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ABSTRACT Proteins are polymeric molecules with many degrees of conformational freedom whose internal energetic inter-

actions are typically screened to small distances. Therefore, in the high-dimensional conformation space of a protein, the energy

landscape is locally relatively flat, in contrast to low-dimensional representations, where, because of the induced entropic contri-

bution to the full free energy, it appears funnel-like. Proteins explore the conformation space by searching these flat subspaces

to find a narrow energetic alley that we call a hypergutter and then explore the next, lower-dimensional, subspace. Such a frame-

work provides an effective representation of the energy landscape and folding kinetics that does justice to the essential charac-

teristic of high-dimensionality of the search-space. It also illuminates the important role of nonnative interactions in defining

folding pathways. This principle is here illustrated using a coarse-grained model of a family of three-helix bundle proteins whose

conformations, once secondary structure has formed, can be defined by six rotational degrees of freedom. Two folding mech-

anisms are possible, one of which involves an intermediate. The stabilization of intermediate subspaces (or states in low-dimen-

sional projection) in protein folding can either speed up or slow down the folding rate depending on the amount of native and

nonnative contacts made in those subspaces. The folding rate increases due to reduced-dimension pathways arising from

the mere presence of intermediate states, but decreases if the contacts in the intermediate are very stable and introduce size-

able topological or energetic frustration that needs to be overcome. Remarkably, the hypergutter framework, although depend-

ing on just a few physically meaningful parameters, can reproduce all the types of experimentally observed curvature in chevron

plots for realizations of this fold.

INTRODUCTION

Protein folding is a dynamical process occurring in a vast

conformation space as a result of a protein’s many degrees

of freedom. Mere random search cannot yield the native

state within physiologically relevant timescales, often

referred to as Levinthal’s paradox (1,2). Although from a

physical point of view the solution of the paradox is

obvious: conformations are not energetically equivalent,

i.e., the energy surface is not flat and the search is a biased

one, different models and theories have been proposed,

which illustrate in different ways how the paradox is

overcome in practice. The diffusion-collision model (3,4)

reduces the search space to those of preformed microdo-

mains searching for the correct native contacts. The nucle-

ation-condensation model (5) focuses on the cooperative

nature of native contact formation. Those contacts produce

a folding nucleus that subsequently leads to the condensa-

tion of the fully formed native structure. In the nucleation-

condensation model a preformed secondary structure is

not assumed: secondary and tertiary structures can form

concurrently. The diffusion-collision model, where the local

cooperativity of secondary structure formation is more

prominent, can be thought of as a limiting case of the nucle-

ation-condensation model. In the landscape theory (6) the

folding process takes place on a funnel-like energy surface.

A protein need not follow a specified pathway to fold: each

pathway and metastable state on the landscape could be

occupied with well-defined probability. This statistical

description of protein folding offers an opportunity to

explain and qualitatively unify various scenarios of folding

mechanisms (7,8).

Taken at face value, it is hard to see how the continuous,

and apparently long-range, energetic correlations implicit in

a folding funnel arise. A continuous energy dependence on

the funnel height with any spatial ordinate implies a contin-

uous spatial energy gradient, or force. This in turn invokes

interactions that extend across substantial regions of the pro-

tein’s spatial extend when unfolded. The forces involved in

the folding process are themselves short range in nature (van

der Waals and screened electrostatic). There is no candidate

for the origins of long-range forces that steer a protein

toward the native state along a funnel induced by pairwise

interresidue forces alone. It is not as frequently restated as

it should be that the shape of the folding funnel actually

emerges by projecting the trajectory in the high dimensional

conformation space onto a few (typically just one or two)

degrees of freedom. Although the picture of very low-

dimensional folding funnels grasps the overall structure of

folding dynamics, the extreme dimensional projection that
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results in a folding funnel tends to obscure the consequence

of the very short range of the true intramolecular interac-

tions: that much of the folding trajectory actually occupies

subspaces that are energetically flat.

An alternative representation was previously proposed (9)

that captures an explicit accounting of a protein folding pro-

cess via diffusional search on largely flat multidimensional

conformation subspaces to find a sequence of multidimen-

sional energetic wells, dropping sequentially onto the next

metastable subspace of states. These energetic wells em-

ployed during the folding process emerge from the short-

range intrachain favorable interactions, typically nonnative,

between partially formed sections of the protein. Such a

dimensional reduction process repeats itself until the native

state is reached. Hence, the search time is drastically

reduced by the presence of intermediate subspaces of

decreasing dimensionality (see Fig. 1).

The overall folding time is determined typically by the

dimension of the largest intermediate search space (this is

because the search time depends exponentially on the

dimension of the search space). By taking care not to project

out too many conformational degrees of freedom in this

way, it is possible to relate folding times to the hypergutter

structure of the intermediate-dimensional folding pathway.

The funnel picture emerges from the projection along the

progress of this process constituted by the concatenation

of the intermediate search subspaces. The hypergutter

model is therefore consistent with an interpretation of the

folding funnel model in which the vertical axis corresponds

to the free energy of the protein given the macrostates spec-

ified by its horizontal axes. The dimensional reduction on

successive searches generates an entropic reduction corre-

sponding to the narrowing of the funnel. It is an essential

consequence of this approach, however, that the funnel sur-

faces should be understood as discrete steps, corresponding

to the successive restriction to smaller search subspaces.

Moreover, it is within this projection that intermediate sub-

spaces appear as intermediate states. Nonnative interactions

have an important role in stabilizing the intermediate sub-

spaces—when they do they are able to accelerate folding,

and constitute a way of generating the highly cooperative

folding pathways observed (10). An enhancement of folding

rate from limited nonnative interactions has been noted pre-

viously in theoretical and simulation studies (11). This work

is consistent with those findings, but also goes some way to-

ward explaining the origin of the effect, which is the restric-

tion of the search-space for native contacts that nonnative

contacts create. Nevertheless, nonnative interactions may

also lead to topological or energetic frustration that could

slow down the folding process.

In this work, we extend the hypergutter model (9) through

a detailed illustration of its application, showing how

closed-form expressions for both folding rates and chevron

plots may be obtained once the short-range interactions have

been parameterized. We also show that frustration induced

by nonnative interactions plays a crucial role in the folding

mechanism. Depending on the relative strengths of dimen-

sional reduction and frustration, which work to affect the

folding kinetics in opposing ways, different classes of

experimental behavior emerge. We find that this simple

physical model can reproduce all of the types of chevron

plots seen experimentally while their shape is controlled

by physically meaningful parameters.

HIGH-DIMENSIONAL SEARCH, HYPERGUTTER,

AND FRUSTRATION

A typical illustration of a free energy surface for folding is

that of a one- or two-dimensional funnel. Such a picture is

appealingly simple but of little practical use, and is some-

times misleading. Proteins fold in a space with as many di-

mensions as the protein’s degrees of freedom. One way to

reduce the dimensionality of a search space is by preforming

secondary structure (there are others, such as molten-

globule formation). Local and fast secondary structure for-

mation greatly reduces the accessible conformation space.

Nevertheless, the search for the native tertiary contacts still

occurs in a high-dimensional space (of order 10 dimensions)

where the dimensionality is determined by the mutual trans-

lational and rotational degrees of freedom of those helices

and strands. We argue that if the dimensionality is kept of

this order, most of the energy landscape is flat as a result

of this tertiary contact search, which is largely nonenergetic

except when interacting atoms are in close proximity, for

example, within the range of van der Waals or screened elec-

trostatic interactions. Of course desolvation, which involves

FIGURE 1 Schematic diagram of the folding process, and the emergent

funnel in the space of remaining nonnative degrees of freedom (dimensions

of search). After most of the fine-grained degrees of freedom form into sec-

ondary structure, the remaining ~10 degrees of freedommay either suffer an

extremely long simultaneous search (dashed line), or fold exponentially

faster via an energetically stabilized series of lower-dimensional subspaces

(solid line), whose search times correlate with their dimension. To see this

figure in color, go online.
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an entropic effect, also plays a crucial role in the short-range

intrachain interactions (10). But at the level of the hypergut-

ter model all of this local physics can be accounted for in a

set of coarse-grained effective energy parameters for intra-

chain interactions (see below). The hypergutter model

does not assume the secondary structures to be fully formed

but only that the dimensions involved in secondary structure

formation are explored much faster than diffusion occurs on

dimensions relevant to tertiary contacts (12). The only

requirement for the hypergutter coarse-graining to apply is

that secondary structure elements can be treated as objects

with spatial degrees of freedom that are well defined (see

an example below). This is true even when there are strong

internal fluctuations in their degree of secondary structure

order. During the search in a subspace other degrees of

freedom are not dynamically frozen but simply not relevant

to the search in such subspace.

When a target space of lower dimension is reached (i.e.,

all required favorable contacts are simultaneously satisfied)

the protein drops into the next metastable subspace or into

the native state if all native contacts are formed. This target

space at each stage of folding is relatively small in compar-

ison with the search space (for example two subunits of a

partially folded protein reduce mutual translational degrees

of freedom by at least two orders of magnitude at the point

they come into contact and stay together). This picture is

also compatible with the flatness of the vast majority of

conformation space, which arises from the highly coopera-

tive nature of the folding process (10). In a one-dimensional

free-energy representation of a search-space this looks like a

drop from a cliff at the end of a plateau; in a two-dimension

space it looks like a drop into a gutter at the edge of a hor-

izontal surface. For the high-dimensional energy surface

this becomes a high-dimensional gutter or hypergutter

(9,13). The funneled landscape emerges from the concate-

nation of these searches and drops (see Fig. 1).

In lower-dimensional subspaces, short-range and hetero-

geneous interactions could introduce energetic frustration

(where the energy landscape has no obvious ground state)

and hinder the diffusive search (14). The energetic barriers

are on a smaller scale than the free-energy barriers between

subspaces, but nonetheless must be overcome in making

search steps within the subspaces. Topological frustration

can also arise from partially native or nonnative topology

that needs to be broken before the search for native topol-

ogy. Hence, frustration is a factor that can increase the

folding time within more compact subspaces. An appro-

priate coarse-graining of this level of frustration results in

a lower value of the effective diffusion constant for local

conformational search within compact subspaces. We will

therefore adopt a parameter (called f below), which serves

to account for reduction in diffusion constant due to many

small barriers or topological frustration.

To illustrate each of these effects we chose a three-helix

protein as a model because of its simple topology.

THREE-HELIX BUNDLE AS A MODEL PROTEIN

As mentioned earlier the diffusive search process involves

formation of nonlocal contacts. For a three-helix-bundle

these nonlocal contacts occur between helices when brought

into close proximity. One way to derive the appropriate

hypergutter model for such a topology is to concentrate on

helices as mutually diffusing subunits, assuming that their

secondary structure forms early in folding. This coarse-

graining is equivalent to a coarse-grained model of the pro-

tein as three rods (Fig. 2). Each rod represents a helix and

has three angular degrees of freedom denoted by (4, q, j).

4 is the rotational angle of conformation about the long

axis along the rod. q and j are respectively altitudinal and

azimuthal angles of the direction of its long axis in space.

By subtracting the three degrees of orientational freedom

of the folded protein as a whole, we find the total number

of degrees of freedom of this protein is six. Hence, even pro-

jecting the fast-folding secondary-structure degrees of

freedom onto the helices themselves, the protein still folds

in a nontrivial search space of six-dimensions.

Because the folding time for a diffusive search is expo-

nential in the dimensionality of its space, there remain to

this family of proteins different folding strategies (ways of

partitioning the remaining six dimensions) with widely

differing folding times. In our case we assume that the

three-helix protein can fold either via a two-state fully

simultaneous six-dimensional search route, or via a sequen-

tial, two-step process. The first step is a four-dimensional

search and a collapse to a state with helices I and III in con-

tact. The second stage is then a two-dimensional search for

the native state by helices I and III on (q1, q3) space (Fig. 3).

The latter route is motivated by the observation that two he-

lices possessing hydrophobic stripes (15) can satisfy those

interactions by making contact in any configuration in

which the stripes are in contact—therefore constituting a

two-dimensional subspace of mutual orientation and trans-

lation. In traditional language this two-dimensional sub-

space would be termed an intermediate state (though it is

really a large subset of states, stabilized by nonnative

a b

FIGURE 2 The model protein is a three-helix bundle coarse-grained into

three rods. The rotational degrees of freedom of interest here are shown in

(a) for a single rod in red. The three-rod protein consists of six internal de-

grees of freedom, three each from helix I (blue) and III (red). Rotating helix

II (green) does not change the overall protein conformation. (b) Shows q1
and q3 in the final search, whereas 41 and 43 are not taking part. To see

this figure in color, go online.
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interactions). The two folding routes determined by the

mutual configurational search of the helices cover a large

number of pathways in the full conformation space. This sim-

ple example is useful to stress the importance of, and the rela-

tionship between diffusive search, stabilizing energy and

frustration. It might be objected that we have not included

paths in which helix I and II, or II and III first meet. However,

providing these configurations are not stabilized by nonna-

tive interactions in the sameway, these randommoves within

the initial search space are in fact counted in our folding rate

calculations; they just do not require any special labeling. A

different scenariowould arise if these off-pathway configura-

tions were stabilized, as such partially misfolded states

would then need to unform for folding to ensue.

This kinetic framework can be represented as two parallel

pathways. The barriers that arise from a diffusive search

with the folding rate of kd in d-dimensional space are

essentially entropic. The unfolding barriers are character-

ized by the stability of the favorable contacts formed after

the end of a search. To our knowledge, this high-level repre-

sentation is not, of course, novel. The advantage of deriving

it from the hypergutter search model is that the parameters

of the one-dimensional landscapes can be calculated in

terms of the physical parameters of energetic interaction

and frustration, and the search times at each stage can be

estimated from the dimensionality of their corresponding

subspaces.

NONNATIVE CONTACTS AND FRUSTRATION

In the hypergutter model the whole conformation space can

be partitioned into many subspaces. If contacts stabilizing

each intermediate subspace are solely native the protein

will fold step by step. On the other hand favorable nonnative

contacts in any intermediate subspace, although enhancing

folding through dimensional reduction, may at the same

time introduce an extra barrier for reaching the next subspace

in addition to the diffusive search barrier. Such nonnative

contacts need to be eliminated before the final folding pro-

cess can proceed. Compact intermediates either with or

without favorable nonnative contactsmay additionally create

energetic frustration that will in turnmodify the diffusion co-

efficient (typically reducing it) in that subspace. In some

cases, native contacts made in intermediate states can also

prevent the reorganization of the intermediate. Hence, those

contacts also need to be broken. For the sake of simplicity, we

call all of those contacts nonnative. The hypergutter model

accommodates these effects by introducing an extra barrier

surrounding the target subspace of any diffusive search in

an intermediate subspace that contains nonnative contacts.

In our parallel-pathway kinetics this extra barrier is ex-

pressed as fraction (f) of intermediate state stability (ε4).

We allow a small energetic barrier of height f , ε4 to inhibit

the search in the two-dimensional subspace. This could be in-

terpreted as the effective fraction of contacts that need to be

broken before the protein reaches the folded conformation.

Three scenarios are here considered, i.e., when i), f ¼ 0;

ii), 0 < f < 1; and iii), f ¼ 1. Case (i) represents a form of

hierarchical folding where energy decreases monotonically

at each folding step. An intermediate search-subspace or hy-

pergutter can speed up the folding process by reducing the

rate-determining barrier from a six-dimensional to a four-

dimensional one. In case (ii) the benefit from a reduced bar-

rier can still overwhelm the nonnative interactions that need

to be broken. However, if the intermediate state becomes too

stable there will be more frustration, i.e., a too sticky inter-

mediate state can slow down the folding. Topological

frustration is also possible if contacts stabilizing the inter-

mediate prevent the search for the native state. This is

more likely to occur in a three-helix bundle with longer he-

lices (16). Finally, in case (iii) where f¼ 1 all of the contacts

stabilizing the intermediate state must be broken to reach the

native state. This means that all native contacts must be

satisfied at once, i.e., a total cooperative folding, as in the

six-dimensional route to reach the native state. Such a

totally misfolded intermediate is normally considered to

be off-pathway (17). It is effectively off-pathway also in a

sense that it is acting as a nonproductive kinetic trap.

METHODS

Our goal is to derive closed expressions for the folding rates under different

conditions of energetic stability of the intermediate subspaces. To do this

we coarse-grain the many interresidue and solvent-mediated interactions

into an effective energy, εd, for each d-dimensional subspace of configura-

tions. We also simplify the search geometry of each subspace to the diffu-

sion of a point-particle within a hypersphere with a dimensionless (in terms

of target size) radius of the search-space s ¼ (R/RN) set equal to the

FIGURE 3 Free energy diagram of the three-helix bundle in hypergutter

model. D, I, and N are denatured, intermediate, and native states, respec-

tively. TSd is the transition state after d-dimensional search. Arrows indicate

transitions with rate kd for the folding process. To see this figure in color, go

online.
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dimensionless angular search space of the angular variables of the helices.

The target of the search is at the origin of the space. This is not as unrea-

sonable as it might appear at first glance: the overwhelmingly dominant

controlling parameter on folding rates is the number of dimensions that

need to be searched within (this parameter is exponentiated in the folding

rate—see Eq. 4 below) rather than their topology (e.g., d-sphere, d-torus,

which determines only the prefactor to the search rate expression) (9).

Furthermore, the typical dimension of all coarse-grained search spaces is

of the order of the protein globule size, and the target spaces of the dimen-

sions of a single residue, so they are not in any case distributed widely.

Diffusion in d-dimensional space

Wemodel the protein folding process as diffusion in the space of conforma-

tions specified by a given set of degrees of freedom. Each point in this space

represents a conformation of the protein. Generalizing an idea introduced

by Bicout and Szabo (18) we assume that diffusion takes place in a

d-dimensional sphere of radius R and the native state is represented by a

sphere with same center and smaller radius RN. The degrees of freedom

in this hyperspherical search problem may map onto either translational

or rotational degrees of freedom in a coarse-grained model of a protein.

For example, we will use the result for a search in four-dimensional space

to estimate the search time in the (41, 43, j1, j3) space of helices I and III in

our example. The diffusion equation in a space of arbitrary dimension d is

vPðr; tÞ

vt
¼ D

1

rd�1

v

vr
rd�1vPðr; tÞ

vr
; (1)

where P(r,t) is the probability density of finding the diffuser at distance r

from the origin at time t in this space and D is the diffusion coefficient.

As is standard in diffusion theory this construction represents either the

flux of (noninteracting) proteins or a single protein diffusing in the hyper-

space. An absorbing boundary condition is applied on the (small) native hy-

persphere at radius RN ¼ R/s, i.e., P(RN,t) ¼ 0. By solving the previous

equation in the steady state (i.e., vP/vt ¼ 0) with this boundary condition

the population distribution and the flux, and from those two the mean search

time can be found.

Flux-over-population calculation

In this section, we recapitulate how solution of the high-dimensional search

problem of the Diffusion in d-dimensional space section yields mean search

times. By definition, the intrinsic rate of a given process for many indepen-

dent particles is the flux for the process divided by the number of particles.

Here, the protein folding process is modeled as a flux of proteins diffusing in

a d-dimensional space from denatured to native state. The search dimension

includes all relevant degrees of freedom for a particular search step. For

simplicity, each search space is defined to be spherically symmetric. The

outer (hyperradius R) and inner (hyperradius RN) spheres represent dena-

tured and native states, respectively. Hence, one can write the folding rate as

kf ¼
jf

N
; (2)

where flux and population number are defined, respectively, as

jf ¼

�

�D
vP

vr

�

�

�

�

r¼R

�

S N ¼

Z RN

R

drdPðrÞ: (3)

The hypersurface area for the hypersphere in dimension d and of radius R is

S ¼ sdR
d-1, where sd is a prefactor depending on d. The integral of popula-

tion density over hypervolume gives the total number of proteins in the

folding population. The incoming flux of the steady-state population enters

the hypersurface at R and gets absorbed at RN. The integral is over the pop-

ulation density at steady-state or time-independent P(r). For this method to

work P(r) must be given or obtained from, for example, diffusion or

Smoluchowski equations. As a result one can write the diffusive rate kd
in d-dimensional space in terms of s ¼ R/RN, which characterizes the

(dimensionless) size of the search space. Equivalently, d,kBlns counts

the change in configurational entropy arising from a variable on the comple-

tion of a search to its target within its diffusional subspace. The search-rate

has a simple relationship with its search volume as explained in the Results

section below. s is also related to the volume entropy in that space and, in

the case of the application to protein folding, would be naturally controlled

by the denaturant concentration as developed in the Parameterization of

denaturant dependence [D] section.

Kinetic frameworks

We calculate folding rates for the complete hypergutter by combining sub-

rates for each subspace. Themost significant discriminator of the search rates

is the dimension of the corresponding subspace. From the kinetic scheme of

connected partial folding and unfolding pathways as illustrated in Fig. 4, the

overall folding and unfolding rates can be derived andwritten in terms of un-

derlying rate constants by means of the flux-over-population method.

This method is compatible with Cleland’s method (19) and Waley’s flux

method (20). Both of them involve the sum of inverse conductance (rate

constants) or the resistance (reaction times) along a steady current (flux

or reaction velocity). Applying the method to protein folding requires

only a careful choice of definition of folding rate, amounting to assigning

the intermediate population with the native state (on the one hand) or

with the denatured state (on the other). We take the latter choice, defining

the folding rate as the net flux into the native state from the ensemble of

other states under dynamic equilibrium. In the calculation of the folding

rate this definition is equivalent to placing the absorbing boundary just

outside the native state, not immediately outside the denatured state—the

folding rate is calculated from the flux across this absorbing boundary.

This is a natural choice from the point of view of experiment, because

most probes reporting folding in time-dependent studies detect and report

the native, but not intermediate, states

Parameterization of denaturant dependence [D]

The hypergutter model is defined by three model parameters: s, the

dimensionless size of search space, εd, the stabilizing energy and f, the

a

b

FIGURE 4 Folding (jf) and unfolding (ju) proteins flux through the six-

dimensional and (fourþtwo)-dimensional routes. The kinetics is solved in

the steady state where native (N) and denatured (D) states are absorbing

boundaries (zero population), indicated by solid circles, for folding and un-

folding routes, respectively. ND and NN are the denatured and native popu-

lations. Nf
I and Nu

I are the intermediate populations in the folding and

unfolding reactions, respectively.
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fraction of energetically favorable contacts in the intermediate subspaces,

which need to be broken before final folding, generating the introduction

of an enthalpic component to transition states, as underlined in (e.g., refer-

ence (10)). εd and the logarithm of s (actually d,kBlns, as above) can be

considered as the energy and entropy, respectively, of their corresponding

subspace. If we are to compute predicted chevron plots from the model,

we need to link these parameters to denaturant concentration. Here, we

take an approach inspired by Tanford’s empirical relation (21), which is

a consequence of the observation in protein denaturation experiments

that the change in free energy is linear in denaturant concentration: we as-

sume that the conformational entropy and energy depend linearly on the

denaturant concentration for each subspace independently. This is a gener-

alization of Tanford’s parameterization for an entire folding process onto

the folding subspaces of the hypergutter model. Denaturant has the effect

of increasing the entropy but reducing the energy. Hence, we assume the

relationships

ln s ¼ ln s0 þ ms½D�; εd ¼ ε0ðdÞ � m
εðdÞ½D�;

where d is the dimensionality of the search space preceding each εd barrier

and [D] is the denaturant concentration. The zero subscript indicates the

parameter in the absence of denaturant. s and εd each have an associated

m value, which, within the Tanford’s parameterization, measures the

response of such parameters to denaturant concentration. In the specific

model of the three-helix bundle we examine here, we assume that the con-

centration of denaturant alters the strength, but not the fraction f, of nonna-

tive contacts. We note also that, in the intermediate state in which the

nonnative contacts are present, the structure is a highly fluctuating one,

and that, although the number of nonnative contacts is approximately con-

stant, the actual nonnative residues in contact at any moment sample the

entire (two-dimensional) space of touching configurations of helices I

and III. The chevron plots can be drawn by assigning values to the param-

eters s0, ε0(d), ms, mε(d), f, and the prefactor 2D/R2
N.

RESULTS

Diffusion rates in various dimensions of search-

space

By using the flux-over-population method the search rates

(from denatured to native hyperspheres) in various dimen-

sions can be calculated. For d R 3 a general form exists:

kdR3 ¼
dðd � 2ÞD

R2
N

s�2

�

sd�2 � s�2 �
d

2

�

1� s�2
�

��1

:

(4)

The derivation is given in Appendix A in the Supporting

Material. In high dimension and large s limit the diffusion

rate scale with s as kd f s�d and illustrates the point that

the search rate in a folding subspace is dependent on the

relative sizes of the search and target spaces, and that

the most sensitive determinant is the dimensionality of the

search space.

The effect of the model parameters (f, s, εd) on the

rates and populations

From the kinetic framework introduced in the Kinetic

frameworks section, the overall folding and unfolding rates

can be calculated from the flux-over-population method.

The detailed calculations are shown in Appendix B. The re-

sults are given below for the overall folding and unfolding

rates in terms of the rates in subspaces of dimensions two,

four, and six:

kf ¼
k�2k4 þ k6

�

k�2 þ k�4

�

k�2 þ k4 þ k�4

; ku ¼
k�2k�4 þ k�6

�

k�2 þ k�4

�

k�2 þ k�2 þ k�4

;

(5)

where k�2 ¼ k2e
�f ε4 is the forward rate for achieving the

native state from the intermediate. We include the possibil-

ity that this is slowed (relative to the search from the dena-

tured state) by the requirement that a fraction, f, of the

nonnative interactions responsible for ε4 need to be broken

on final folding. Similarly, it is also of interest to write the

ratio of folding or unfolding flux along each pathway to

the total population. These are the fractional rates, k4(route),

where the route is either the six- or (fourþtwo)-dimensional

one; k-4(route) is the fraction of unfolding flux. These frac-

tional rates take the following forms:

k4ð4þ2Þ ¼
k�2k4

k�2 þ k4 þ k�4

k�4ð4þ2Þ ¼
k�2k�4

k�2 þ k�2 þ k�4

k4ð6Þ ¼
k6
�

k�2 þ k�4

�

k�2 þ k4 þ k�4

k�4ð6Þ ¼
k�6

�

k�2 þ k�4

�

k�2 þ k�2 þ k�4

: (6)

The detailed balance condition that applies at steady state

provides the constraint

Kdh
kd

k�d

¼ s�deεd ; (7)

where k�d is the unfolding rate (reversing the search) in a

d-dimensional subspace. Another necessary constraint is

the pathway-independence of the change in state variables

(such as energy and entropy) under equilibrium conditions.

This implies the equality of energy-change on each folding

pathway, ε6 ¼ ε4 þ ε2 � f $ ε4. The entropy changed is also

obviously conserved, i.e., ln(s�6) ¼ ln(s�4) þ ln(s�2).

Apart from the reaction rates, the population fractions can

also be calculated analytically in our model. These fractions

can be monitored or titrated against the model parameters.

We now consider the full equilibrium picture (i.e., not

only the steady-state picture as depicted in the calculation

of overall folding and unfolding rates) because the interme-

diates can be populated during both folding and unfolding

transitions. The general condition for thermodynamic equi-

librium imposed here is that of zero-net-flux, i.e., the folding

and unfolding fluxes are equal in magnitude and in opposite

directions. Such conditions are also imposed on each reac-

tion pathway to satisfy detailed balance. Using the flux-

over-population method as in the calculation of the rates,
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including the equilibrium condition, the fractions of dena-

tured, intermediate, and native states are (see Appendix C):

FD ¼
1

1þ K4 þ K6

; FI ¼
1

1þ K�
2 þ 1

�

K4

;

FN ¼
1

1þ 1
�

K�
2 þ 1

�

K6

:

(8)

We want to explore the parameter space of the three-helix

hypergutter model, in terms of its effect on transition rates

and the stabilization of native, intermediate, and denatured

states. However, there are constraints on the variation of

the model parameters. First, the change of state variables

(energy and entropy) from denatured to native states must

be equal irrespective of the pathway. Second, forward and

backward reactions from one state to another share the

same transition state: forward and backward barriers cannot

be varied independently. These constraints are introduced

into all subsequent calculations. The energetic stability of

the native state is simply described by the parameter ε6. Sta-

bilization of the native state would simply reduce the un-

folding rate and has no effect on the folding rate. This can

be achieved by increasing ε6 alone and will not affect other

states, a rather trivial case (see Fig. D1 in Appendix D).

Therefore, we will explore the physics of energetic stability,

search space, and frustration by stabilizing the intermediate

and denatured states only, choosing a convenient value of

ε6 ¼ 15 kBT in all cases. Fig. 5 illustrates in diagrammatic

form the effects of changing the physical parameters.

Energetic stability (ε4): stabilization of the intermediate state

Here, we are interested in the existence and the stability of

the intermediate state/subspace and how these affect the

transition rates and the population of all states. Stabilization

of the intermediate state also affects the stability of the tran-

sition state (TS2) between the intermediate and the native

states due to the constraints mentioned previously. In this

case ε2 decreases following the stabilization of the interme-

diate state, i.e., an increase in ε4 at constant total energy (ε6).

Fig. 5 a shows that, at f ¼ 0, the folding rate increases with

ε4 from its initial value k6 until it reaches its maximum value

k4. For f ¼ 1, the overall folding rate is k6 at low ε4 and de-

creases for larger ε4. For intermediate f (0.5) the rate reaches

a maximum for some value of the intermediate stability ε4

(close to 10 kBT with the current parameterization of the

model). This crossover effect illustrates the balance between

the increase in folding rate due to the presence of interme-

diates (and thus alternatives to the full search) and the reduc-

tion in rate due to the frustration induced by nonnative

interactions stabilizing the intermediate.

Similarly, the unfolding rate for f < 1 initially increases,

as shown in Fig. 5 b, when the intermediate is being stabi-

lized. The rate-determining barrier shifts from ε6 to ε2 and

eventually to ε4 for higher ε4. For f ¼ 1 the unfolding rate

never exceeds k�6. As the intermediate state is stabilized,

the fractions of native and denatured states are reduced

accordingly as shown in Fig. 5 c. Interestingly, the folding

and unfolding rates already keep increasing below 5 kBT

where the intermediate species is not significantly popu-

lated. Therefore, this hidden high-energy intermediate,

though undetected, can also help speed up the folding pro-

cess. Note that the population distribution between states

only depends on the relative free energy difference between

them. Therefore, parameter f plays no role in the population

plot, but affects only the kinetics.

Size of search space (s): stabilization of the denatured state

An increase of s stabilizes the denatured state but also

affects the stability of both the intermediate state and TS4
due to the constraints mentioned previously. These effects

can be shown by manipulating the barriers in Fig. 3 subject

to the constraints. First, the native state free energy and the

unfolding barriers are independent of s. By increasing s the

intermediate state must be stabilized without affecting TS2
because ε2 is kept unchanged. As a result TS4 will be stabi-

lized because ε4 is kept unchanged. Finally, the denatured

state is also stabilized because k4 and k6 directly depend

on s. When the intermediate contains only native contacts,

a

b

c

d

e

f

FIGURE 5 Folding/unfolding rates and fractions of equilibrium popula-

tions as a function of model parameters. s ¼ 10 in (a), (b), and (c). ε4 ¼ 10

kBT in (d), (e), and (f). ε6 ¼ 15 kBT in all cases. Each pair of (a,d), (b,e), and

(c,f) has the same color and line coding. Note that s is shown on logarithmic

scale. To see this figure in color, go online.

Biophysical Journal 106(8) 1729–1740

High-Dimensional Diffusive Search in Protein Folding 1735



i.e., f ¼ 0, the expansion of the search space will hinder the

folding rate by increasing the stability of both the denatured

and intermediate states. As a consequence of this stabiliza-

tion, for the larger search space, the folding flux will even-

tually go through the six-dimensional route irrespective of

the value of f, as when ε4 is kept unchanged the free energy

of the intermediate two-dimensional space becomes inade-

quate to stabilize it; this effect is illustrated in Fig. 5 d.

When the denatured and intermediate states are stabilized

relative to the native state the unfolding rate inevitably in-

creases at least initially as shown in Fig. 5 e. However, a

very stable intermediate may slow down unfolding by acting

as a kinetic trap. As a result the unfolding flux will behave

like the folding flux by shifting to the six-dimensional route

in the limit of very large search space. The initial stabiliza-

tion of the intermediate also has the effect of trapping inter-

mediate species. When the denatured state becomes more

stable than the intermediate state in the large search space

the latter species can no longer be trapped and eventually

dies out as evident in Fig. 5 f.

On the curvature of chevron plots

In addition to its simplicity, an important feature of the hy-

pergutter model is that it qualitatively reproduces any exper-

imentally observed shape of chevron plots (see Fig. 6, a and

c), by simply varying the model parameters: of importance,

this is a consequence of coarse-grained protein physics, not

direct curve fitting. The present model is compatible with

the experimental probe generally used to obtain the chevron

plots: tryptophan fluorescence quenching to probe the re-

folding/unfolding reactions mainly on the level of tertiary

structure formation. Hence, the presumed diffusive search

of helices, which determines the net folding/unfolding rates,

is directly applicable to the fluorescence probe. Experimen-

tally, chevron plots are found with or without curvature of

either sign. From a theoretical perspective, the diffusion-

collision model has also been used to predict the shape of

the chevron plot of the domain of protein A (22). The

observed diversity within chevron plots can be explained

in terms of intermediates on the folding landscape (23).

Here, we investigate the nature of chevron plot curvature

on the folding and unfolding branch separately with

increasing kinetic complexity from one-state, two-state,

three-state, and a form of four-state kinetics where both

on-pathway and off-pathway or totally misfolded intermedi-

ates are present. We choose to define the sign of curvature so

that upward or downward curvature in a region of the

chevron plot has a positive or negative second derivative

of ln(kobs) with respect to [D].

An upward curvature in the chevron plot (Fig. 6 a, curve

a) is unusual. In the hypergutter model a protein folds down-

hill if the conformational search and the frustration become

negligible, i.e., s approaches 1 and f ¼ 0, respectively; the

upward curvature in the folding branch of the chevron plot

arises from the singularity in the rate expressions when s ap-

proaches 1 and the dominant folding process is the organi-

zation of side chains for tertiary contacts rather than the

diffusive search to find those contacts. This also implies

that barrierless proteins are generally small (small search

volume) and minimally frustrated (f ¼ 0).

By introducing the diffusive search (s¼ 2) into the down-

hill scenario a V-shaped plot without curvature (Fig. 6 a,

curve b) is obtained; this represents the typical two-state

kinetics where the intermediate is absent (ε4 ¼ 0). With

the presence of an intermediate stabilized solely by native

contacts (f ¼ 0), downward curvature on the folding branch

becomes apparent. Curve c in Fig. 6 a illustrates this sce-

nario for ε4 ¼ 10 kBT. In this case, forming an intermediate

state can speed up the folding process by shifting the rate-

determining barrier from the larger six-dimensional to the

smaller four-dimensional one. By introducing nonnative

contacts (increasing f) in the intermediate the curvature

will become more downward.

In the limit of an intermediate stabilized solely by nonna-

tive interactions (f ¼ 1) the curvature is maximally down-

ward as shown in Fig. 6 a curve d. This scenario

corresponds to presence of a totally misfolded intermediate

d

ca

b

FIGURE 6 Chevron plots (a,c) and the fractions of equilibrium popula-

tions (b,d). ε0(6) ¼ 15 kBT; ms ¼ 0.5 kBT$M
�1; ln(2D/R2

N) ¼ 10 ln(s�1)

in all cases except curve g where ε0(6) ¼ 30 kBT. To see this figure in color,

go online.
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where all contacts must be broken before the native state is

reached. In the last two cases of f ¼ 0 and f ¼ 1 the interme-

diate state is only marginally populated at low denaturant

concentration as shown in Fig. 6 b.

In fact, by making the native state more stable the inter-

mediate will totally disappear. In general, the population

of folding species depends on the relative free energy of

the species involved. Therefore, the curvatures in the

chevron plots, which depend on the folding barriers, can still

be observed without detectable intermediate species.

In those previous scenarios we assume that the native sub-

space is smaller, i.e., the native structure is more compact

than the intermediate one. Accordingly, its response to dena-

turation is also weaker (m
ε(6)<m

ε(4)). However, if we create

the opposite scenario, downward curvature on the unfolding

branch can be observed as shown in Fig. 6 c. By making

m
ε(6) > m

ε(4) curve c in Fig. 6 a can be transformed into

curve e in Fig. 6 c. The unfolding flux is initially on the

(fourþtwo)-dimensional route but shifts to the six-dimen-

sional route at higher denaturant concentration. Initially

the route with intermediate has a smaller rate-determining

barrier (ε4 ¼ 10 kBT) than the other route (ε6 ¼ 15 kBT).

However, the latter barrier decreases faster than the former

one. Therefore, at higher denaturant concentration it is more

favorable to unfold on the six-dimensional route. For a rela-

tively higher energy intermediate (ε4 ¼ 3 kBT) the down-

ward curvature on the unfolding branch can be found as

shown in Fig. 6 c curve f. The combination of downward

curvature on both the folding and unfolding branch is also

possible as shown in Fig. 6 c curve g. This happens when

a protein folds with an off-pathway (or totally misfolded in-

termediate in our model) but unfolds with an on-pathway in-

termediate. Curve g can be produced from curve d by

reducing the compactness of the native state (m
ε(6)) relative

to that of the intermediate state (m
ε(4)). In this case, we also

need to stabilize the native state further (ε6 ¼ 30 kBT) to see

curvature in both branches. Unsurprisingly, the population

of intermediate species is more robust against denaturation

in the case of curve e where the intermediate is more stable

than that of curve f; this effect is clearly shown in Fig. 6 d. In

addition, the intermediate is not significantly populated in

the case of curve g even though curvature is present in the

chevron plot. As argued earlier, this is the result of a stable

native state relative to the intermediate state.

Finally, the folding branch in Fig. 6 c curve e and f can be

turned upward by merely taking s ¼ 1. To the best of our

knowledge none of these chevron plots has been observed

experimentally. The remaining combination of curvatures,

i.e., downward folding branch and upward unfolding branch

cannot be obtained with any combination of the parameters.

The downward curvature on the folding branch means an in-

termediate less compact than the native structure but an up-

ward curvature on the unfolding branch requires the

opposite. In addition, a monotonic stabilization of D, I,

and N produces the expected chevron plots as shown in

Fig. D2 of Appendix D. Therefore, from a theoretical

perspective we have shown that the curvature on the chevron

plots arises naturally and logically from pathway shift, frus-

tration, and the relative response to the denaturant without

any ad hoc exponential terms in the rate or nonlinear terms

in the logarithm of the rate (24).

Curvature in chevron plots has been observed by simu-

lating a native-centric G�o model (25) and arises from the

presence of intermediates with nonnative topologies. A

different native-centric HP model also produced a curved

chevron plot (26). Both models assume that the increase

in the denaturant concentration is equivalent to the reduction

in the mean interaction energy (ε). Chevron plots can be pro-

duced from simulation data in a more systematic way

through the so-called molecular transfer model (27). G�o

and HP models only take into account the energetic part

of the folding free energy to be parameterized in terms of

denaturant concentration. The molecular transfer model re-

lies on experimental data on the solvent-accessible surface

area to evaluate the free energy change as a function of

denaturant concentration. Although curved chevron plots

have been previously obtained using atomistic models,

with the hypergutter model one can do so only assuming

that the (entropic) diffusive searches and (energetic) stabi-

lizing contacts are linear functions of denaturant

concentration.

DISCUSSION AND CONCLUSIONS

By thinking of the protein folding process as a partitioning

of a high-dimensional space into several small-dimensional

ones, one can also incorporate other folding models into the

hypergutter picture presented here; for example, our

approach can be seen as a generalization of the diffusion-

collision model to incorporate nonspatial coordinates as in

our three-helix bundle model. The hypergutter also offers

an explanation of how the diffusive search can take place

within a compact intermediate. Nonetheless, we do not as-

sume fully preformed microdomains, but only require that

the secondary structure such as helices forms faster than

the tertiary structure, and at least to some intermediate de-

gree of order. They can also be coupled to each other and

form concurrently. However, a sufficient amount of second-

ary structure is needed to perform the diffusive search. In

this way, the notion of a nucleation-condensation model is

also part of our picture.

The high-dimensional picture of protein folding also of-

fers an explanation for the origin of barriers in protein

folding kinetics. Folding barriers are largely entropic as a

result of the diffusive search in high-dimensional space

but could also be energetic, e.g., when the intermediates

are stabilized by nonnative contacts. Those contacts need

to be broken before the native structure can be achieved.

Such nonnative interactions can potentially create energetic

or topological frustration. Energetic frustration arises from
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the inhomogeneous interactions between secondary struc-

ture elements in the intermediate subspace. Topological

frustration arises from the nonnative contacts that may

lead to misfolding of the protein into a topologically

different metastable state. On the other hand, in our model,

the unfolding barrier is solely energetic (containing no

conformational entropy) as a result of favorable native or

nonnative contacts made in each folding step.

We also demonstrated that our kinetic framework with a

coarse-grained molecular model reproduces the variety of

chevron plots with various curvatures and in different com-

binations. The main features of folding kinetics can, in prin-

ciple, be explained in terms of the folding flux along folding

pathways. The presence of an intermediate shifts the folding

flux to the one with the lower rate-determining barrier of a

four- rather than six-dimensional search. The intermediate

states can be stabilized by both native and nonnative inter-

actions and nonnative interactions can accelerate protein

folding by forming intermediates, which partition the search

space. Thus, the rate-determining folding barrier is smaller

on this alternative pathway. This effect is different from

the accelerated rate arising from the presence of relatively

high-energy intermediates according to previous theoretical

studies (28). To the best of our knowledge only curves b, c,

and f in Fig. 6 have been experimentally observed for three-

helix proteins. Most small three-helix proteins such as the B

domain of protein A (29,30) fold via two-state kinetics, with

a V-shaped chevron plot (curve b). Such folding kinetics

corresponds to the full six-dimensional search in our model.

However, computer simulation suggests alternative folding

pathways with various intermediate states (31,32): for

example, helix I and II or II and III could first form a hairpin

followed respectively by the docking of helix III and I onto

those motifs.

The folding of a four-helix immunity protein Im7, which

folds via an on-pathway intermediate, could be considered

within this class of three-helix folding because the small

helix III only docks onto the rest of helices the very last

stage. The typical rollover seen for Im7 and mutant Im9 is

plausibly a consequence of f ¼ 0 or 0 < f < 1 (33,34). An

on-pathway intermediate is also detected in three-helix bun-

dles such as engrailed homeodomain and mutated c-Myb

(35). For f ¼ 0 one can potentially see the shift from six-

to (fourþtwo)-dimensional search in the Fig. 6 a curve c.

On the other hand, a relatively high energy intermediate pro-

duces downward curvature on the unfolding branch as

shown in Fig. 6 c curve f. This type of curvature has been

observed for spectrin, a three-helix bundle protein (36). In

our calculations in Fig. 6 c curves e, f, and g, m
ε(6) is>m

ε(4),

i.e., the intermediate is more compact than the native struc-

ture. This is unusual but not impossible for our three-helix

protein. For example, in the intermediate helix I and III

might be in contact such that those interresidue contacts

are better buried than those native ones. More recently the

folding rates of spectrin domains R16 and R17 were

increased by introducing nucleation sites along the core res-

idues that guide the docking of helix A and C (37). The cur-

vature is also present on the folding branch of mutated R17.

Our model offers an explanation for both the increase in

folding rate and the presence of curvature. They are, respec-

tively, the result of shifting the rate-determining barrier and

the transition state from full conformational search to a par-

tial search with an intermediate state.

Curves a, d, e, and g have not been identified for the

folding of three-helix proteins. The upward curvature on

the folding branch (curve a) is unusual but has been recently

observed in a natural downhill folder PTB1:4W (38), an a-b

protein. The apparent upward curvature could be the result

of having the broad midpoint of the two-state chevron plot

close to the zero denaturant concentration similar to those

plots found in some mutants of BBL, a small three-helix

protein (39). As mentioned earlier, for small three-helix pro-

teins, the downhill scenario could be achieved through the

minimization of search space and the absence of nonnative

interactions. For f¼ 1 the rollover effect is maximal accord-

ing to our model (curve d) and is similar to the case of off-

pathway kinetics as found in protein S6 (40), an a-b protein.

For three-helix proteins such as the B domain of protein A

or spectrin domain one could map this scenario onto the

misdocking between helix I and helix III that need to be

swapped before the protein can fold to the native state.

For a relatively more stable intermediate, which is more

compact than the native structure, upward curvature can

be observed (curve e). Titin I27, a b-sandwich protein, ex-

hibits this form of curvature (41). In that study the explana-

tion was also in a form of parallel-pathway kinetics. In our

model the unfolding flux shifts from (fourþtwo)-dimen-

sional route to the six-dimensional route at high denaturant

concentration because the former contains the highly

compact intermediate.

Finally, the downward curvature on both branches (curve

g) can also be obtained from our model. This kind of

chevron plot is found in apoflavodoxin (42), a mixed a-b

protein. It folds via an off-pathway intermediate but unfolds

via an on-pathway intermediate. At first sight the folding

and unfolding fluxes of our three-helix model protein are

both on the six-dimensional route (fractional rate plots not

shown here); this is merely because the (fourþtwo)-dimen-

sional route contains the relatively stable and unfavorable

off-pathway or the totally misfolded (f ¼ 1) intermediate.

We note that, although the class of chevron plots is very

rich, there are, even in the case of three-helix bundles,

different structures of nested folding spaces and their stabi-

lization energies lead to similar plots. When the class of pro-

teins is broadened, this many-to-one mapping will be

enhanced further. This is, however, not a weakness of the

model, but supports the long-established need for multiple

experimental measures of the folding process. Indeed,

titrating against salt, pH, and temperature provide indepen-

dent measurements of the space, providing that the
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stabilization energies can be parameterized accordingly. We

note additionally that mutation studies are another route to

explore hypergutter models, especially where these indicate

folding-rate effects from nonnative interactions.

We have chosen to keep the effective diffusion constants

uniform in value across the subspaces in which they apply.

This might be thought questionable in light of results

(43,44) showing that in low-dimension projection the diffu-

sion constant needs to become coordinate dependent in

some cases. This is especially true of very low-dimensional

representations (one or two). Because we have retained a

relatively high-dimensional representation (of order 10)

despite the dimensional reduction that must be present, we

are less susceptible to this form of coordinate dependence

of D. Our diffusion constants are much closer to real phys-

ical diffusion constants than the artificial stochastic pro-

cesses projected onto spaces such as that defined by the

number of native contacts, or radius of gyration. There is

every reason to suppose that our Ds are in fact constant

over the subspaces in which they operate, as these represent

sets of configurations with the same degree of compactness.

Furthermore, the slower dynamics in collapsed states is

physical, emerging from multiple energetic interactions be-

tween side groups of the protein in close proximity. We do

not account for this effect explicitly, but note that it contrib-

utes to folding rates in the same way as the parameter f,

which exponentially reduces D (an intermediate search

can be slowed down either by its intrinsic dynamics or by

a barrier surrounding its target state).

In conclusion, this simple and analytically solvable

model, based on few assumptions, can incorporate various

scenarios of protein folding and provides quantitative pre-

dictions for folding kinetics once coarse-grained structural

parameters are known. Furthermore, the physical under-

standing of model parameters could be employed to predict

mutations that affect folding rates.

SUPPORTING MATERIAL

Two figures and Appendices A–D are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(14)00264-1.
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