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Wave dispersion is a widely recognised phenomenon that occurs when elastic waves propagate through a hetero-

geneous microstructured material; reflection and refraction of higher frequencies leads to an apparent reduction of the

wave speed with frequency. Enhanced continua are frequently employed to capture this phenomenon efficiently.

Numerical experiments are performed in this paper to establish a procedure for the determination of the length scale

parameters used in dynamic gradient elasticity using spectral analysis. Suitable values of the length scale parameters are

determined and verified for a one-dimensional laminated bar and for a two-dimensional chequerboard plate.

1. Introduction
The mechanical behaviour of heterogeneous materials may be

simulated by explicitly modelling the individual material phases

that make up the composite or by calculation of their effective

properties. The use of effective properties, however, may lead to

a loss of information of the material behaviour that is driven by

its microstructure. Explicit modelling of the discrete material

phases, while capturing microstructural effects, may lead to

onerous computational demands, particularly where a material or

structure needs to be modelled in two or three dimensions. To

overcome these problems for modelling composites, enhanced

continua have been employed.

This short paper focuses on the modelling of wave dispersion

phenomena in composite materials using gradient elasticity. In

gradient elasticity, the usual equations of motion are extended with

additional spatial derivatives of the displacements and/or the

accelerations; see for instance the landmark paper of Mindlin

(1964), the simplified format suitable for static applications due to

Aifantis and co-workers (Aifantis, 1992; Altan and Aifantis, 1992;

Ru and Aifantis, 1993) and the renewed interest in dynamic

applications in recent years (Chen and Fish, 2001; Metrikine and

Askes, 2002; Papargyri-Beskou et al., 2009; Rubin et al., 1995;

Wang and Sun, 2002). In gradient elasticity, simple parameters are

used to incorporate microstructural effects into a model without the

need to model explicitly individual material phases, thus enabling a

significant reduction in computational overhead. The additional

model parameters, for dimensional consistency, have the dimen-

sions of length and are henceforth referred to as length scales.

A debate still exists as to whether the length scale parameters in

gradient elasticity are simply model parameters or physically

identifiable quantities. Irrespective of this debate, in order that

the method may be used in a predictive manner, methods whereby

the length scales may be identified need to be developed. In this

paper, spectral analysis of waves propagating through a hetero-

geneous material is used to fit the length scales of dynamic

gradient elasticity.

A short introduction to theory of gradient elasticity in dynamics

is given in Section 2. A noteworthy feature of this particular

model is the use of both stiffness and inertial length scales.

Section 3 investigates the wave dispersion behaviour of a hetero-

geneous bar. A spectral analysis procedure for the determination

of a bar’s dispersion curve is outlined and then applied to a bar

where the individual material constituents are modelled explicitly.

The numerical results are compared with an analytical solution

for the dispersive behaviour, which contains the gradient elasticity

length scales; by making an assumption as to the nature of the

stiffness length scale, the inertial length scale may be calculated.

The techniques employed in Section 3 are then extended to two

dimensions in Section 4 to show that the length scales derived are

capable of describing both the p-wave and s-wave dispersion

characteristics of a chequerboard patterned plate.

2. Gradient elasticity theory in dynamics
The equations of motion of a multidimensional dynamic system

in gradient elasticity are expressed as (Askes et al., 2007)

r(€uui� l2m €uui,mm)¼C ijkl

3
uk, jlþu l, jk

2
� l2s

uk, jlmmþu l, jkmm

2

� �
1:

where u is the displacement vector, r is the mass density, C is

the elastic fourth-order tensor, while superimposed dots and

indices following commas denote time and space derivatives,

respectively. If the material is assumed to be linear elastic and

isotropic, the elastic tensor reads
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C ijkl ¼ º�ij�kl þ ��ik� jl þ ��il� jk

where º and � are Lamé’s constants. This model is only

applicable to isotropic media; extension of the theory to aniso-

tropy has recently been performed (Gitman et al., 2010).

In Equation 1 both higher-order inertia and stiffness appear, thus

the model is considered as dynamically consistent (Metrikine and

Askes, 2002). In order to make Equation 1 dimensionally valid,

the length scales ls and lm are introduced. The latter quantities

are related to the inherent microstructure of the material. In

particular, ls can be given by

ls ¼
Lffiffiffiffiffi
12

p
2:

where L indicates the size of the representative volume element

of the material in statics (Gitman et al., 2005). A more thorough

evaluation of the length scale lm will be provided in Section 3.

High-frequency waves will be apparently slower than low-

frequency waves (Metrikine and Askes, 2002) in this model if lm

is chosen to be greater than ls: This is as observed in discrete

lattices, which are often taken as a reference case when analysing

wave dispersion in gradient elasticity. Therefore, to make the

gradient elasticity model described by Equation 1 physically

reliable, it must be assumed that lm > ls:

3. Dispersion curves of a heterogeneous bar
The validity of the gradient elasticity theory described in Section

2 is verified by comparing the actual dispersion curves of a

heterogeneous material, determined by modelling the heterogene-

ities explicitly, with the analytical dispersion curves provided by

the gradient elasticity approach.

3.1 Procedure to determine the dispersion curves of

the explicitly modelled bar

The actual dispersion curves of the material are obtained through

a procedure commonly adopted in the spectral analysis of surface

waves (SASW), which is a technique mainly used in geotechnical

engineering to assess in situ properties of the soil layers (Kim

and Park, 2002).

The SASW procedure consists of applying an impulsive load to

the structure in order to produce the propagation of an infinite

series of sinusoidal waves with different frequency. The accelera-

tion responses at two distinct positions, called receivers, are

captured in the time domain and subsequently converted into the

frequency domain by using the fast Fourier transform. The latter

algorithm provides the magnitudes M and the phases Ł of the two

signals as functions of the frequency f. If evaluated between 08 and

3608, the phases must be ‘unwrapped’, that is their values must be

incremented by 3608 whenever they complete a 3608 angle. In this

way, it is possible to compute the correct number of cycles that

each sinusoidal wave possesses between the two receivers as

ncyc( f ) ¼
˜Łunwrapped( f )

36083:

where ˜Ł represents the phase shift, namely ˜Ł ¼ Ł1 � Ł2:

Thus, the phase velocity cp and the wave number k can be

calculated with the following formulae

cp( f ) ¼
d

ncyc( f )= f4:

k( f ) ¼ 2�

cp( f )= f5:

where d denotes the distance between the two receivers. Finally,

the dispersion curves are retrieved by plotting the values of the

phase velocity against the values of the wave number for each

frequency considered.

3.2 Description of the one-dimensional model

The laminated bar shown in Figure 1 is studied, which has

previously been examined in previous works (Bennett et al.,

2007; Chen and Fish, 2001).

The bar is made of two constituents with a volume fraction

Æ ¼ 0.5, and consists of periodic cells of length L ¼ 1 m. More-

over, it is long enough to prevent the disturbance of the waves

reflected at the fixed end when evaluating the response of the

system to the external loads.

The laminate is first studied by numerically modelling the

heterogeneities explicitly. It is discretised in space with a mesh

x

E1 1, ρ E2 2, ρ
α L (1 )� α L

L

l

Figure 1. One-dimensional laminate made of two components
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consisting of linear elements with constant size l ¼ 0.1 m. New-

mark’s constant-average-acceleration scheme is adopted, with a

time step ˜t ¼ 0.1 s, enough to traverse one element per time

step, to minimise numerical dispersion. The properties of the two

materials are varied in order to change the dispersive character-

istics of the structure. In particular, 14 distinct cases are consid-

ered, which are summarised in Table 1, where Ei, ri and

cwav,i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ei=ri

p
denote the Young’s modulus, the density and the

wave speed respectively for material phase i.

The effective Young’s modulus E and density r can be obtained

from the following expressions (Chen and Fish, 2001)

E ¼ E1E2

(1� Æ)E1 þ Æ E26:

r ¼ Æ r1 þ (1� Æ)r27:

For all cases E ¼ 1 N/m2 and r ¼ 1 kg/m3 was used.

3.3 Comparison between the numerical and analytical

dispersion curves

The dispersion curves of the explicit numerical modelled lami-

nate depicted in Figure 1 are determined numerically by using

the SASW procedure described in Section 3.1. The analytical

dispersion curves predicted by the gradient elasticity theory

discussed in Section 2 reads (Askes et al., 2007)

cp ¼ ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2s k

2

1þ l2mk
2

s
8:

where ce ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
is the wave velocity in classical elasticity,

which is equal to 1 m/s for all the 14 cases presented in Table 1.

The length scale ls appearing in Equation 8 is calculated through

Equation 2, from which it results that it is identical in all cases.

The length scale lm depends on the dispersive properties of the

laminate. In particular, the more dispersive the material, the

greater lm should be. The values of the parameter lm can be found

by determining, for each case examined, the analytical dispersion

curve that best fits the numerical data. They are reported in Table

1 and plotted in Figure 2, where they are normalised with respect

to ls and are related to the ratio between the wave velocities in

the two constituents cwav,1/cwav,2:

In Figure 3 four different cases are shown; for each of them, the

Case E1: N/m
2 r1: kg/m

3 E2: N/m
2 r2: kg/m3 cwav,1: m/s cwav,2: m/s

cwav,1

cwav,2
lm= ls

1 1.00 1.0000 1.00 1.0000 1.00 1.00 1.00 1.00

2 1.30 1.0100 8.13 3 10�1 0.9900 1.13 0.91 1.25 1.04

3 1.67 1.0200 7.14 3 10�1 0.9800 1.28 0.85 1.50 1.10

4 2.12 1.0300 6.54 3 10�1 0.9700 1.43 0.82 1.75 1.16

5 2.60 1.0400 6.19 3 10�1 0.9600 1.58 0.80 2.00 1.20

6 3.47 1.0800 5.84 3 10�1 0.9200 1.79 0.80 2.25 1.24

7 7.40 1.2000 5.36 3 10�1 0.8000 2.48 0.82 3.00 1.32

8 2.00 3 101 1.4200 5.13 3 10�1 0.5800 3.75 0.94 4.00 1.40

9 5.00 3 101 1.6000 5.05 3 10�1 0.4000 5.59 1.12 5.00 1.46

10 1.10 3 102 1.7200 5.02 3 10�1 0.2800 8.00 1.34 6.00 1.52

11 2.20 3 102 1.8000 5.01 3 10�1 0.2000 11.06 1.58 7.00 1.56

12 4.60 3 102 1.8700 5.01 3 10�1 0.1300 15.68 1.96 8.00 1.60

13 1.12 3 103 1.9300 5.00 3 10�1 0.0700 24.09 2.67 9.00 1.63

14 1.00 3 106 1.9999 5.00 3 10�1 0.0001 707.12 70.71 10.00 1.65

Table 1. Material properties and corresponding values of lm/ls
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1·5

1·4

1·3
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1·0

l
l

m
s

/

1 2 3 4 5 6 7 8 9 10
c cwav,1 2/ wav,

Figure 2. Values of lm/ls plotted against the ratio cwav,1/cwav,2
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dotted line represents the explicit numerical dispersion curve,

while the solid line indicates the gradient analytical dispersion

curve derived from Equation 8. It is apparent from Figure 3 that

the gradient analytical approach gives a very good approximation

of the explicit numerical dispersion curves of the material, with a

maximum error always less than 5%. These results thus show

the validity of the gradient analytical approach in the one-

dimensional case as far as the dispersive behaviour of hetero-

geneous media is concerned.

4. Dispersion curves of a heterogeneous
plate

In this section, a two-dimensional model is studied in order to

verify the validity of the gradient elasticity formulation in

describing the dispersive behaviour of heterogeneous materials in

more than one spatial dimension.

4.1 Description of the two-dimensional model

The two-dimensional model under consideration is a plate made

of two constituents disposed in a chequerboard pattern, as shown

in Figure 4. The plate is fixed on one side and is subjected on the

other side to impulsive loads, one directed parallel to the x axis,

which generates compressive waves, and the other one acting

along the y direction, which produces shear waves. The response

of the external excitations is determined far enough from the

fixed end in order to avoid the interference of the reflected waves.

The properties of the two materials are summarised in Table 2.
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Figure 3. Comparison between the numerical (dotted lines) and

analytical (solid lines) dispersion curves for four cases presented in

Table 1: (a) case 1; (b) case 4; (c) case 8; (d) case 14
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More specifically, six distinct cases are taken into account,

whereby all the properties are the same apart from the density of

material 2 (r2), which is varied in order to assign different

dispersive features to the plate.

The model consists of periodic cells of length L ¼ 0.4 m. It is

meshed with square quadrilateral elements of constant size

l ¼ 0.05 m, with plain strain conditions assumed.

4.2 Compressive wave dispersion

When the plate is excited by the impulsive load acting along the

x direction (see Figure 4), compressive waves propagate through

the structure. The real dispersion curves of the material are again

obtained by applying the SASW procedure described in Section

3.1. The explicit numerical dispersion curves corresponding to

cases 3 and 6 considered in Table 2 are plotted in Figure 5, where

they are indicated by dots. In the latter figure, C denotes the

phase velocity, while K represents the modulus of the wave vector

in two dimensions, given by K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
:

L

l

y

1·
6 

m

x
10·0 m

o

Figure 4. Plate consisting of two materials forming a

chequerboard structure

Case E1 ¼ E2: N/m
2 r1: kg/m

3 r2: kg/m
3 ı1 ¼ ı2 cwav,1: m/s cwav,2: m/s

cwav,1

cwav,2

1 2.20 3 105 2500 2 500 0.2 9.4 9.4 1.00

2 2.20 3 105 2500 3 900 0.2 9.4 7.5 1.25

3 2.20 3 105 2500 5 600 0.2 9.4 6.3 1.50

4 2.20 3 105 2500 7 700 0.2 9.4 5.3 1.75

5 2.20 3 105 2500 10 000 0.2 9.4 4.7 2.00

6 2.20 3 105 2500 12 700 0.2 9.4 4.2 2.25

Table 2. Material properties of the plate depicted in Figure 4
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Figure 5. Comparison between the numerical (dots) and analytical

(solid lines) dispersion curves for compressive waves: (a) case 3;

(b) case 6
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On the other hand, the solid lines in Figure 5 represent the

gradient analytical dispersion curves provided by the gradient

elasticity theory (Bennett and Askes, 2009)

C ¼ Cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2s K

2

1þ l2mK
2

s
9:

where Cp is the velocity of the compressive waves with infinite

wavelength, given by

Cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E(1� ı)

r(1þ ı)(1� 2ı)

s
10:

The parameters E, r and ı denote the effective properties of the

plate. The effective density r is calculated through Equation 7;

the values of the effective Young’s modulus E and of the effective

Poisson ratio ı coincide with those of the two components. The

length scales ls and lm that appear in Equation 9 are determined

as from Equation 2 and Table 1, respectively.

Figure 5 shows that, also in two dimensions, the gradient

elasticity formulation is capable of predicting accurately the

explicit numerical dispersion curves of the material. However, by

comparing Figure 5 with Figure 3, it is apparent that in two

dimensions the scattering of the numerical data is more evident

than in the one-dimensional case.

4.3 Shear wave dispersion

Shear waves are generated if the plate shown in Figure 4 is

subjected to the impulsive load directed along the y axis. The

explicit numerical and gradient analytical dispersion curves for

cases 3 and 6 presented in Table 2 are plotted in Figure 6 as dots

and solid lines, respectively.

The gradient analytical dispersion curves predicted by the

gradient elasticity formulation are given by (Bennett and Askes,

2009)

C ¼ Cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2s K

2

1þ l2mK
2

s
11:

where Cs is the velocity of the shear waves with infinite

wavelength, expressed by

Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

2r(1þ ı)

s
12:

where the length scales ls and lm are calculated with Equation 2

and Table 1, respectively. The comparison between Equations 9

and 11 shows that the gradient analytical dispersion curves

relative to compressive and shear waves have the same form, the

only difference being the constant by which they are scaled.

Figure 6 illustrates that where shear waves are concerned, the

actual dispersion curves of the material are fitted well by the

gradient analytical approach.

5. Conclusions
Gradient elasticity can provide an effective and efficient tool for

the modelling of composite materials. A potential drawback of
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Figure 6. Comparison between the numerical (dots) and analytical

(solid lines) dispersion curves for shear waves: (a) case 3;

(b) case 6
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gradient elasticity is the identification of the model length scale

parameters. To address this, a spectral analysis procedure has

been employed to identify the inertial length scale parameter used

in a gradient elasticity formulation for the modelling of dispersive

wave propagation behaviour in composite materials. While the

procedure employed cannot a priori identify the model para-

meters, a simple test procedure is developed whereby the inertial

length scale can easily be identified.

A clear relationship between the ratio of the stiffness and inertial

length scales and the ratio of the elastic wave speeds in the two

constituent materials can be identified for a given microstructural

geometry. The current work is restricted to a simple test geometry;

however, the extension of the technique to general geometries is

the basis for further work. Likewise, the extension to composites

comprising more than two phases remains a challenge.
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