Duan et al. 2006) and then input the resulting 

value as a pressure into the model.  PHREEQC now incorporates a fugacity correction. 

 

Both pH and fluid composition have been widely investigated as variables controlling 

mineral dissolution rates, with or without the presence of CO2.  Studies that specifically address 

mineral dissolution in the presence of CO2 report that it is the role of dissolved CO2 in 

determining pH that influences dissolution rate, rather than the presence of dissolved carbonate 

per se (e.g. Carroll and Knauss 2005; Pokrovsky et al. 2005).  In effect, mineral dissolution 

experiments relevant to GCS represent a subset of the available data performed over a relatively 

narrow range of moderately acid conditions. 

 

 

CARBON DIOXIDE-WATER-ROCK INTERACTIONS IN RESERVOIR ROCKS AND 

CAPROCKS:  EXPERIMENTAL PERSPECTIVES 

 

Olivine and pyroxene 

 

Olivine and pyroxene are the predominant minerals in mafic and ultramafic rocks 

forming the oceanic lithosphere and the upper mantle. These rocks represent the greatest 

potential for CO2 storage capacity by mineral trapping, i.e. ~2 tons and 1.3-1.4 tons of CO2 per 

m
3
 of rock, respectively (Xu et al. 2004). This capacity is a consequence of 1) the strong 

disequilibrium of olivine and pyroxene in the presence of aqueous fluids under shallow crustal 

conditions and 2) the high ratio of divalent cations to silica that provides abundant Mg
2+

, Fe
2+

 

and Ca
2+

 to form carbonates when olivine and pyroxene dissolve in a CO2-rich aqueous fluid. 

Hence, in addition to possible oceanic disposal, fragments of ancient oceanic lithosphere and 

major flood basalts exposed on land constitute large and accessible reservoirs for CO2 storage 

(McGrail et al. 2006; Kelemen and Matter 2008).  Iceland already hosts the first pilot holes 
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where in situ injection of CO2 into basalt is currently tested as part of the CARBFIX project 

(Gislason et al. 2010; Matter et al. 2011).  Kelemen and Matter (2008) estimated that present-

day, natural weathering of exposed mantle rocks in the Oman ophiolite stores 10
4
 to 10

5
 tons of 

CO2 per year, under atmospheric pCO2 and temperature < 100°C (compared to sequestration 

targets of c. 10
9
 tons per year). This natural phenomenon motivated experimental work to 

identify optimum conditions for accelerating the carbonation reaction (Dipple et al. 2013).  

 

As silicate dissolution is assumed to be the rate limited step of the overall carbonation 

process, several experimental studies evaluated the kinetics of olivine and pyroxene dissolution 

in the presence of CO2. This type of experiment has been performed very far from equilibrium in 

stirred-batch or mixed flow-through reactors. Final solution compositions were undersaturated 

with respect to expected secondary products (e.g. carbonates, Mg-Fe-hydroxydes or 

phyllosilicates) such that secondary mineral formation cannot affect dissolution rates. The effect 

of fluid composition on reactions has sometimes been taken into account. At least two types of 

effects have been evaluated: the effect of ΔG and the effect of aqueous complexes or formation 

of secondary minerals that may retard or accelerate the reaction. 

 

With such reactors, numerous studies have been devoted to the dissolution kinetics of 

forsteritic olivine with Mg > 1.8 atoms per formula unit (see Rimstidt et al. 2012 for a review). 

Experimental conditions range in temperature from 25 to 120°C, pCO2 from 0 to 18 MPa, pH 

from 2 to 12, and NaCl concentration from 0 to 50 g/L. The pH values were either directly 

related to the pCO2 or to NaHCO3 content, or fixed using acid or basic salts such as HCl and 

LiOH, in order to compare the effect pH to the effect of carbonate ions in solution. All of these 

experiments show that the rate of olivine dissolution increases with increasing pCO2, 

temperature and NaCl concentration and with decreasing pH.  Incongruent dissolution is 

observed at the initiation of the reaction when fresh olivine is introduced into low pH or high pH 

solutions. At low pH, magnesium is released faster than silica while the opposite is observed at 

high pH; dissolution is stoichiometric only near pH 6. Nevertheless, once a steady-state 

dissolution rate is achieved, it appears to be stoichiometric across the entire pH range.  This 

justifies the use of either magnesium or silica release rate for calculations (Rimstidt et al. 2012). 

When compiling data for a given temperature of 120°C, Prigiobbe et al. (2009) show that the rate 

of olivine dissolution mainly depends on pH for pH values greater than 8 (Fig. 4); pCO2 and 

NaCl concentration affect the rate through their effect on pH.  This relationship suggests that 

carbonate ions neither inhibit nor enhance olivine dissolution and that kinetics as a function of 

pH can be used directly (Fig. 4). However, the importance of the effect of carbonate ions is still 

debated regarding CO2 mineralization at high pH and pCO2 greater than atmospheric levels.  

Under these conditions, an inhibiting effect of CO3
2-

 has been observed (Fig. 4) at 25°C for pH 

greater than 7 (Wogelius and Walther 1991; Pokrovsky and Schott 2000), and at 120°C for pH 

greater than 5 (Hänchen et al. 2006). These authors attribute this behavior to the adsorption of 

carbonate ions on >MgOH2
+
 groups present on the dissolving olivine surface under alkaline 

conditions. Comparison of predicted rates using regression models for experiments with and 

without dissolved carbonates indicates that the inhibiting effect of carbonate is the highest 

around pH 5 for temperature less than 40°C (0.7 difference in log rate value, Rimstidt et al. 

2012). This observation is inconsistent with previous experiments and the authors conclude that 

the current dataset is too incomplete to correctly estimate this effect.  
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Some compounds have also been recognized as enhancing olivine dissolution. Organic 

additives, like citric or oxalic acids that can be important ligands in soils, increase the rate of 

olivine dissolution around neutral pH at low T (25°C) (Wogelius and Walther 1991; Olsen and 

Rimstidt 2008). Prigiobbe and Mazzotti (2011) extended this study for high temperature and 

pCO2 relevant for CO2 sequestration. They show that for a pH range of 1 to 7 at temperatures of 

90 and 120°C, sodium oxalate and sodium citrate increases the rate of olivine dissolution; this 

effect increases with pH. Chen and Brantley (2000) added aluminum to solution at 25°C in 

olivine dissolution experiments but did not notice any effect on the reaction rate.  Using a closed 

microreactor (low-pressure DAC) at higher pressure and temperature conditions (200 MPa, 

200°C and 300°C), Andreani et al. (2013) observed a significant increase of the hydrothermal 

alteration rate of olivine.  They attributed the rate increase to an enhanced olivine solubility due 

to alumina-silica complexation, as previously observed for aluminosilicates for pH values greater 

than 4 (Salvi et al. 1998).  No experiments have been performed between these extreme 

conditions; further investigations under conditions relevant for GCS are warranted since 

aluminum is present in mafic and ultramafic reservoirs, notably in feldspars. 

 

Very few studies investigate the dissolution rate of fayalite, the pure iron end-member of 

olivine, but these studies cover a wide range of conditions. Available data provide kinetic rates 

for 25°C ≤ T ≤ 100 °C, without CO2, at pressures up to 30 MPa for pH 1-3, and variable pH at 

low pressure and temperature (Wogelius and Walther 1992; Daval et al. 2010).  Under far from 

equilibrium conditions, fayalite dissolves faster than forsterite, especially at 25°C where the rate 

is about one order of magnitude higher; however, the stoichiometry of dissolution is not yet 

determined. Similar to forsterite, the dissolution rate of fayalite increases with increasing 

temperature and acetate concentrations or decreasing pH.  

 

Dissolution of pyroxene has been less well studied than that of olivine, especially in CO2-

bearing fluids. Ca-clinopyroxenes diopside and augite were the most studied, in comparison to 

the FeMg-orthopyroxene enstatite. Chen and Brantley (1998) provide dissolution rates of 

diopside at 25 (~10
-9

 mol/m
2
/s for pH <4) and 90°C (~10

-7
 to 10

-8
 mol/m

2
/s) under acidic 

conditions (pH 1 to 4), these values are about an order of magnitude lower than the values of 

Golubev et al. (2005) for the same pH range.  At these conditions and up to pH values of ~10, at 

which the dissolution rate is ~10
-9

 mol/m
2
/s (Knauss et al. 1993; Golubev et al. 2005), diopside 

dissolves non-stoichiometrically at early stages of reaction and until it reaches a stoichiometric 

steady state. In more basic solutions a preferential release of silica suggests the formation of a 

Ca-Mg-rich layer on mineral surfaces (Golubev et al. 2005). Diopside dissolution rates are much 

slower than other silicates, notably olivine (Fig. 4), with rates 3 orders of magnitude slower at 

25°C and approximately 2 to 3 orders of magnitude slower at 70 and 90°C, respectively. This is 

in accordance with common petrographic observations of alteration in mafic rocks. It is worth 

noting that the values of Chen and Brantley (1998) at 25°C and acidic pH are slightly lower than 

those published by other authors (e.g. Schott et al. 1982; Knauss et al. 1993; Golubev et al. 

2005), although all of the studies agree that dissolution kinetics are very slow.  Augite dissolves 

more rapidly at 25°C under very acidic pH of 1 to 3 (approximately 10
-7

 to 10
-9

 mol/m
2
/s) but the 

reaction rate decreases with pH greater than 4. The reported pH-dependence of dissolution for 

pyroxene also varies from author to author. Variations are possibly the result of the reactive 

surface area chosen for calculations, since both initial and final surface areas have been used. 

This effect may be more important for pyroxenes because of preferential dissolution along 
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cleavage planes. However, the reaction rate generally tends to decrease with increasing pH and 

decreasing temperature. As with olivine, the presence of CO2 up to 0.1 MPa and of carbonate 

ions has no direct effect on diopside dissolution (Golubev et al. 2005).  

 

Enstatite dissolution was studied by Oelkers and Schott (2001) at 28 to 168°C and pH 1 

to 11 in CO2-free solutions containing variable amounts of magnesium and silica. Enstatite 

dissolution rate follows the same trend as other pyroxenes with very similar values as diopside at 

70°C (10
-7

 to 10
-9

 mol/m
2
/s from pH 1 to 12), but the rate decreases with increasing aqueous 

Mg
2+

 concentration (0 to 4x10
-4

 mol/kg) while aqueous silica (up to 5x10
-4

 mol/kg) has no effect. 

This observation is interpreted to stem from a peculiar dissolution mechanism controlled by a 

Mg/H
+
 exchange reaction within Mg octahedra that link silica tetrahedral chains. This 

mechanism, which depends on aqueous Mg activity and pH, is also expected to occur for other 

pyroxenes and pyroxenoids in general. This suggests that the role of magnesium has to be taken 

into account for CO2 storage in such reservoirs since the concomitant dissolution of neighboring 

olivine releases abundant magnesium into solution. Experiments performed at 25°C and higher 

pH (8 to 13), both with and without atmospheric CO2, demonstrate an inhibiting effect of CO3
2-

 

on enstatite dissolution at pH greater than 10, attributed to the same mechanism as the one 

proposed for olivine (Halder and Walther 2011).  Wollastonite, a pyroxenoid rarely found in 

natural systems, has also been studied under ambient and GCS conditions to investigate the 

behavior of Ca-silicates (Rimstidt and Dove 1986; Weissbart and Rimstidt 2000). While its 

structure is very close to pyroxene, wollastonite displays much faster dissolution rates than 

pyroxene (about 3 orders of magnitude higher than diopside at 25°C); these rates are close to 

olivine dissolution rates. An explanation for differences between wollastonite and pyroxene 

dissolution rates has yet to be determined. The pH dependence varies from one author to another 

but the rate tends to decrease with increasing pH. For example, at 25°C for a pH ranging from 1 

to 6, the dissolution rate is either nearly constant at 10
-6

 mol/m
2
/s (Rimstidt and Dove 1986) or 

decreases to approximately 10
-7

 mol/m
2
/s when pH increases (Xie and Walther 1994).  The 

presence of CO2 has no effect on the dissolution rate of wollastonite, but its dissolution rate 

increases with HCO3
-
 in solution (0.01 to 0.1 molar) at pH 7 to 8 and slightly decreases with 

CO2
3-

 in solution (10
-4

 molar) at pH 12 (Golubev et al. 2005). 

 

Batch experiments have been used to investigate the entire process of mineral 

carbonation, both dissolution and precipitation, under conditions relevant for GCS since 

mineralization is the main reaction expected in basaltic and ultramafic reservoirs. Batch 

experiments are able to test the effect of precipitation of secondary minerals on the dissolution 

rate of primary silicates as well as the rate of carbonation in the reservoir in order to identify 

optimum conditions for CO2 storage.  In general, the carbonation reaction is much faster than the 

dissolution reaction of olivine and pyroxene. Olivine and wollastonite are fully transformed to 

carbonate in few hours to few days, respectively, under favorable conditions (Gerdemann et al. 

2007; Daval et al. 2010).  In some cases, the solution reaches supersaturated conditions with 

respect to magnesite, but magnesite does not precipitate.  In this case, precipitation is limited by 

the nucleation process that requires a critical saturation index (Giammar et al. 2005). 

Surprisingly, olivine carbonation is the highest under alkaline conditions where CO3
2-

 is 

dominant, whereas olivine dissolution is inhibited under such conditions (Hänchen et al. 2006). 

Optimum carbonation conditions identified for olivine are 15 MPa pCO2, 185°C, 0.64 molar 

NaHCO3, and 1 molar NaCl (Gerdemann et al. 2007).  The reaction rate increases with 
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temperature and pCO2 up to these optimum values (see Kelemen and Matter 2008). The 

exothermic nature of olivine carbonation is also proposed to “self enhance” reaction rates by 

increasing temperature; energy costs required to heat fluids utilized for ex-situ CO2 

mineralization (see Dipple et al. 2013) are consequently reduced, provided this effect is not 

overwhelmed by influx of cold fluid.  

 

The role of secondary phase precipitation on the carbonation rate is a matter of debate 

and depends on the product mineralogy and permeability, and on the primary silicate. The 

formation of a silica passivation layer on silicate surfaces limits olivine carbonation (Béarat et al. 

2006) while it only has a minor effect on diopside and wollastonite carbonation (Daval et al. 

2009a; Daval et al. 2009b; Daval et al. 2010). Some studies noticed an inhibition or decrease in 

the reaction rate when carbonate forms on silicate surfaces (Stockmann et al. 2008; Daval et al. 

2009a) while fast precipitation also shifts the composition of the aqueous solution at negative 

free energy values, promoting the reaction (Daval et al. 2009a).  In plug-flow experiments, 

carbonate, iron oxides and phyllosilicates can precipitate simultaneously near olivine surfaces in 

areas of reduced permeability, preventing the formation of the passive silica layer (Andreani et 

al. 2009) (Fig. 2B and 2C).  

 

 

Feldspars 

 

The feldspars are one of the most widespread groups of potentially reactive minerals in 

reservoir rocks, and have been the subject of considerable attention from both a theoretical and 

experimental viewpoint. Classically, studies of feldspar dissolution kinetics have mainly focused 

on albite, but Ca-bearing plagioclases have been seen as particularly important for GCS because 

of their potential to promote mineral storage through calcite growth consequent on calcium 

release (Gunter et al. 1997). Labradorite in particular has been the subject of a number of 

solubility studies (Stillings and Brantley 1995; Carroll and Knauss 2005; Allan et al. 2011) and is 

the subject of the GaMin11 interlaboratory comparison study. The application of conventional 

dissolution rate data on feldspars to GCS sites is particularly fraught because of the strong 

dependence on aluminum concentrations in solution (Amrhein and Suarez 1992; Schott et al. 

2009). Oelkers et al. (1994) developed a treatment to account for the effect of aluminum 

concentration in solution on feldspar dissolution, linking dissolution to the degree of 

undersaturation and the formation of silica complexes on mineral surfaces. This is particularly 

significant for GCS applications because the initial pore fluid is already near feldspar saturation 

before the introduction of CO2, so that conventional kinetic experiments starting without 

dissolved alumina and silica are likely to indicate much faster dissolution than occurs in real 

systems.  An additional factor which has been highlighted in a series of papers by Zhu and co-

workers (Lu et al. 2013 and references therein) is that, in a reservoir setting, feldspar dissolution 

is coupled to precipitation of secondary minerals such as phyllosilicates. Owing to sluggish 

precipitation of secondary minerals, the pore fluid remains supersaturated with them, and this in 

turn can significantly inhibit the feldspar dissolution step of the process. Most rate 

determinations have been made under far-from-equilibrium conditions, whereas rates are greatly 

reduced as equilibrium is approached (Burch et al. 1993). 
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Albite dissolution under far from equilibrium conditions has been studied over a wide 

range of pH values and at temperatures from 25 to greater than 100°C (Chou and Wollast 1984; 

Knauss and Wolery 1986; Hellmann 1994) with additional data at pH 3 from Stillings and 

Brantley (1995) and Allan et al. (2011). There is generally good agreement between these studies 

despite different experimental approaches. For example, Chou and Wollast (1984) used a 

fluidized bed reactor, Stillings and Brantley (1995) employed a mixed through-flow reactor, 

making allowance for increase in surface area in the course of the experiment, while Allan et al. 

(2011) employed a batch reactor with long run times and minimal stirring to avoid physical 

damage to mineral powders as the run proceeded. It is clear from all the results (Fig. 5) that 

dissolution rates range from around 10
-11

 mol/m
2
/s at 25

o
C to around 10

-9
 mol/m

2
/s at 100

o
C. 

Allan et al. (2011) found that an increase in NaCl from 0.01 to 1 molar resulted in a decrease in 

dissolution rate by around 1 order of magnitude. Albite reaction with CO2 under more extreme 

hydrothermal conditions (200 to 300°C) were studied by Hangx and Spiers (2009), and although 

no kinetic data were obtained they did show the development of secondary aluminosilicates from 

albite breakdown, as discussed further by Lu et al. 2013. 

 

Results from studies on labradorite show much less agreement.  Dissolution rates based 

on increases in silica in low salinity fluids at pH 3 and near room temperature range from 10
-10

 

mol/m
2
/s (Carroll and Knauss 2005) to 10

-12
 mol/m

2
/s (Allan et al. 2011). Possible reasons for 

these discrepancies include the possible effects of increasing surface area noted by Stillings and 

Brantley (1995) and the very mild agitation used in the work of Allan et al. (2011), coupled with 

the approach towards equilibrium in these batch experiments. It is also worth noting that there 

can be considerable variation in the compositions of different natural labradorites. Carroll and 

Knauss (2005) noted that labradorite dissolution becomes congruent with increasing temperature 

above 60
o
C, but they confirmed the role of aluminum in inhibiting dissolution. 

 

K-feldspar occurs in a wide range of reservoirs, although since detrital grains are often 

perthitic it usually coexists with albite. Fu et al. (2009) investigated dissolution of perthitic K-

feldspar in batch experiments at relatively high temperatures and pressures for GCS (200
o
C and 

30 MPa) and an initial pH of 3.1. The metastable coexistence of K-feldspar with kaolinite and 

sometimes also illite is well known in sandstone diagenesis, suggesting that K-feldspar 

dissolution can be accompanied by the growth of secondary phases.  Fu et al. (2009) were able to 

document this in their experiments. Contrasting runs of 5 days and 78 days duration, they found 

evidence for continued dissolution of the albite component of the perthite.  After around 400 

hours the fluid became supersaturated with K-feldspar, muscovite, boehmite and kaolinite, and 

secondary precipitates of boehmite and kaolinite began to develop on feldspar surfaces. Further 

work by Lu et al. (2013) has extended our understanding of secondary mineral formation from 

alkali feldspar and the effect this has on overall reaction rates. Secondary clay minerals are very 

significant for reducing sandstone permeability, and these results indicate that extended exposure 

to acidified formation waters will lead to progressive alteration of K-feldspar to clay.  

 

 

Phyllosilicates  

 

Phyllosilicates are hydrous minerals that classically form during the aqueous alteration of 

silicates, such as those forming CO2 storage reservoirs (e.g. feldspars, olivine). Phyllosilicates 
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can be present in the reservoir before CO2 is injected or form during CO2-water-silicate 

interactions. They are also important components of argillaceous caprocks (mudstone, clays, and 

shale) where an understanding of their interaction with CO2-bearing fluids is important for 

evaluating caprock integrity after injection.  

  

As with most minerals, phyllosilicate dissolution is sensitive to pH and temperature, two 

determinant parameters for GCS. Dissolution experiments of illite at 5 to 50°C and pH 1 to 12 in 

mixed flow-through reactors show the same rate behavior at all temperatures: a decrease of 

dissolution rate with increasing pH at acid condition, a minimum rate near neutral conditions 

(5x10
-14

 to 10
-15

 mol/m
2
/s), and an increase of dissolution rate with increasing pH at basic 

conditions (Köhler et al. 2003). The rate also slightly increases with increasing temperature and 

is a maximum (10
-12

 to 10
-13

 mol/m
2
/s) at low pH.  Comparison with available data on other 

aluminous clay minerals at 25°C shows similar trends with pH, and very close rate values 

suggesting similar dissolution behavior despite their chemical variability (Nagy 1995; Huertas et 

al. 1999) (Fig. 6). A slowing of clay dissolution rate with elapsed time during experiments is 

generally observed but not yet explained. 

 

Micas can be important phyllosilicates in GCS reservoirs and cap rocks (e.g. Sleipner, 

Gaus et al. 2005). The reactivity of micas in CO2-rich brines at conditions relevant to GCS has 

been investigated using batch reactors. Phlogopite served as a first model for dissolution rates of 

clays in experiments performed at 95°C, 10.2 MPa pCO2, and 1 molar NaCl (Shao et al. 2010).  

Incongruent dissolution with an enhanced release of the interlayer potassium through ion-

exchange is observed, similar to behavior at ambient pressure conditions, while Mg, Si and Al 

dissolve congruently. The dissolution of phlogopite is more important in CO2–bearing aqueous 

solution than in acidic solutions without CO2, suggesting a role for CO2 on the dissolution 

mechanism. Complementary experiments at 75 and 95°C, 7.6 MPa, with supercritical CO2 in 1 

molar NaCl brines describe the precipitation of illite and amorphous silica on phlogopite surfaces 

(Garcia et al. 2012a). Similar experiments performed with biotite at 35 to 95°C and 7.5 to 12 

MPa pCO2 in 1 molar NaCl solutions also suggest a role for CO2, expressed as a pH decrease, 

bicarbonate complexation, and an interlayer CO2 intercalation (Hu and Jun 2012).  Interlayer 

CO2 intercalation promotes swelling and creation of new surface area that enhances dissolution 

and, in turn, increases permeability in natural settings. On the other hand, biotite alteration 

results in the precipitation of fibrous illite grains that become detached and mobilized, altering 

flow pathways. Experiments on powdered clay-rich shale containing aluminous phyllosilicates 

like illite show little reactivity in 1 molar NaCl, CO2-rich solution at 11 MPa pCO2 between 80 

and 150°C, suggesting little porosity/permeability alteration (Alemu et al. 2011).  However, 

plug-flow experiments on core or fractured core samples reveals processes that may affect 

caprock integrity.  For example, experimental and theoretical studies demonstrate that the 

formation of small quantities of clay can significantly change the porosity and permeability of 

reservoirs or caprocks (Gaus et al. 2005; Gaus 2010; Luquot et al. 2012) (Fig. 7 and 8). When 

clays form along main flow paths, the increased tortuosity can lead to strong a permeability 

decrease without significant porosity change (Godard et al. 2013).  

 

Phyllosilicates are distinctive minerals because they have high specific surface areas due 

to their sheeted structure and present a wide range of chemical compositions. These 

characteristics lead to specific properties of phyllosilicate-bearing rocks, such as high tortuosity, 



 18 

but also give rise to high sorption capacity, ion exchange capacity, or swelling ability that can 

influence macroscopic properties of the rocks.  CO2 sorption experiments on clay minerals in 

shales performed at 50°C and total pressure less than 20 MPa (Busch et al. 2008; Wollenweber et 

al. 2010) demonstrated a maximum sorption capacity of 1mmol/g for pCO2 of 7 to 12 MPa. This 

phenomenon could expand the CO2 storage capacity of caprocks in case of leakage. However, 

swelling sorption can decrease permeability and result in microcracks, with an increased risk of 

leakage.  Implications of sorption on caprock integrity are not fully understood and require 

further research.  

 

To simulate a CO2 leak through fractured caprocks, CO2-rich brines and CO2-gas were 

alternately flowed through a fractured claystone in a plug flow apparatus (Andreani et al. 2008). 

An abrupt increase of the fracture aperture occurred after each gas flow. The aperture increase is 

controlled by the decohesion of the clay framework induced by acidification from the CO2 gas. 

Numerical simulation of kaolinite/CO2-brine/kaolinite interaction at crystal scales suggest 

repulsion between kaolinite aggregates in acidic solutions (Pèpe et al. 2010). This process is 

expected to produce a progressive decrease of the capacity of the caprock to maintain its seal. In 

contrast, an opposing process may be induced in clays with a high swelling capacity, like Na- or 

Ca-saturated montmorillonite, after exposure to supercritical CO2, suggesting again that CO2 

may be trapped by intercalating the interlayer region (Schaef et al. 2012; Romanov 2013; 

Tokunaga and Wan 2013). However, other studies observed that supercritical CO2 partially 

saturated with H2O can still dehydrate clays (Ilton et al. 2012). Hence, if the supercritical CO2 

flux is significant, the potential increase of permeability may lead to caprock failure.  

 

Few phyllosilicates react directly to produce carbonate minerals, instead phyllosilicates 

serve as a source of divalent cations for formation of carbonates. The only layered phases 

proposed for direct carbonation reactions are serpentines (phyllosilicate group) and brucite 

(hydroxide group); both have been tested experimentally under conditions relevant to GCS using 

batch reactors or microreactors.  As with olivine or pyroxene, the reaction kinetics must be 

accelerated in order to develop an economically feasible GCS process. Exploitation of brucite 

from mine tailings has been proposed for ex-situ CO2 storage via processing in industrial reactors 

(e.g. Lin et al. 2008; Zhao et al. 2010; Dipple et al. 2013). Its dissolution rate increases with 

decreasing pH and increasing NaHCO3 concentration (Hövelmann et al. 2012b). The rate of the 

carbonation process increases with pCO2 and HCO3
-
 in solution, similar to olivine. At high 

pCO2, the CO2 uptake is the limiting process (Harrison et al. 2013).  Surprisingly, hydrated 

carbonates like nesquehonite (MgCO3
.
3H2O) are the predominant product, whereas magnesite is 

predicted. Magnesite may form after brucite at greater than 50°C and but definitely at 75°C 

(Schaef et al. 2011). These authors also show that brucite carbonation is not effective in 

anhydrous supercritical CO2 and that the conversion of brucite to carbonate increases rapidly 

with increased water content of the fluid. Like brucite, serpentine can be harvested from asbestos 

mines, but it is also very abundant in ultramafic reservoirs. Hence its behavior with CO2-rich 

fluid is of interest for both ex-situ and in-situ solutions. As with brucite and olivine, carbonation 

is optimized by adding NaCl and NaCO3 to the heated solution. The dissolution of serpentine 

during carbonation first produces an amorphous silica-rich layer before magnesite precipitates. 

This layer is the limiting step for cation diffusion and reduces reaction progress (Schulze et al. 

2004). Pre-heating (up to 630°C) and grinding have been proposed to optimize ex-situ CO2 

processing by causing dehydroxylation and increasing reactive surface area, respectively.   
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Quartz  

 

Relatively little attention has been paid to the solubility of quartz in the context of GCS, 

primarily because quartz solubility is not enhanced by reduction in pH (Knauss and Wolery 

1988).  Indeed, significant dissolution of CO2 in water lowers quartz solubility (Walther and 

Orville 1983).  Furthermore, detrital quartz grains possess relatively small effective surface areas 

compared to many other silicates, such as clays or partially weathered feldspars (Sardini et al. 

1995). Rates of quartz dissolution are likewise independent of pH below values around 6 

(Knauss and Wolery 1988).  Under near neutral conditions, rates of quartz dissolution are 

enhanced by the presence of cations in solution, with sodium and calcium giving rise to a greater 

enhancement than magnesium (Dove 1999 and references therein, Fig. 9).  Interestingly, further 

investigation of this effect indicates that the mechanism may also enhance release of silica from 

other silicate minerals (Wallace et al 2010). Most data are for far from equilibrium conditions, 

but Davis et al. (2011) have reported results for near-equilibrium dissolution in mildly alkaline 

solutions.  At relatively low temperatures appropriate for GCS (up to about 125
o
C), quartz 

dissolution rates agree well with the predictions of Bickmore et al. (2008), but they are slower 

than expected at higher temperatures (greater than 200
o
C) (Davis et al. 2011). 

 

While quartz dissolution rates should be rather slow, Houston et al. (2007) reported 

evidence for silica dissolution into injected seawater during a seawater enhanced oil recovery 

operation in the Miller Field, UK North Sea, but suggested that it was released from feldspars or 

other silicate minerals, rather than directly from quartz dissolution. Carroll et al. (2013), in a 

study of reactivity of reservoir and caprocks with CO2, even reported amorphous silica 

precipitation from silica released during clay transformations. Overall, injection of CO2 into 

existing formation waters is unlikely to have a significant effect on the amount of silica in 

solution, although it may lead to silica being redistributed from feldspars to clays. Where water 

is also injected and is undersaturated with silica under reservoir conditions, net dissolution of 

silica can be expected, but this may not be released directly from quartz if other silicates are 

present. Under relatively high-temperature conditions (200
o
C) Kaszuba et al. (2003) did however 

report the development of etch pits on quartz grain surfaces. 

 

 

Carbonates 

 

Carbonate behavior in aqueous solutions is often quite distinctive from that of silicates; 

for example, carbonates exhibit retrograde solubility under conditions relevant to GCS. It has 

long been appreciated that many carbonates react more quickly than silicates with acidified pore 

fluids, and they probably play a key role in controlling fluid pH and composition in the rapidly-

moving fluid packet ahead of an advancing CO2 plume (Fig. 1). There are many studies of calcite 

and dolomite dissolution rates in the literature and more limited data for magnesite, siderite and 

other carbonates (e.g. Morse and Arvidson 2002; Golubev et al. 2009; Pokrovsky et al. 2009a; 

Pokrovsky et al. 2009b; Schott et al. 2009). 
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In addition to classical reaction rate studies on carbonate minerals, some recent studies 

have used high-resolution imaging to document the movement of specific surface steps on 

cleavage planes. Xu et al. (2013) used hydrothermal atomic force microscopy to monitor 

dolomite dissolution in solutions of varying ionic strength.  They were able to document 

increased dissolution rates in more concentrated solutions, although bulk experiments of 

Pokrovsky et al. (2005) found little influence of ionic strength in solutions up to 1 molar.  

 

Much early work on carbonate mineral solubility was aimed at weathering studies and so 

used CO2 pressures less than 0.1 MPa. This work provided an overview of carbonate dissolution 

rates and allowed the development of models for carbonate dissolution (Pokrovsky et al. 1999b, 

a; Morse and Arvidson 2002) but could not evaluate whether pCO2 influenced dissolution rates 

other than through the effect on pH.  Pokrovsky et al. (2005) carried out rotating disc batch 

experiments to determine calcite and dolomite dissolution rates at pCO2 greater than 5.5 MPa 

and 25
o
C, with pH measured directly, and also measured dissolution of these minerals as 

powders in a mixed-flow reactor.  Magnesite dissolution rates were also measured at elevated 

pCO2 on powders using a batch reactor.  Overall, the results of this work showed that carbonate 

dissolution rates are not strongly dependent on pCO2 except through the influence that it exerts 

on pH, and only weakly dependent on ionic strength up to 1 molar NaCl.  In particular, the effect 

of pCO2 was not significant at pressures greater than about 1 MPa.  For magnesite and dolomite, 

dissolution rates can be predicted at pCO2 values up to 5 MPa by the Surface Complexation 

Models of Pokrovsky et al. (1999a, b). 

 

Subsequently, Pokrovsky et al. (2009b) presented experimental results for calcite, 

magnesite and dolomite in 0.1 molar NaCl at temperatures to 150
o
C, and presented an empirical 

fit to the experimental data for a range of pH values. This work showed only a small dependence 

of dissolution rate on temperature, with the highest rates at around 100
o
C.  Figure 10 shows the 

dissolution rates of these three carbonates at 60, 100 and 150
o
C as a function of pCO2 and 

demonstrates the order of magnitude differences between them. The calculations were performed 

for pH of about 4 and a rather dilute (0.1 molar NaCl) matrix. On the basis of these results it 

appears that carbonate dissolution rates are not strongly dependent on either temperature or pCO2 

over the range of conditions likely to be encountered in GCS sites.  

 

Surface reaction rates of calcite are so fast in acid to neutral fluids that in practice 

reactivity in a calcite-bearing geological reservoir will always be transport controlled (Sjöberg 

1983; Morse and Arvidson 2002). Surface reaction rates of calcite are therefore not in general 

relevant to GCS problems and it is the rate of dissolution and transport of CO2 that dictates how 

fast calcite dissolves. Dolomite is slower to react than calcite but its dissolution may also be 

transport controlled in many situations (Pokrovsky et al. 2005). Magnesite is, however, even 

slower to react than dolomite under conditions relevant to GCS, and for magnesite the 

dissolution rate may well be controlled by surface reaction. 

 

 

Sulfates 

 

Sulfate minerals, predominantly anhydrite but also gypsum, are common accessory 

minerals in sedimentary rocks that comprise GCS reservoirs and caprocks.  Anhydrite can also 
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be a major mineral in an evaporate caprock.  In addition, anhydrite may serve as a mineral trap 

for sulfur in CO2-SO2 co-sequestration (Knauss et al. 2005; Xu et al. 2007; Kaszuba et al. 2011; 

Chopping and Kaszuba 2012).  The predominant reaction involving SO2 in geologic carbon 

sequestration, and in water-rock systems in general, is the disproportionation reaction 

 

4SO2 + 4H2O = 3H2SO4 + H2S                                                    (1) 

 

(Holland 1965; Getahun et al. 1996; Palandri and Kharaka 2005; Palandri et al. 2005; Kaszuba et 

al. 2011; Chopping and Kaszuba 2012).  Anhydrite may precipitate in response to the subsequent 

increase in dissolved sulfate.  

 

As with carbonate minerals, sulfates exhibit retrograde solubility under conditions 

relevant to GCS. Reaction kinetics for sulfate minerals are also orders of magnitude faster than 

many of the silicate minerals (Palandri and Kharaka 2004 and references therein), thus anhydrite 

readily precipitates and dissolves at laboratory time scales. The most important control on the 

precipitation and dissolution of anhydrite is the concentration of dissolved sulfate.  Experiments 

have been conducted with a wide range of aqueous sulfate concentrations.  Some experiments 

contain no aqueous sulfate in the initial brine, others contain sufficient sulfate to saturate or 

supersaturate brine with respect to anhydrite.  Interpretation of anhydrite behavior in experiments 

must take into account the parameters at which the experiments are performed, including brine 

chemistry (ionic strength) and temperature. 

 

Anhydrite dissolves in batch experiments evaluating reactions among rocks containing 

anhydrite, brine containing no aqueous sulfate, and supercritical CO2.  Such is the case for 

experiments evaluating the Eau Claire Formation, the shale caprock for the Mount Simon 

sandstone in the Midwestern United States (Liu et al. 2012), and the Stuttgart Formation, the 

sandstone reservoir for the pilot storage site at Ketzin, Brandenburg, Germany (Fischer et al. 

2010).  It is conceivable that gypsum may replace anhydrite at the temperatures of these 

experiments (56°C and 40°C, respectively), but no gypsum was reported in either study. 

 

Anhydrite does not react in a core-flood experiment evaluating reactions in the Three 

Fingers evaporite unit, the lower part of the caprock at the Weyburn-Midale reservoir, 

Saskatchewan, Canada (Smith et al. 2013).  The brine used in this study was formulated to 

emulate a typical in-situ brine that is near equilibrium with anhydrite, slightly saturated with 

respect to calcite and dolomite, and equilibrated with CO2 at a pressure of 3 MPa.  Dolomite 

dissolved during the experiment in response to the acidity of the brine.  Anhydrite, however, did 

not react because anhydrite stability is not sensitive to pH and because the brine injected into the 

rock was already close to equilibrium with anhydrite.  Dissolution of the dolomite matrix 

physically mobilized anhydrite crystals, a finding with potential implications for redistributing 

permeability and porosity in the rock. 

 

Anhydrite precipitates in a series of hydrothermal batch experiments using Dickson cells 

that were performed to evaluate CO2-water-rock interactions in carbonate rocks from the 

Leadville Limestone Formation, Paradox Valley, Colorado, United States (Rosenbauer et al. 

2005).  Injection of supercritical CO2 dissolves calcite in these experiments.  Dolomite 

precipitates in experiments containing high-sulfate brine but dissolves in experiments containing 
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low-sulfate brine.  This study reported similar results for carbonate rocks reacted with high-

sulfate brine but no CO2.  Anhydrite also precipitated in a series of batch experiments evaluating 

CO2-water-rock interactions in the Madison Limestone of the Moxa Arch, Southwest Wyoming, 

United States (Chopping and Kaszuba 2012).  Following injection of supercritical CO2, dolomite 

and calcite dissolve due to increased acidity whereas anhydrite precipitates (Fig. 11).  Reaction-

path calculations suggest that dolomite will become stable and precipitate once acidity in the 

brine is fully buffered by the rock (Fig. 12).   

 

Similar behavior is observed in experiments that evaluate co-injection of SO2 with CO2 

into Madison Limestone (Chopping 2011) and into arkose (Mandalaparty et al. 2011).  

Carbonate minerals dissolve in response to the increased acidity whereas anhydrite precipitates 

in response to the increase in dissolved sulfate (equation 1).  Pronounced calcite dissolution is 

attributed to increased acidity due to SO2 co-injection (Chopping 2011).  Carbonate dissolution 

buffers the acidity such that pH values are similar to values observed for CO2 injection 

(approximately pH 5); increased acidity predicted by computer models (e.g., Knauss et al. 2005) 

is not observed. 

 

Collectively, these experiments demonstrate that co-injected SO2 and CO2 increases 

aqueous sulfate concentrations, precipitates anhydrite, acidifies the water and dissolves carbonate 

minerals.   All of these reactions will take place in the acidified water ahead of the CO2 front 

(Fig. 1, Location A).  These experiments also demonstrate that injection of CO2 (without SO2) 

will lead to anhydrite precipitation if sufficient aqueous sulfate is present.  Mineral-fluid 

interactions will neutralize some of this carbonic acidity, resulting in a rise in pH and 

reprecipitation of carbonate minerals.  

 

 

Sulfides 

 

Sulfide minerals, most commonly pyrite, are common accessory minerals in sedimentary 

rocks that comprise the reservoirs and caprocks targeted for geologic carbon sequestration.  

Dissolution of pyrite can augment mineral storage by providing Fe
2+

 for siderite and ankerite.  

Pyrite can also be important in CO2-SO2 co-sequestration due to the increase in dissolved sulfide 

(equation 1).  On the other hand, oxidized impurities in the CO2 will oxidize pyrite, generate 

sulphuric acid, and potentially decrease pH to values lower than injection of CO2 without 

impurities.  However, SO2-CO2 injection in batch reactions with Madison Limestone showed no 

significant pH decrease.  Much would depend on the rate at which oxidized impurities are 

supplied; even feldspars will neutralize additional acid as it is generated if oxidants are not 

delivered too quickly. 

 

Very few experimental studies report results for pyrite precipitation or dissolution.  Pyrite 

precipitates due to alteration of basaltic glass beginning at temperatures of 150-250°C (Gysi and 

Stefansson 2012).  Siderite precipitates near pyrite in response to CO2 injection (Liu et al. 2012). 

In the CO2-water-Madison Limestone experiments of Chopping and Kaszuba (2012), pyrite 

exhibits minor dissolution textures that developed in response to injection of CO2.  Finally, pyrite 

forms in experiments that evaluate hematite and goethite dissolution (section on iron 

oxyhydroxides, below). 
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Iron oxyhydroxides 

 

Although not as abundant as silicate minerals, Fe
3+

-bearing oxyhydroxide minerals occur 

in sedimentary rocks, especially redbeds, which are generally thick and widely distributed.  Fe
3+

-

bearing oxyhydroxide minerals can promote mineral storage via reactions forming siderite and 

ankerite, if the minerals can be dissolved and aqueous Fe
3+

 reduced to Fe
2+

. Hematite and 

goethite in particular have been the subject of studies coupling mineral dissolution and iron 

reduction.  Hematite has also been proposed as an important mineral for geologic co-

sequestration of SO2  

 

Fe2O3 (hematite) + 2CO2 + SO2 + H2O = 2FeCO3 (siderite) + H2SO4  (2) 

 

(Palandri and Kharaka 2005; Palandri et al. 2005).   

 

Hydrothermal batch experiments using Dickson cells and performed at 150°C and 30 

MPa in 1.0 molal NaCl solution demonstrate that hematite and goethite dissolve, aqueous Fe
3+

 

reduces to Fe
2+

, and siderite precipitates in response to co-injection of supercritical CO2 and SO2 

(Palandri et al. 2005; Garcia et al. 2012b).  Roughly 0.05 to 0.1 vol% of the hematite and 2.4 

vol% of the goethite reacted to siderite in these experiments.  Other minerals that precipitated in 

the hematite-bearing experiment are pyrite (and or amorphous iron sulfide), dawsonite 

(NaAlCO3(OH)2), and native sulfur.  Dawsonite probably precipitated in response to injection of 

NaOH immediately before the experiment was terminated (Palandri et al. 2005).  As may be 

expected, goethite reacted to form siderite quicker than hematite (576 vs 611 hours).  Kinetic 

dissolution rates for goethite have not been determined at low pH. At neutral pH, goethite 

dissolution rates (~10
-8

 mol/m
2
/s) are indeed much faster than hematite dissolution rates (~10

-15
 

mol/m
2
/s) (Palandri and Kharaka 2004 and references therein). At low pH, hematite dissolution 

rates are around 10
-9

 mol/m
2
/s. Rapid dissolution of Fe

3+
-bearing oxyhydroxide minerals will be 

important in continental redbed sandstones (Palandri and Kharaka 2005). 

 

Iron oxyhydroxide minerals also reacted rapidly to form siderite and native sulfur or 

pyrite in a sequence of experiments performed at lower temperature (70 and 100°C) and pressure 

(8.2 to 8.3 MPa) (Murphy et al. 2010; Lammers et al. 2011; Murphy et al. 2011).  These studies 

employed two different types of apparatus, a micoreactor configured to perform in-situ infrared 

spectroscopy and a standard batch reactor.  Mineral dissolution, reduction of iron, and 

subsequent precipitation of siderite occurred on exceedingly short time scales (< 1 hour).  

Nanocrystals of several iron oxyhydroxide minerals were evaluated, including hematite, 

ferrihydrite, and iron hydroxide polymorphs (goethite, lepidocrocite, or akaganeite).  The NaCl 

solutions injected with supercritical CO2 in these experiments contained aqueous hydrogen 

sulfide as a proxy for co-injected SO2.  Finally, hematite nanocrystals precipitated in batch 

hydrothermal experiments performed at 150°C and 20 MPa in CO2-saturated 0.5 molar NaCl 

solution in a batch reactor (Montes-Hernandez and Pironon 2009).  Iron-bearing montmorillinite 

(plus iron from the reactor walls) reacted to form hematite in 15 days and hematite + siderite in 

60 days.   

 



 24 

 

Reservoir and cap rocks 

 

A number of studies have investigated the effect of CO2-saturated fluids on rocks, most 

commonly in plug flow reactors. The overwhelming conclusion from such studies is that 

reactions with natural rocks are dominated by carbonate dissolution, in accordance with results 

of field trials (Lu et al. 2012). Kjøller et al (2011) found that even after 13 months at 70
o
C and 20 

MPa, carbonate dissolution was the predominant process with calcite, dolomite and siderite 

dissolving in different rock types. By comparison, clay minerals and feldspars did not react, 

possibly because the carbonate reactions prevented low pH conditions from being attained. In 

contrast, experiments by Carroll et al. (2013) on sandstone and shale at 51
o
C and 19.5 MPa 

found that Fe-rich clays appear to have dominated the reactions, dissolving incongruently to 

secondary clays and amorphous silica.   

 

The effects of reactivity on petrophysical properties of reservoir rocks have been investigated in 

several studies. Canal et al. (2013) measured changes in porosity due to calcite dissolution and 

found a marked increase in permeability and changes to seismic velocities. Bachaud et al. (2011) 

measured increased porosity in limestone caprock; in contrast, permeability remained low in 

these experiments.  Hangx et al. (2010) carried out creep tests on sandstones partially cemented 

by calcite and found that reaction of the calcite did not affect rock strength.   Busch et al. (2008) 

evaluated diffusive loss of CO2 through a 100 m thick clay-rich, carbonate poor caprock.  They 

determined that diffusive gas breakthrough occurs at the top of the caprock after approximately 

0.3 Ma.  Their experimental results also suggest that shale caprocks provide additional CO2 

storage capacity, predominantly through sorption (see discussion on phyllosilicates), but the 

related geochemical and mineralogic processes were not well constrained. 

 

Experiments on natural rock cores provide a test for computer models (Canal et al. 2013) 

and have been used to investigate trapping mechanisms (Iglauer et al. 2011) and the effect of 

reactivity on the physical properties of reservoir rocks (Hangx et al. 2010). In the event that GCS 

is implemented commercially, it seems likely that such measurements will be an important part 

of site characterisation and evaluation.  An obvious limitation is the complexity of natural rocks 

which can make it difficult to extract fundamental data. Some workers have carried out column 

experiments using packed mineral grains of known composition and abundance instead of 

natural rock cores to try to address this issue. Bateman et al. (2010) carried out an extended (3.5 

month) experiment flowing a synthetic brine pre-saturated with CO2 through a 1m column 

packed with a mix of calcite, labradorite and quartz. In addition to monitoring the outflow fluid, 

the changes to the solid constituents were investigated along the length of the column. Over 

much of its length, calcite was completely dissolved and labradorite showed some evidence of 

pitting. Near the outflow however, there was evidence for new precipitation of calcite cement, 

apparently the result of neutralising of acidity by silicate reactions.  

 

 

SUMMARY AND CONCLUSIONS 

 

This brief review has demonstrated the considerable breadth of experimental data that is 

available for mineral dissolution and precipitation due to CO2-water-rock interactions as well as 
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the diversity of laboratory techniques used to acquire these data.  In particular, a sizeable dataset 

quantifying the dissolution rates of minerals likely to be of significance for Geological Carbon 

Storage has been assembled.  We hope this review has also demonstrated that further laboratory 

experiments, particularly kinetic measurements, are needed for conditions close to those likely to 

be encountered in CO2 reservoirs. Here, pore fluids are likely to be already close to equilibrium 

with their host rocks prior to CO2 injection, and will respond primarily to the lowering of pH 

which results as CO2 dissolves into pore waters.  

 

Despite limitations in our understanding, a number of important conclusions can be 

drawn about CO2-water-rock interactions, particularly with respect to relative rates, that may be 

of value for the design of sequestration schemes. The fastest minerals to respond to the changes 

in fluid chemistry induced by CO2 injection are calcite, anhydrite and dolomite. When present in 

the reservoir, these minerals serve to raise pH on a timescale of days in response to dissolution of 

CO2 in formation waters, and as a result may further inhibit the slower response of silicate 

minerals to injection. Nevertheless, silicate reactions may take place within the lifetime of an 

injection site. Conversion of feldspars to secondary clay minerals is likely to be an important 

reservoir reaction, but at present the rates of such reactions are difficult to predict because they 

may be more dependent on the rate of precipitation of the secondary phases than on feldspar 

dissolution. This is important, because the secondary minerals may reduce permeability 

significantly and if this happens on the timescale of the original injection, it could reduce 

reservoir capacity. Impurities co-injected with CO2 may provide new sources of acidity as well 

as dissolved solutes that may promote precipitation of new minerals and additional growth of 

preexisting minerals. Along main flow paths exhibiting high permeability, fluid composition will 

likely be dominated by the injected fluid; more protected areas exhibiting reduced flow may 

instead retain rock-dominated fluids. Over time, mineral dissolution and precipitation may 

progressively modify flow pathways and shift the types of reaction taking place.  These 

processes will collectively determine the interplay between reaction kinetics and mass transport 

processes in CO2 reservoirs. 

 

 

DIRECTIONS FOR FUTURE WORK 

 

Upscaling experimental laboratory data to reservoir scale is one of the most challenging 

issues to predicting the long-term fate of CO2 in reservoirs that display an evolving reactivity.  

Reactive-transport modeling uses kinetic data determined from laboratory experiments to predict 

larger scale behavior, but two main issues need to be addressed to achieve better predictions. 

First, the interplay between chemical reactions, changing rock geometry, and hydrodynamic 

properties is crucial but not well constrained. This interplay notably controls fluid accessibility to 

reaction sites and the evolution of reactive surface areas. The latter may vary significantly in 

natural systems compared to those estimated for powders used in experiment because 

preferential flow paths can be created depending on the local flow rate. All these parameters vary 

from one rock to another and are strongly dependent on the departure from equilibrium (ΔG) of 

the fluid-rock reaction. Experiments at intermediate ΔG, below values expected for the injection 

site, are rare but very useful to constrain the evolution of reaction rate, porosity and permeability 

as a function of pCO2. The experimental measurement of characteristic non-dimensional 

numbers that describe the timescale of reaction versus the one of transport (Damkholer number) 
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under various conditions may also help to upscale the laboratory-scale processes. Second, 

reaction-transport modeling usually follows a macroscopic approach, using chemical properties 

averaged at the scale of a representative elementary volume (REV) that depends on rock 

structure. This approach fails to describe the complex spatial arrangement of rock-forming 

minerals, especially in polymineralic rocks, the connectivity of pores as it relates to accessible 

reactive surface area (Landrot et al. 2012), or the resulting heterogeneities in geochemical 

reactions. This has been emphasized in experiments in which dissolution and precipitation can 

both occur during fluid flow through the rock. From an experimental point of view, it is 

necessary to combine batch and dynamic approaches to discriminate between the intrinsic 

properties of minerals and the effect of rock structure on macroscopic reaction rates. Identifying 

the processes that control the overall behavior of the reservoir will inform decisions and 

assumptions needed to simplify computer models of reservoir and caprock behavior.  

 

Taking the large-scale view to try to understand reservoir injection and storage, we can 

identify several areas where more work is needed. Experimental studies performed to date 

underline difficulties in predicting the behavior of caprocks and clay-rich lithologies in presence 

of a CO2-rich fluid. Batch experiments on powders allow characterization of numerous 

properties of phyllosilicates; however, they fail to predict the macroscopic behavior of a real 

rock.  Many opposing processes, such as CO2 sorption, swelling, and sheet repulsions in an 

acidic media can occur simultaneously in nature. The extent to which these processes will occur 

depends on the fluid composition and the mineralogy and structure of the rock.  The resulting 

macroscopic implications on caprock integrity are not fully understood and require further 

research.   

 

An important target for GCS is the creation of enhanced residual or capillary trapping of 

CO2 as isolated bubbles surrounded by water, and therefore physically captured by capillary 

forces (Qi et al. 2009; Tokunaga and Wan 2013). Although capillary trapping has been achieved 

in the laboratory on a short time scale (Iglauer et al. 2011), the experiments were only of short 

duration. Experiments evaluating the long-term stability of capillary trapping are needed because 

this trapping mechanism will depend on chemical processes since CO2 is relatively soluble in 

water. Long-term experiments are also needed to evaluate whether the chemical connectivity 

between apparently isolated bubbles, through their solubility in the enclosing medium, has any 

effect on the stability of this trapping mechanism.   

 

Most carbonation experiments conducted under GCS conditions have focused on the 

conversion of CO2 into carbonate minerals. However, companion redox reactions may occur. 

Luquot et al (2012) showed that CO2 may be converted into reduced carbon when injected in a 

ferrous iron-bearing sandstone reservoir, resulting in the precipitation of poorly-crystallized 

graphite. In mafic and ultramafic reservoirs, the oxidation by H2O of the ferrous iron component 

of olivine or pyroxene can result in H2 production (Stevens and McKinley 2000; Marcaillou et al. 

2011). In CO2-poor experiments, a part of the CO2 is reduced to methane and possibly more 

complex carbon compounds (McCollom 2013).  If magnesite precipitation after olivine is faster 

than iron oxidation under high pCO2 (Jones et al. 2010), pCO2 gradients in natural reservoirs 

may produce regions where hydration, carbonation and redox reaction compete, inducing a risk 

of CH4 production that could alter storage integrity.  In addition, the fraction of CO2 possibly 

converted abiotically into heavier organic compounds is totally unknown, whatever the type of 
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reservoir and the pressure, temperature, and pCO2 conditions. The stability of such an organic 

fraction is also of interest for long-term safety.  Redox reactions associated with CO2 may 

strongly influence the fate of CO2 and need to be experimentally investigated.  The effect of CO2 

on the redox potential of the system also requires examination. It will be worth considering both 

problems under abiotic and biotic conditions since H2 and CH4 can be associated with 

autotrophic microbial activity.  
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Figure Captions 

 

Figure 1. Schematic representation of CO2 injection into an aquifer sandstone beneath a caprock. 

The CO2 fingers ahead down more permeable sandstone beds. A: sites in the most permeable 

beds where the advancing CO2 front pushes acidified water ahead of it; B: region behind the CO2 

front containing interconnected CO2 and residually trapped brine; C: upper surfaces of CO2 

fingers where CO2 interacts by diffusion with overlying formation brines in less permeable beds; 

D: lower surfaces of CO2 fingers where CO2 interacts with underlying formation brines by 

diffusion and in some circumstances convection. 

 

Figure 2.  TEM images of main reaction textures observed in samples of sintered olivine and 

diopside reacted with CO2-enriched water in a percolation experiment, a type of flow-through 

experiment.  These textures illustrate the variability of transport-reaction resulting from the 

structural heterogeneity of the sample. Along main flow paths (A), olivine dissolution prevails 

because of an efficient advective removal of elements due to strong chemical gradients between 

the fluid and the mineral. A silica-passivation layer is created on olivine surfaces where 

magnetite precipitates. In reduced flow zones (B), chemical gradients and removal of elements 

are both reduced. Mg-Si phyllosilicates can precipitate instead of the silica layer. In dead-end-

zones (C), chemical gradients are reduced and carbonate supersaturation can be achieved to form 

magnesite and siderite on olivine surfaces, in addition to an Mg-Si-rich phyllosilicate [Used by 

permission of the American Chemical Society, from Andreani M, Luquot L, Gouze P, Godard 

M, Hoisé E, Gibert B (2009), Environmental Science & Technology, Vol. 43, Fig. 4, p. 1228.]. 

 

Figure 3.  Schematic drawings of the major types of experimental apparatus. A) Typical 

configuration for a batch reactor [Used by permission of Elsevier, from Hövelmann, J., 

Austrheim, H., Jamtveit, B. (2012a), Chemical Geology, Vol. 334, Fig. 2, p. 258.]. B) Batch 

reactor containing flexible reaction cell [Used by permission of the American Chemical Society, 

from McCollom and Seewald (2007), Chemical Reviews, Vol. 107, Fig. 6, p. 388.]. C) 

Microreactor [Used by permission of the American Chemical Society, from Wolf, G.H., 

Chizmeshya, A.V.G., Diefenbacher, J., McKelvy, M.J. (2004), Environmental Science & 

Technology, Vol. 38, Fig. 1, p. 933.]. D) Mixed flow-through batch reactor [Used by permission 

of Elsevier, from Pokrovsky, O.S., Schott, J. (2000), Geochimica et Cosmochimica Acta, Vol. 

64, Fig. 1, p. 3314.]. E) Plug-flow reactor, also known as a flow-through and core-flood reactor 

[Used by permission of the American Chemical Society, from Andreani M, Luquot L, Gouze P, 

Godard M, Hoisé E, Gibert B (2009), Environmental Science & Technology, Vol. 43, Fig. 2, p. 

1227.].  F) Batch reactor including a micro-pH electrode assembly in the sampling line 

(Rosenqvist 2012).  [Used by permission of Elsevier, from Rosenqvist, J., Kilpatrick, A.D. 

Yardley, B.W.D. (2012), Applied Geochemistry, Vol. 27, Fig. 1, p. 1611.]. 

 

Figure 4.  Experimental dissolution rates of olivine as a function of pH at 25°C (dotted line: data 

from Blum and Lasaga 1988; Wogelius and Walther 1991; line and grey area: data from 

Pokrovsky and Schott 2000), at 45°C (data from Rosso and Rimstidt 2000), at 50°C (dots: data 

from Wang and Giammar 2013), at 65°C (data from Wogelius and Walther 1991; Chen and 

Brantley 2000), at 90°C (data from Hänchen et al. 2006), at 120°C (data from Hänchen et al. 

2006: without CO2 (dotted line and dots), with CO2 (open circles); line: data from Prigiobbe et 

al. 2009), and at 150°C (data from Hänchen et al. 2006). 
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Figure 5.  Comparison of a range of experimental dissolution rates for albite (C&W,’84 data 

from Chou and Wollast 1984; S&B,’95 data from Stillings and Brantley 1995; B&C,’76 data 

from Busenberg and Clemency 1976; K&W,’86 data from Knauss and Wolery 1986; H,’94 data 

from Hellmann 1994). [Used by permission of Elsevier, from Allan et al. (2011), Applied 

Geochemistry, Vol. 26, Fig. 6, p. 1295.]. 

 

Figure 6.  Comparison of apparent dissolution rates for illite and other clay minerals.  

Dissolution rates are normalized to 10 oxygen atoms.   Closed system experiments in excess of 1 

month are denoted by open symbols; those of shorter duration are denoted by open symbols 

[Used by permission of Elsevier, from Köhler, S.J., Dufaud, F., Oelkers, E.H. (2003), 

Geochimica et Cosmochimica Acta, Vol. 67, Fig. 7, p. 3592.].   

 

Figure 7.  SEM images of laumontite dissolution features and kaolinite precipitation in CO2 

percolation experiments through chlorite/zeolite-rich sandstone samples from the Pretty Hill 

Formation (Otway Basin, Australia).  Dissolution of laumontite and chamosite are the potential 

sources of calcium, iron and magnesium required for carbonate precipitation. The experiment 

emulates in situ temperature and pressure conditions (95°C and 10 MPa) [Used by permission of 

Elsevier, from Luquot L, Andreani M, Gouze P, Camps P (2012), Chemical Geology, Vol. 294-

295, Fig. 7, p. 82.].   

 

Figure 8.  Sketch illustration of laumontite, chamosite and feldspars dissolution and kaolinite 

precipitation in Figure 7, explaining reactive surface and permeability decrease with time.  

Permeability decreases of about one order of magnitude due to the localization of the kaolinite 

precipitation in the main flow paths, while porosity increases.  [Used by permission of Elsevier, 

from Luquot L, Andreani M, Gouze P, Camps P (2012), Chemical Geology, Vol. 294-295, Fig. 

14, p. 86.].   

 

Figure 9.  Effect of chloride salts on quartz solubility under conditions relevant to GCS [Used by 

permission of Publishing Company, from Dove (1999), Geochimica et Cosmochimica Acta, Vol. 

63, Fig. 3, p. 3722.].  

 

Figure 10.  Dissolution rates of carbonate minerals as a function of pCO2, calculated from the 

equations of Pokrovsky et al. (2009b) for a 0.1molar NaCl solution with pH = 4. a) calcite, b) 

dolomite, c) magnesite. Solid lines are calculated for 60°C, long dashed lines for 100°C and 

short dashed lines for 150°C. 

 

Figure 11.  FE-SEM micrographs of anhydrite.  Scale bars vary among the images.  A) 

Unreacted anhydrite used in experiments conducted in flexible cell batch reactors at 110°C and 

25 MPa.  B) Anhydrite recovered from experiment reacting brine with dolomite, calcite, 

anhydrite, and pyrite.  The brine is approximately saturated with respect to anhydrite.  

Dissolution textures are evident.  C) and D) Euhedral anhydrite crystals that precipitated in 

experiments containing brine, dolomite, calcite, pyrite, ± anhydrite (C and D, respectively).  

Anhydrite precipitated in response to injection of supercritical CO2.  The brine is slightly 

undersaturated with respect to anhydrite at the time the CO2 was injected [Used by permission of 

Elsevier, from Chopping and Kaszuba (2012), Chemical Geology, Vol. 322–323, Fig. 5, p. 231.]. 
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Figure 12.  Geochemical evolution of scCO2-brine-rock experiments in the CaO-CO2-SO4
2-

-H2O 

system at 110°C.  Stability fields for dolomite, anhydrite, and aqueous fluid at in-situ conditions 

prior to (solid lines) and after (long dashed lines) injection of scCO2 are depicted.  Stability fields 

predicted for equilibrium conditions in the scCO2-brine-rock experiments (short dashed lines, 

filled square) are also depicted.  A) Diagram plotting log aHCO3- versus log aSO42- for ±scCO2-

brine-Do-Cc-Anh-Py experiments.  Aqueous samples are plotted for brine-Do-Cc-Anh-Py 

experiment (open circles) and scCO2-brine-Do-Cc-Anh-Py experiment (open squares).  The 

temporal sequence of samples in the scCO2 experiment defines a reaction path trajectory (bold 

dashed arrows) towards the dolomite saturation boundary.  B) Diagram plotting log aHCO3- versus 

log aSO42- for ±scCO2-brine-Do-Cc-Py experiments.  Aqueous samples are plotted for brine-Do-

Cc-Py experiment (open circles) and scCO2-brine-Do-Cc-Py experiment (open squares).  The 

temporal sequence of samples in the scCO2 experiment defines a reaction path trajectory (bold 

dashed arrows) towards the aqueous stability field.  Anhydrite field appears after injection of 

supercritical CO2 [Used by permission of Elsevier, from Chopping and Kaszuba (2012), 

Chemical Geology, Vol. 322–323, Fig. 7, p. 233.]. 

 

 

 


