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Abstract In the detachment mode of slow seafloor spreading, convex-upward detachment faults take

up a high proportion of the plate separation velocity exposing gabbro and serpentinized peridotite on the

seafloor. Large, long-lived hydrothermal systems such as TAG are situated off axis and may be controlled by

fluid flow up a detachment fault, with the source of magmatic heat being as deep as 7 kmbsf. The

consequences of such deep circulation for the evolution of fluid temperature and salinity have not

previously been investigated. Microthermometry on fluid inclusions trapped in diabase, gabbro, and

trondjhemite, recovered at the Atlantis Massif Oceanic Core Complex (30�N, Mid-Atlantic Ridge), reveals

evidence for magmatic exsolution, phase separation, and mixing between hydrothermal fluids and

previously phase-separated fluids. Four types of fluid inclusions were identified, ranging in salinity from 1.4

to 35 wt % NaCl, although the most common inclusions have salinities close to seawater (3.4 wt % NaCl).

Homogenization temperatures range from 160 to >400�C, with the highest temperatures in hypersaline

inclusions trapped in trondjhemite and the lowest temperatures in low-salinity inclusions trapped in quartz

veins. The fluid history of the Atlantis Massif is interpreted in the context of published thermochronometric

data from the Massif, and a comparison with the inferred circulation pattern beneath the TAG hydrothermal

field, to better constrain the pressure temperature conditions of trapping and when in the history of

exhumation of the rocks sampled by IODP Hole U1309D fluids have been trapped.

1. Introduction

In previous studies, oceanic and ophiolitic fluid inclusions have been interpreted in the context of purely

magmatic ocean floor spreading, with the principle driving force for hydrothermal circulation being a

shallow axial magma chamber [Kelley and Delaney, 1987; Kelley et al., 1992, 1993]. The consequences for

hydrothermal fluid circulation in Oceanic Core Complexes (OCCs) of the recently established ‘‘detachment

mode’’ [Escartin and Canales, 2011; McCaig and Harris, 2012] of seafloor spreading have not been

investigated. In particular, this mode of spreading may involve deeper magma chambers (up to 7 km below

seafloor) [deMartin et al., 2007], focussed fluid discharge along detachment faults [McCaig et al., 2007, 2010],

and exhumation of gabbros and peridotites onto the seafloor [Cannat, 1993; Ildefonse et al., 2007; McCaig

and Harris, 2012].

Fluids of variable salinities have been found in ocean crust. Processes responsible for such variation have

been widely investigated in previous studies. Two-phase separation has been suggested as an important

process to explain the observed salinity variation of hydrothermal fluids (10–200% of the seawater value) at

different localities in the Mid-Atlantic Ridge such as the MARK area (Mid-Atlantic Ridge at Kane) [Kelley et al.,

1993], and in the South West Indian Ridge [Kelley and Fr€uh-Green, 2001]. Nevertheless, other processes such

as exsolution from a melt [Kelley et al., 1992; Kelley and Malpas, 1996] and hydration/dehydration reactions

with precipitation/dissolution of associated chloride-bearing minerals [Kelley and Robinson, 1990] need to

be considered in certain cases.

The Atlantis Massif (AM) is an Oceanic Core Complex (OCC) located at 30�N at the inside corner of the Mid-

Atlantic Ridge (MAR) and the Atlantis Transform Fault (ATF). Gabbros and mantle peridotite were exhumed

to the seafloor by the movement of a detachment fault that is the locus of hydrothermal fluid discharge

[Boshi et al., 2006; McCaig et al., 2007, 2010]. IODP Hole U1309D has been drilled in the central dome of the

AM which is believed to be the footwall of this major detachment fault. The drillcore shows evidence of fluid
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circulation, especially at depths <350 mbsf [Blackman et al., 2011]. Gabbros, diabases, and trondjhemite

have trapped samples of hydrothermal fluids that might represent different fluids circulating in the AM dur-

ing the exhumation and thermal evolution of the massif.

In this paper, we present analyses of fluid inclusions in gabbro, trondjhemite, and in quartz veins cutting

diabase and trondjhemite recovered from IODP Hole U1309D from the central dome of the AM during the

two consecutive IODP expeditions 304 and 305. Results are interpreted in a geodynamical context sug-

gested by a model of the trans-Atlantic geotraverse (TAG) area [deMartin et al., 2007; McCaig et al., 2007,

2010]. They provide new insights on generation of brine and pressure-temperature constraints on the evo-

lution of the hydrothermal fluid circulation in the Atlantis Massif and in OCCs [Kelley, 1996, 1997; Vanko and

Stakes, 1991] in general.

2. Geological Setting

The Atlantis Massif is an OCC, located at the inside corner of the MAR and the ATF (30�N) (Figure 1). An OCC

is a dome-like exposure of variably deformed and metamorphosed lower crustal and upper mantle rocks

that has been unroofed by movement on a major detachment fault (Figure 2) [Blackman et al., 2002, 2011;

Ildefonse et al., 2007; Tucholke et al., 1998; McCaig and Harris, 2012]. Gabbros from the massif have been

dated between 1.086 0.07 and 1.286 0.05 Myr [Grimes et al., 2008].

The AM is composed of three different parts: (i) the central dome in which two deep holes (U1309B and

U1309D) and five shallow-penetration holes (U1309A and U1309E-H), recovering upper sediment cover and

fragments of detachment fault schist have been drilled (Figure 1), (ii) the southern wall which is dominated

by serpentinized peridotite capped by a 100 m thick detachment shear zone rich in talc and tremolite

[Boschi et al., 2006]; it is the host of the Lost City hydrothermal field, and (iii) the eastern block, interpreted

as a fault-bounded block of basaltic material lying structurally above the central dome. The central dome is

characterized by a corrugated surface believed to be an exposure of the major detachment fault responsi-

ble for the uplift of the massif. The corrugations are parallel to the spreading directions and have a wave-

length of approximately 1000 m, amplitude of tens of meters, and length of several kilometers [Cann et al.,

1997].

Hole U1309B (30�10.110N, 42�07.110W; 1642 mbsl) was drilled up to 101.8 mbsf with an average recovery of

about 50%. Hole U1309D, located at 30�10.120N, 40�07.110W, 1645 mbsl, (20 m from Hole U1309B) pene-

trated 1415.5 mbsf, with a recovery of 75% comprising intrusive basalt and diabase (3%), gabbroic (91%),

and olivine-rich rock (5%) consisting of dunites, wehrlites, troctolites, as well as a few mantle peridotites

Figure 1. 3-D view of the Atlantis Massif showing morphotectonic features and the location of IODP holes U1309A-E. Illumination comes

from SE. Vertical exaggeration is about 1.8. A color scale is shown to indicate the bathymetry [Blackman et al., 2006].
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(harzburgite) in the upper 200 m. Seismic tomography suggests that a gabbro body several kilometers

across forms the core of the massif, with relatively steep contacts against serpentinized peridotite to the

south and west [Canales et al., 2008; Henig et al., 2012]. The drillcore recovered at Hole U1309D records

strong evidence of penetration of altering fluids. Alteration occurred over a range of temperatures ranging

from granulite facies to zeolite facies, but was dominantly in the greenschist and lower amphibolite facies

[Blackman et al., 2011]. A few samples of detachment-related talc-tremolite schists were sampled in the

uppermost 20 m of IODP Holes 1309B and 1309D, and fault breccias derived from diabase and gabbro are

common in the upper 120 m of the holes [Blackman et al., 2006, 2011]; there is no doubt that the holes

were drilled into the footwall of the detachment fault observed in outcrop at the summit of the south wall.

Gabbros in U1309B and U1309D vary in grain size (microgabbro to coarse grained gabbro) and deformation

type, and can also be divided in several groups: microgabbro, oxide gabbro, gabbronorite, gabbro, olivine

gabbro, troctolitic gabbro, and troctolite [Blackman et al., 2006]. Overall, the gabbros are equigranular, but

can exhibit different types of deformation ranging from (rare) mylonitic to absolutely undeformed. Plagio-

clase is generally unaltered, but can show evidence of albitization in the vicinity of veins and magmatic

intrusions and can also be altered to chlorite along fractures and in a corona reaction with olivine. Clinopyr-

oxene rarely survives alteration in the upper 350 m of the Hole and is replaced by amphiboles (hornblende,

actinolite, and tremolite). When olivine is present, it is more or less replaced by amphibole to form coronas

in the upper part of the core, and to serpentine often accompanied by rodingitization of plagioclase [Frost

et al., 2008] at greater depths.

Schoolmeesters et al. [2012] have used U-Pb zircon crystallization ages [Grimes et al., 2008, 2011], U-Th/He zir-

con thermochronometry, and multicomponent magnetic remanence data [Morris et al., 2009] to constrain

the cooling rates of the AM. It has been shown that the upper 800 m of the central dome at the AM cooled

from �780�C to �250�C at a rate of 2895(11276/21162)
�C/Myr, whereas the lower 600 m cooled at a slower

rate of �500(1125/2102)
�C/Myr, from �780�C to present day temperatures. Rocks from the uppermost part

of the hole appear to have cooled more slowly from �250�C to 190�C at a rate of �300�C/Myr due to the

hydrothermal circulation along the detachment fault. These results imply a thermal structure of the AM

such that the depth of the root of the detachment fault is 7 km. The depth of the 190�C isotherm resides

around �1.5 kmbsf while the temperature at Moho depth of 4.5–5 km [Blackman and Collins, 2010] is

>500�C. According to the exhumation model of Schoolmeesters et al. [2012], the depth of the 250�C, and

580�C isotherms along the detachment fault, respectively, are �3.75 kmbsf and �6 kmbsf.

Figure 2. Schematic 3-D block diagram of the Atlantis Massif. Detachment fault is shown as a curved white line which steepens at depth.

Location of U1309D is also shown in white. Red bodies represent active zones of intrusions. Blue sills are gabbro bodies intruding each

other and forming the plutonic sequence of the lithospheric crust. Dikes also intrude one another and are shown in blue green. Pillow

lavas lie on top of the dikes at the breakaway of the fault and in the hanging wall, but dikes also intrude into the footwall gabbros close to

the fault (from Grimes et al. [2008]).
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3. Methods

3.1. Petrographic Methods

3.1.1. Transmitted Light Microscope

An Olympus transmitted light microscope was used to detect, categorize, and map the fluid inclusion popu-

lations. Polished thin sections were used to determine the mineralogy of the samples, textural relationship

between minerals and the occurrence of fluid inclusions. Samples with too few fluid inclusions were dis-

carded and those with quartz veins (present only in the upper 250 m of the Hole) were favored. Areas of

interest for further study were identified in double-polished wafers and sketched and photographed in

plane polarized light. Microthermometric analyses were conducted on these same wafers, broken into

chips, on quartz, and plagioclase in areas where fluid inclusion populations exceeded 10 inclusions >5 lm.

On the basis of these criteria six samples were selected for detailed study.

3.1.2. Electron Microprobe Analyses

Electron microprobe analyses were conducted using a Cameca
VR
SX-50 fitted with three wavelength-

dispersive spectrometers for full quantitative analyses and with an Oxford MicroAnalysis Division Link 10/

55S Energy Dispersive System for reconnaissance of phases and qualitative analyses. Polished thin sections

were carbon coated (10–15 nm) before analyses. The microprobe is calibrated with a certified jadeite (Na), a

pure synthetic MgO (Mg), a pure synthetic Al2O3 (Al), wollastonite (Si, Ca), halite (Cl), a certified orthoclase

(K), a pure synthetic rutile (Ti), chromite (Cr), rhodonite (Mn), and hematite (Fe). This calibration is cross

checked against silicate standards such as diopside (Si, Ca, Na), almandine (Si, Al, Fe), K-feldspar (Si, Al, K),

and albite (Si, Al, Na) before every silicate analyses sessions.

Chlorite analyses were used to estimate temperatures of formation based on Cathelineau and Nieva [1985].

The calculation uses the relationship between the Al[iv] of chlorite and the temperature which is given by

the following equation:

T5
Al½iv�18:2631022

4:7131023

3.2. Fluid Inclusions Microthermometry

3.2.1. Sampling

Samples where fluid inclusions population could be related to a fracturing event and crystallization of chlor-

ite and exceeds 10 inclusions >5 lm were chosen. Six samples met these criteria: a quartz vein in diabase

(U1309D 1R-1 41–44; depth5 20.9 mbsf); a troctolitic gabbro (U1309D 5R-3 107–110; depth5 40 mbsf); a

gabbro (U1309D 10R-1 127–129; depth5 61.5 mbsf); a troctolite (U1309D 40R-1 6–12; depth5 214.8 mbsf);

a troctolite (U1309D 40R-1 17–19; depth5 214.9 mbsf); and a trondjhemite (U1309D 40R-1 21–24;

depth5 215 mbsf) cut by a quartz vein.

3.2.2. Analytical Method

Microthermometry measurements were carried out on 300 mm thick double-polished wafers using an

Olympus
VR
BX-50 transmitted light microscope with a Linkam

VR
THMSG 600 heating-freezing stage covering

a range in temperature from2196 to 1400�C. The stage is controlled by a Linkam TMS 93 programmer via

the LinkSys software version 2.15. Observation of fluid inclusions can be made by looking directly down the

microscope or on the computer screen via a JVC TK-C1380 color video camera. Synthetic fluid inclusions of

CO2 and of pure H2O in quartz were used to calibrate the microthermometric stage at temperatures of

256.6�C (triple point temperature of CO2), 0.0
�C (triple point of pure H2O), and1374.1�C (critical point of

pure H2O). Calibration was always checked before each set of measurements. If variations in any of the

three temperatures of calibration used were observed, necessary adjustments were made. Inclusions

believed to have undergone processes such as necking down, stretching, and decrepitation that can

change the volume of the cavity [Roedder, 1984], were not included in the statistics.

Repeated homogenization and freezing measurements were undertaken on individual inclusions in order

to observe phase changes (such as ice melting point, halite dissolution temperature, liquid-vapor homoge-

nization temperature) and to obtain homogenization temperatures and fluid salinities (in wt % NaCl eq). Sal-

inities were calculated using the temperature of melting of ice for low-salinity fluids [Bodnar, 1993].

Salinities for saturated fluids were calculated using the temperature of dissolution of solid halite [Sterner

Geochemistry, Geophysics, Geosystems 10.1002/2013GC004975
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et al., 1988]. Ice melting temperatures were reproducible to 60.1�C, giving an error of 60.17 wt % NaCl eq

for unsaturated inclusions. Halite dissolution temperatures were reproducible to 60.5�C giving an error of

60.03 wt % NaCl equivalent. Homogenization temperatures were reproducible to 61�C.

4. Results

4.1. Petrography of Samples From This Study

4.1.1. Quartz Vein in Diabase

Sample U1309D 1R-1 41–44 (depth5 20.9 mbsf) is a subophitic medium grained diabase composed of laths

of unaltered and fractured plagioclase 0.1–2.5 mm in length, with poikilitic augite generally partially

replaced by green hornblende (Figure 3a). The chemistry of several laths of plagioclase is presented in Table

1. Close to the quartz-chlorite vein, laths of plagioclase tend to have an albitic core and intermediate edges

(labradorite), whereas away from the vein (laths 3, 4, and 5), the opposite is observed. The amphibole in the

diabase is green magnesiohornblende (Table 1). Ilmenite partially replaces magnetite.

A 3 mm wide quartz-chlorite vein crosscuts the general fabric of the matrix. The quartz vein is equigranular

and quartz grains are commonly of irregular shape. They exhibit a radial extinction (Figure 3b). Chlorite

Figure 3. Photomicrographs; (a) ophitic texture of diabase with laths of plagioclase, green hornblende, and clinopyroxene relics as bright

colors (sample U1309D 16R-2 58–61 piece 4, cross-polarized light). This sample is similar to the sample in which microthermometry was

performed except that the grain size is coarser in that one. (b) Quartz-chlorite vein in diabase (sample U1309D 1R-1 41–44 piece 1, cross-

polarized light). (c) Back scattered electron photomicrograph showing the vermiform chlorite of the quartz-chlorite vein and the amphi-

bole needle intergrowth in sample U1309D 1R-1 41–44 piece 1. (d) Troctolitic gabbro showing corona texture—tremolite replaces olivine

and chlorite replaces plagioclase (sample U1309D 5R-3 107–110, plane-polarized light (Figure 3c) and cross-polarized light (Figure 3d)). (e)

Actinolite replacing clinopyroxene in troctolitic gabbro (sample U1309D 5R-3 107–110, piece 12, cross-polarized light). (f) Graphic texture

of trondjhemite (sample U1309D 40R-1 21–24, piece 5, cross-polarized light).

Geochemistry, Geophysics, Geosystems 10.1002/2013GC004975

CASTELAIN ET AL. VC 2014. The Authors. 1197



Table 1. Electron Microprobe Analyses of Plagioclases and Amphiboles in Diabase Sample U1309D 1R-1 41–44a

Oxide

wt.%

Core

of

Lath 1

Edge

of

Lath 1

Core

of

Lath 2

Edge

of

Lath 2

Core

of

Lath 3

Edge

of

Lath 3

Core

of

Lath 4

Edge

of

Lath 4

Core

of

Lath 5

Edge

of

Lath 5 Am1 Am2 Am3 Am4 Am5 Am6 Am7 Am8 Am9 Am10

SiO2 67.26 54.79 68.17 53.70 51.81 68.88 51.79 60.96 52.39 61.50 46.34 49.25 48.39 50.77 49.12 49.16 49.43 47.55 50.35 48.55

TiO2 0.00 0.06 0.00 0.04 0.09 0.00 0.08 0.00 0.07 0.00 0.33 0.40 0.39 0.31 0.14 0.39 0.30 0.34 0.42 0.49

Al2O3 21.29 27.98 20.33 28.49 30.69 20.60 30.56 24.20 29.37 24.38 7.98 5.93 7.10 4.40 4.77 5.70 4.89 6.30 6.00 5.77

Cr2O3 0.00 0.30 0.32 0.00 0.00 0.04 0.40 0.41 0.16 0.11

Fe2O3 0.03 1.03 0.11 1.08 0.61 0.20 0.59 0.76 1.02 0.54 3.70 1.18 2.17 2.52 3.61 3.09 2.82 5.05 3.55 2.95

FeO 14.89 14.85 12.60 12.63 15.01 12.49 12.53 12.01 7.97 12.35

MnO 0.00 0.00 0.07 0.01 0.04 0.00 0.04 0.04 0.01 0.08 0.12 0.08 0.25 0.24 0.25 0.27 0.26 0.37 0.26 0.27

MgO 0.00 0.13 0.00 0.16 0.23 0.00 0.15 0.04 0.15 0.02 10.56 12.12 12.94 13.94 11.77 13.30 13.40 12.73 16.35 13.21

CaO 1.78 11.46 0.69 11.75 13.98 1.02 13.90 6.21 12.61 6.39 12.31 12.64 12.03 11.96 11.60 11.42 11.77 10.95 10.80 12.00

Na2O 10.46 5.25 10.95 4.93 3.64 11.02 3.63 8.16 4.52 7.98 0.92 0.67 1.19 0.75 0.70 0.98 0.92 1.34 1.16 1.05

K2O 0.01 0.06 0.04 0.04 0.04 0.05 0.01 0.13 0.05 0.12 0.09 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.04 0.07

H2O 1.97 1.99 2.01 2.04 1.92 2.00 1.96 1.98 2.00 1.94

F 0.07 0.09 0.07 0.04 0.20 0.07 0.16 0.09 0.18 0.18

Cl 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.01 0.00

Total 100.82 100.74 100.36 100.19 101.13 101.76 100.75 100.48 100.17 101.01 99.27 99.55 99.53 99.66 99.15 98.99 98.90 99.18 99.26 98.93

Si 2.921 2.464 2.966 2.432 2.334 2.959 2.340 2.705 2.380 2.711 6.926 7.259 7.094 7.401 7.317 7.237 7.295 7.040 7.232 7.174

Al(IV) 1.090 1.483 1.042 1.520 1.629 1.043 1.627 1.266 1.572 1.267 1.074 0.741 0.906 0.599 0.683 0.763 0.705 0.960 0.768 0.826

Al(VI) 0.332 0.289 0.322 0.158 0.154 0.226 0.147 0.140 0.248 0.178

Ti 0.000 0.002 0.000 0.001 0.003 0.000 0.003 0.000 0.002 0.000 0.037 0.044 0.043 0.033 0.015 0.044 0.033 0.038 0.045 0.054

Cr 0.000 0.035 0.038 0.000 0.000 0.005 0.046 0.048 0.018 0.012

Fe31 0.001 0.035 0.004 0.037 0.021 0.006 0.020 0.025 0.035 0.018 0.416 0.131 0.239 0.277 0.404 0.342 0.314 0.563 0.384 0.328

Fe21 1.861 1.830 1.545 1.540 1.870 1.537 1.546 1.487 0.957 1.526

Mn 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.002 0.000 0.003 0.015 0.010 0.032 0.030 0.032 0.033 0.033 0.047 0.032 0.034

Mg 0.000 0.008 0.000 0.011 0.015 0.000 0.010 0.002 0.010 0.001 2.352 2.664 2.828 3.031 2.614 2.919 2.949 2.809 3.501 2.910

Ca 0.083 0.552 0.032 0.570 0.675 0.047 0.673 0.295 0.614 0.302 1.972 1.996 1.889 1.868 1.850 1.802 1.861 1.737 1.663 1.900

Na 0.880 0.458 0.924 0.433 0.318 0.918 0.318 0.702 0.398 0.682 0.267 0.191 0.339 0.212 0.202 0.280 0.262 0.384 0.322 0.301

K 0.000 0.003 0.002 0.002 0.002 0.003 0.001 0.007 0.003 0.007 0.016 0.012 0.011 0.010 0.010 0.011 0.012 0.010 0.008 0.014

OH 1.968 1.959 1.967 1.980 1.908 1.962 1.927 1.959 1.915 1.917

F 0.031 0.041 0.031 0.020 0.092 0.031 0.073 0.041 0.082 0.083

Cl 0.001 0.000 0.002 0.000 0.000 0.008 0.000 0.000 0.003 0.000

Total 4.975 5.006 4.973 5.006 4.998 4.976 4.993 5.004 5.014 4.991 17.268 17.201 17.286 17.160 17.153 17.197 17.203 17.263 17.178 17.257

An% 8 56 3 58 69 5 68 30 62 30

Name Ab Lb Ab Lb Lb Ab Lb And Lb And MgHb MgHb MgHb MgHb MgHb MgHb MgHb MgHb MgHb MgHb

aAn%5 anorthite percentage, and name indicates type of amphibole. Am5 amphibole; Ab5 albite; Lb5 labradorite; And5 andesine; MgHb5Magnesiohornblende.
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forms vermiform and radiating aggregates (Figure 3c), primarily on one side of the vein, and shows three

distinct growth phases; an early growth phase with Mg numbers in the range 32–40 (Table 2, Chl 1–4) at a

temperature of 2836 5�C [Cathelineau and Nieva, 1985], a second phase with Mg numbers from 54 to 60

(Table 2, Chl 5–8) at a temperature of 2596 5�C [Cathelineau and Nieva, 1985], and a final phase with Mg

numbers from 62 to 71 (Table 2, Chl 9–12) at a temperature of 2426 17�C [Cathelineau and Nieva, 1985].

Chlorite appears to largely predate quartz, which is often intergrown with amphibole needles (magnesio-

hornblende) at the edge of the vein (Table 2, Am 1–3; Figure 3c). Fluid inclusions occur as irregular shaped

primary (?) inclusions clustering in the clear central part of the quartz grains of the vein. They are two phase,

liquid-dominated inclusions ranging in size from 5 to 10 mm.

4.1.2. Gabbro

Sample U1309D 5R-3 107–110 (depth5 39.9 mbsf) is a medium grained troctolitic gabbro exhibiting plagio-

clase grains of intermediate composition (Table 3); it contains corona textures in which olivine is replaced

by tremolite and plagioclase is partially replaced by chlorite and cut by chlorite veins (Figure 3d). Actinolite

and magnesiohornblende replace clinopyroxene (Figure 3e and Table 3). Plagioclase is slightly deformed

and exhibits subgrain boundaries and deformation twins. Sample U1309D 10R-1 127–129 (depth5 61.5

mbsf) is a mylonitized coarse gabbro composed of roughly 60% deformed, partially recrystallized plagio-

clase and 40% green-brown hornblende and actinolite, replacing clinopyroxene; the plagioclase is partially

altered to chlorite. Granoblastic recrystallization affects the boundaries of amphibole grains suggesting that

the shear zone was active at amphibolite facies conditions. In these two last samples, fluid inclusions occur

as both regular and irregular shaped secondary inclusions in plagioclase that occur in trails decorating frac-

tures and as larger cigar-shaped inclusions perpendicular to chlorite veins. They are two phase and liquid

dominated, ranging in size from 10 to 20 mm.

Samples U1309D 40R-1 6–12 (depth5 214.9 mbsf) and U1309D 40R-1 17–19 (depth5 215.0 mbsf) are troc-

tolites showing the same textural characteristics as samples U1309D 5R-3 107–110 with more abundant oli-

vine and crosscutting quartz veins. Fluid inclusions in these samples occur as irregular shaped primary

inclusions. They generally cluster in the central part of the quartz grains of the vein. These fluid inclusions

are two-phase liquid-dominated ranging in size from 5 to 20 mm.

4.1.3. Trondjhemite and Crosscutting Quartz Vein

Sample U1309D 40R-1 21–24 is a fine to medium grained trondjhemite composed of albitic plagioclase and

quartz. Both are usually anhedral and form graphic intergrowths (Figure 3f). Alteration minerals (traces of

tremolite and titanite along the edges of the graphic intergrowths) are not common. A large number of

apparently primary fluid inclusions have been studied in a single 5 mm quartz grain of the trondjhemite.

Two populations are observed; one with irregular shaped liquid-dominated inclusions and the other one

with halite daughter crystals. Halite-bearing inclusions are generally bigger than those without halite and

are irregular in shape (20–50 mm).

A late crack-seal quartz vein 4–5 mm in width crosscuts this late leucocratic magmatic intrusion. Quartz

grains are elongated and also show radial extinction. Fluid inclusions in the vein are generally distributed as

clusters in the clear central part of the grains, and are interpreted as being primary in origin. They are of

irregular shape ranging in size from 10 to 20 mm, with some reaching several 10s of mm. They do not con-

tain halite crystals.

4.2. Fluid Inclusions Typology and Results

Four types of fluid inclusions have been identified in the samples studied (Figure 4). Table 4 summarizes

the results obtained for homogenization temperature and salinity for each type of inclusion and material.

Types of fluid inclusion are classified with the numbering used in Kelley et al. [1992]:

• Type 1 inclusions are liquid dominated with low salinity

• Type 1a inclusions have seawater-like salinities

• Type 1b inclusions have salinities depleted with respect to seawater

• Type 2 inclusions are vapor dominated with low salinity (but were not observed in this study)

• Type 3 inclusions have high salinity
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Table 2. Electron Microprobe Analyses of Chlorite and Amphiboles in the Quartz-Chlorite Vein of Sample U1309D 1R-1 41–44a

Oxide

wt % Chl1 Chl2 Chl3 Chl4 Chl5 Chl6 Chl7 Chl8 Chl9 Chl10 Chl11 Chl12 Am1 Am2 Am3

SiO2 25.15 25.12 24.82 25.19 27.13 27.23 27.51 27.43 27.73 28.89 28.57 29.43 49.89 48.74 50.20

TiO2 0.04 0.02 0.00 0.03 0.00 0.00 0.00 0.01 0.02 0.02 0.00 0.01 0.23 0.24 0.33

Al2O3 19.35 19.96 19.78 19.58 18.99 18.97 18.91 19.37 18.51 18.07 18.16 17.10 5.43 5.74 4.97

Cr2O3 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.02 0.00 0.01 0.02 0.00 0.02 0.02 0.08

Fe2O3 0.00 0.00 0.00

FeO 33.68 32.85 31.84 31.09 23.75 22.60 20.90 20.25 21.18 17.88 17.08 15.59 17.48 18.65 15.12

MnO 0.69 0.35 0.34 0.25 0.99 1.27 1.19 1.51 0.92 0.97 0.73 0.73 0.13 0.10 0.33

MgO 9.09 9.91 10.76 11.49 16.32 17.05 17.57 18.66 20.30 20.34 21.54 22.42 11.66 11.16 13.67

CaO 0.02 0.01 0.02 0.02 0.02 0.02 0.11 0.01 0.04 0.04 0.02 0.05 12.32 12.32 11.61

Na2O 0.11 0.06 0.09 0.11 0.03 0.16 0.06 0.02 0.16 0.03 0.11 0.12 0.62 0.64 0.85

K2O 0.04 0.02 0.06 0.05 0.02 0.07 0.02 0.03 0.10 0.04 0.07 0.10 0.08 0.06 0.03

H2O 10.88 10.98 10.94 11.01 11.39 11.45 11.42 11.58 11.76 11.65 11.69 11.68 2.01 2.00 1.99

F 0.02 0.00 0.06

Cl 0.04 0.02 0.06

Total 99.05 99.28 98.66 98.83 98.63 98.82 97.73 98.87 100.72 97.93 97.98 97.22 99.92 99.68 99.29

Si 5.544 5.488 5.441 5.487 5.714 5.705 5.776 5.680 5.658 5.950 5.863 6.041 7.369 7.271 7.384

Al(tot) 5.026 5.138 5.111 5.026 4.714 4.686 4.679 4.727 4.451 4.385 4.392 4.136

Al(iv) 0.631 0.729 0.616

Al(vi) 0.314 0.280 0.246

Ti 0.007 0.003 0.000 0.005 0.000 0.000 0.000 0.002 0.002 0.003 0.000 0.001 0.026 0.027 0.037

Cr 0.000 0.001 0.002 0.001 0.000 0.000 0.005 0.003 0.000 0.001 0.003 0.000 0.002 0.003 0.009

Fe31 0.000 0.000 0.000

Fe21 6.208 6.001 5.837 5.662 4.184 3.961 3.669 3.507 3.614 3.080 2.930 2.676 2.160 2.327 1.860

Mn 0.129 0.065 0.064 0.047 0.176 0.225 0.212 0.264 0.160 0.169 0.127 0.127 0.016 0.012 0.041

Mg 2.989 3.228 3.517 3.732 5.127 5.328 5.500 5.761 6.175 6.246 6.590 6.860 2.568 2.482 2.998

Ca 0.005 0.003 0.004 0.004 0.005 0.006 0.025 0.003 0.008 0.009 0.005 0.011 1.949 1.969 1.829

Na 0.046 0.024 0.037 0.046 0.013 0.063 0.025 0.006 0.063 0.014 0.042 0.049 0.178 0.185 0.242

K 0.010 0.006 0.017 0.015 0.005 0.018 0.006 0.007 0.026 0.009 0.018 0.027 0.015 0.011 0.005

OH 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 1.980 1.994 1.956

F 0.011 0.000 0.029

Cl 0.010 0.006 0.014

Total 35.964 35.955 36.030 36.025 35.938 35.992 35.897 35.960 36.158 35.866 35.970 35.928 17.228 17.294 17.268

Mg# 32.0 34.7 37.3 39.5 54.0 56.0 58.6 60.4 62.1 65.8 68.3 71.0

T(�C) 277.3 283.7 288.5 283.3 259.9 260.1 252.6 263.4 264.9 234.6 243.6 224.4

Name MgHb MgHb MgHb

aName indicates type of amphibole. Chl5 chlorite; Am5 amphibole; MgHb5magnesiohornblende.
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Table 3. Electron Microprobe Analyses of Plagioclases and Amphiboles in Gabbro Sample U1309D 5R-3 107–110a

Oxide wt % Plg1 Plg2 Plg3 Plg4 Plg5 Plg6 Plg7 Plg8 Plg9 Plg10 Am1 Am2 Am3 Am4 Am5 Am6 Am7 Am8 Am9

SiO2 48.39 48.10 49.92 48.34 47.93 47.89 48.17 48.79 48.65 48.12 56.19 47.23 58.51 46.61 41.40 57.10 57.66 57.36 48.55

TiO2 0.00 0.00 0.00 0.04 0.01 0.00 0.07 0.00 0.02 0.00 0.01 0.54 0.00 0.47 0.03 0.00 0.02 0.00 0.78

Al2O3 33.51 32.96 32.14 33.16 33.39 33.17 33.19 33.04 32.40 33.40 0.81 10.30 0.09 10.94 15.44 0.58 0.55 0.36 9.45

Cr2O3 0.02 0.18 0.00 0.09 0.00 0.04 0.01 0.00 0.78

Fe2O3 0.17 0.29 0.13 0.47 0.45 0.20 0.34 0.26 0.35 0.33 0.70 2.94 0.00 4.14 4.70 0.00 0.50 0.13 1.42

FeO 4.19 3.54 3.28 2.99 10.60 6.74 4.77 3.63 6.23

MnO 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.06 0.19 0.09 0.14 0.09 0.21 0.25 0.28 0.24 0.13

MgO 0.06 0.05 0.03 0.03 0.08 0.03 0.05 0.04 0.04 0.03 21.27 18.24 22.61 18.03 11.04 21.31 21.52 22.08 17.80

CaO 16.66 16.66 15.52 17.11 16.59 16.93 16.56 16.53 15.50 16.84 12.58 12.22 13.24 12.08 12.16 12.58 13.04 13.29 10.64

Na2O 2.27 2.29 2.90 2.02 2.12 2.12 2.11 2.15 2.54 2.00 0.21 2.20 0.09 2.22 2.39 0.17 0.14 0.13 1.78

K2O 0.04 0.05 0.01 0.00 0.00 0.02 0.02 0.00 0.23 0.02 0.01 0.13 0.01 0.11 0.14 0.01 0.00 0.01 0.13

H2O 2.12 2.12 2.19 2.12 2.01 2.17 2.18 2.16 2.10

Cl 0.04 0.01 0.02 0.01 0.10 0.01 0.00 0.00 0.09

Total 101.1 100.43 100.65 101.17 100.6 100.36 100.51 100.84 99.73 100.8 98.34 99.75 100.17 99.90 100.23 100.97 100.67 99.39 99.86

Si 2.195 2.199 2.265 2.194 2.186 2.190 2.197 2.215 2.233 2.190 7.894 6.674 8.000 6.590 6.089 7.885 7.927 7.946 6.869

Al(IV) 1.791 1.776 1.719 1.774 1.795 1.788 1.784 1.768 1.753 1.792 0.106 1.318 0.000 1.410 1.911 0.094 0.073 0.054 1.131

Al(VI) 0.029 0.400 0.014 0.413 0.765 0.000 0.016 0.005 0.445

Ti 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.058 0.000 0.050 0.004 0.000 0.002 0.000 0.083

Cr 0.003 0.020 0.000 0.010 0.000 0.004 0.001 0.000 0.087

Fe31 0.006 0.010 0.004 0.016 0.015 0.007 0.012 0.009 0.012 0.011 0.074 0.313 0.000 0.440 0.520 0.000 0.052 0.014 0.151

Fe21 0.493 0.419 0.375 0.353 1.304 0.778 0.549 0.420 0.737

Mn 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.002 0.023 0.011 0.016 0.011 0.026 0.029 0.032 0.028 0.015

Mg 0.004 0.003 0.002 0.002 0.005 0.002 0.003 0.003 0.003 0.002 4.455 3.847 4.615 3.801 2.421 4.388 4.411 4.560 3.754

Ca 0.810 0.816 0.755 0.832 0.811 0.830 0.810 0.804 0.762 0.821 1.893 1.853 1.941 1.830 1.916 1.862 1.920 1.972 1.613

Na 0.200 0.203 0.255 0.177 0.188 0.188 0.187 0.189 0.226 0.177 0.057 0.603 0.025 0.609 0.682 0.045 0.037 0.035 0.488

K 0.002 0.003 0.000 0.000 0.000 0.001 0.001 0.000 0.014 0.001 0.002 0.024 0.002 0.020 0.026 0.002 0.000 0.001 0.023

OH 1.990 1.999 1.996 1.999 1.975 1.999 2.000 1.999 1.979

Cl 0.010 0.001 0.004 0.001 0.025 0.001 0.000 0.001 0.021

Total 5.008 5.011 5.001 4.998 5.002 5.006 4.996 4.991 5.003 4.997 17.029 17.548 16.997 17.538 17.664 17.088 17.019 17.036 17.397

An% 81.4 82.0 75.6 83.5 81.7 83.2 81.3 80.8 76.5 82.6

Name Byt Byt Byt Byt Byt Byt Byt Byt Byt Byt Trem Ed Trem Ed Parg Act Act Trem MgHb

aAn%5 anorthite percentage, and name indicates type of amphibole. Plg5 plagioclase; Byt5 bytownite; Am5 amphibole; Trem5 tremolite; Ed5 edenite; Parg5 pargasite; Act5 actinolite;

MgHb5magnesiohornblende.
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• Type 3a inclusions are two-phase liquid-dominated inclusions

• Type 3b inclusions have halite daughter crystals

The primary/secondary origin of fluid inclusions was not always clear; nonetheless, fluid inclusions in quartz

veins were usually concentrated in clusters in the center of the quartz grains and therefore interpreted as

primary inclusions. In plagioclase and in quartz grains of the trondjhemite, fluid inclusions are secondary in

origin as they are commonly decorating sealed fractures.

4.2.1. Type 1: Liquid-Dominated Low-Salinity Inclusions [L1V (L)]

Liquid-dominated, low-salinity inclusions have been found in all the samples in both quartz and plagioclase,

and they generally occur as irregular inclusions ranging in size from 5 to 30 mm with the exception of sam-

ple U1309D 40R-1 17–19, where inclusions up to 100 mm in size have been found. Rare regular shaped

inclusions are found in plagioclase grains. Irregular shaped inclusions might be the result of necking down,

stretching, and/or leaking. Therefore, particular care has been taken to verify the similarity in behavior of

irregular shaped inclusions relative to regular shaped ones. Where fluid inclusions exhibited salinities and/

or homogenization temperatures significantly different from the other inclusions in the same population,

those were not included in the statistics (11 out of 329). Results from sample U1309D 40R-1 6–12 are not

included in the statistics either as only six measurements were undertaken in this sample.

Figure 4. Photomicrographs of fluid inclusions. (a) Irregular shaped primary (?) fluid inclusions of type 1a (see section 4.2.1) in the quartz-

chlorite vein of sample U1309D 1R-1 41–44. (b) Irregular shaped secondary fluid inclusions of type 1b (see section 4.2.1) in plagioclase of

sample U1309D 10R-1 127–129. (c) Irregular shaped primary fluid inclusions of type 1a in quartz vein of sample U1309D 40R-1 17–19. (d)

Irregular shaped primary inclusions of type 1a in quartz vein of sample U1309D 40R-1 21–24. (e) Halite-bearing fluid inclusions of type 3b

(see section 4.2.3) in a quartz grain of a trondjhemite (U1309D 40R-1 21–24). Note that inclusions of fluid type 3a (see section 4.2.2) are

similar in shape to inclusions of type 3b but do not host a halite cube. (f) Secondary cigar-shaped fluid inclusions in plagioclase related to

chlorite vein in sample U1309D 5R-3 107–110.
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Quartz vein-hosted type 1a inclusions (Figures 4a, 4c, and 4d) homogenize in the liquid phase at tempera-

tures of 124.5–289.5�C and show ice melting at 21.4 to 23.1�C, implying salinities of 2.4–5.1 wt % NaCl

equivalent (mode5 3.46 1.2 wt % NaCl eq; N5 207) clustering around the seawater value (3.2 wt % NaCl

eq; Figures 5 and 6).

Plagioclase-hosted low-salinity type 1b inclusions (Figure 4b) homogenize in the liquid phase at tempera-

tures of 192–349�C and exhibit melting of ice at 20.1 to 21.0�C, indicating salinities of 0.2–2.9 wt % NaCl.

Unlike the other samples, the distribution of homogenization temperatures is not unimodal (Figure 6) and

the wide range of homogenization temperature is possibly the result of necking down due to fracturing

and chlorite filling veins in the vicinity of the inclusions. The mode in salinities is 0.5 wt % NaCl eq (depleted

relative to the seawater value); N5 163. In sample U1309D 10R-1 127–129, type 1a inclusions are also pres-

ent and homogenize in the same range of temperatures at equivalent salinities of 2.0–4.3 wt % NaCl (Fig-

ures 5 and 6).

4.2.2. Type 3a: Liquid-Dominated High Salinity [L1V (L)]

Liquid-dominated high-salinity inclusions lacking daughter minerals (type 3a) are found in quartz grains of

the trondjhemite sample (U1309D 40R-1 21–24), and are associated with type 3b inclusions. Their primary

or secondary origin is not really clear. They are irregular in shape with a range in size of 5–20 mm. Homoge-

nization occurred in the liquid phase at temperatures of 314.5 to >400�C. Melting of ice occurred at 26.2

to 217.6�C, indicating salinities of 9.5–20.7 wt % NaCl (Figure 5); N5 12.

Table 4. Fluid Inclusion Microthermometric Analysesa

Sample

(U1309D) Rock

Depth

(mbsf)

Mineral

Host

Inclusion

Type N Th Range (�C)

Th Mode

(�C)

Th Mean

(�C)

Salinity Range (wt %

NaCl)

Salinity

Mode

(wt % NaCl)

1R-1 41–44 Diabase 21.93 Qtz-Chl vein 1a 67 147.7–285.0 161.7 180.8 3.1–5.1 3.7

5R-3 107–110 Troctolitic gabbro 39.96 Plg 1b 96 192.0–349.0 277.0 273.0 0.5–1.1 0.5

10R-1 127–129 Gabbro 61.48 Plg 1a/b 82 250.8–320.3 278.9 292.0 0.7–2.9 1.4

40R-1 17–19 Troctolite 214.98 Qtzvein 1a 83 135.0–289.5 210.0 208.7 2.4–3.7 3.4

40R-1 21–24 Tdjh 215.02 Qtz vein 1a 58 124.5–204.9 166.0 161.5 2.9–4.0 3.4

40R-1 21–24 Tdjh 215.02 Qtz 3a 12 314.5–>400.0 388.6 9.5–20.7 17.4

40R-1 21–24 Tdjh 215.02 Qtz 3b 7 336.4–>400.0 383.4 31.1–37.7

aTh5 Temperature of homogenization; Qtz5Quartz; Chl5Chlorite; Plg5 Plagioclase; Tdjh5 Trondjhemite.

Figure 5. Temperature of homogenization against salinity for all samples. The shaded area represents the range in salinity for fluids exiting

submarine hydrothermal vents. Arrows mean that fluid inclusions were not homogenized at this temperature (high temperature limit of

apparatus).
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4.2.3. Type 3b: Daughter Mineral-Bearing Inclusions [L1V1H (L)]

Halite-bearing fluid (type 3b) inclusions have been found in quartz grains of the trondjhemite and are asso-

ciated with type 3a, although their temporal relationship is not clear. They are irregular in shape with vari-

able size of 10–50 mm, liquid dominated, and rarely contain other daughter minerals (Figure 4e). Dissolution

Figure 6. Histograms of homogenization temperatures and of temperatures of melting of ice. For sample U1309D 40R-1 21–24, only

results of inclusions in the quartz vein are presented here as insufficient data from inclusions in the quartz grains of the trondjhemite were

conducted to obtain good quality statistics.
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of the halite cube (184–294�C) always occurred at lower temperatures than the homogenization tempera-

ture, marked by the disappearance of the vapor bubble (336.4 to >400�C). Some inclusions remained unho-

mogenized at a temperature of 400�C (the limit of the stage used). Since halite dissolution had already

been observed, the behavior of the vapor bubble suggested that homogenization would occur in the next

20–30�C. The vapor bubble had considerably decreased in volume and was intensely moving around the

inclusion. This behavior, observed in all other inclusions, characterizes approach homogenization. These

particular inclusions are indicated by arrows on Figure 5. Halite dissolution temperatures indicate equivalent

fluid salinities of 31.1–37.7 wt % NaCl eq; N5 7.

Cooling experiments were undertaken in order to test for the presence of additional gas species in the

vapor phase, but no clear phase changes were observed.

4.2.4. Liquid-Dominated Related to Chlorite Veins

The elongated cigar shape inclusions that have been observed in plagioclase (Figure 4f) could not be stud-

ied microthermometrically because the thickness of the wafer made observation of a single inclusion

impossible.

5. Discussion

5.1. Fluid Evolution in Oceanic Core Complexes

The fluids observed in this study could have been trapped at different stages in the evolution of the rocks

recovered from the Atlantis Massif. A number of other detachment-related settings in the Atlantic Ocean

have been studied [cf. Escartin and Canales, 2011], in particular that linked to the TAG hydrothermal field

[deMartin et al., 2007; McCaig et al., 2010]. The Atlantis massif, like many other OCCs, is capped by a talc-

tremolite schist formed in the greenschist facies [Boschi et al., 2006; Blackman et al., 2011], which has been

inferred to be the locus for discharge of black smoker fluids [McCaig et al., 2007, 2010; McCaig and Harris,

2012]. The depth of any melt lens supplying heat to black smoker systems in such a setting is unknown, but

may be as deep as 7 kmbsf, [Canales et al., 2007; deMartin et al., 2007]. The cooling history of the Massif has

been constrained by paleomagnetic [Morris et al., 2009] and thermochronometric [Grimes et al., 2008, 2011;

Schoolmeesters et al., 2012] data. Our data are interpreted in the framework of the thermal model of School-

meesters et al. [2012] and the evolution of hydrothermal circulation in the Massif suggested by McCaig et al.

[2010].

5.2. Hydrostatic and Lithostatic Pressure Gradients

Interpretations of the pressure-temperature conditions of the two-phase curve between liquid and vapor

are strongly dependent on the type of fluid pressure which occurs in the crust. Hydrostatic pressure applies

to fluids in cracks under brittle conditions. Lithostatic pressure applies to fluids exsolving from a melt under

ductile conditions and to fluids isolated from the convective circulation. The switch between those condi-

tions is likely linked to the depth interval of the brittle-ductile transition. Calculations estimate this transition

at a temperature of 700–800�C in moderately shallow gabbroic rocks [Hirth et al., 1998]. Hydrostatic pres-

sure will be favored in a model where seawater is the fluid source whereas if magmatic fluid is the parent

fluid the pressure may be hydrostatic or lithostatic, depending on depth of fluid circulation.

The PT gradient under hydrostatic pressure will vary depending on water temperature. A cold hydrostatic

pressure gradient is �100 bars/km at normal seawater temperature, whereas a hot hydrostatic pressure gra-

dient is �30 bars/km at black smoker temperature [Coumou et al., 2009] (see below and Figure 7). The verti-

cal pressure gradient must be small enough for cold water to flow down in the recharge zone, and large

enough for hot water to flow up in the discharge zone, implying the pressure gradient generally lies

between cold and hot hydrostatic pressure [Jupp and Schultz, 2000]. Nonetheless, several studies [Jupp and

Schultz, 2004; Wilcock and McNabb, 1996] assume that a pressure gradient very close to cold hydrostatic

pressure defines the properties of the circulating fluids such as viscosity and flow resistance.

5.3. Pressure and Temperature Conditions of Fluid Entrapment

In OCCs, where the detachment fault is the locus of large fluid flux and the magma chamber is supposed to

be approximately at a depth of 7 kmbsf, fluid may circulate from the depth of the seafloor to as deep as 7

kmbsf. We assume a water depth of 3.5 km, as seen at the TAG hydrothermal field. Over this depth range,

Geochemistry, Geophysics, Geosystems 10.1002/2013GC004975

CASTELAIN ET AL. VC 2014. The Authors. 1205



lithostatic pressure would be between approximately 0.35 and 2.45 kbars, respectively, and cold hydrostatic

pressure approximately 0.35 and 1.05 kbars, respectively (assuming a rock density of 3000 kg m23).

A pressure correction is necessary to estimate the temperature of fluid entrapment from the microther-

mometry. This correction is valid for inclusions that contain pure NaCl solution, for which the salinity of the

fluid has been correctly determined, and for which homogenization occurs in the liquid phase, and when

pressure of formation can be estimated [Roedder, 1984]. The extreme pressures given above correspond to

the minimum and maximum hydrostatic and lithostatic pressures that the inclusions experienced on trap-

ping, depending on when they formed during the exhumation of the Atlantis Massif. These pressures allow

calculation of isochores (Figure 8) which the fluid inclusions followed from trapping to homogenization

while cooling. Pressure-corrected trapping temperatures for fluids with less than 20.8 wt % NaCl were calcu-

lated from the software Loner38VC from http://fluids.unileoben.ac.at that computes the equations from

Zhang and Frantz [1987] for the system H2O-NaCl. Pressure-corrected trapping temperatures for supersatu-

rated fluid were calculated using equation 4 of Bodnar and Vityk [1994] that gives dP/dT (bar/�C) as a func-

tion of the salinity and the homogenization temperature.

The pressure-temperature conditions described in Schoolmeesters et al. [2012] are used here to better con-

strain the trapping conditions of fluid inclusions. In Figure 8, the intersection of the isochores and the P-T

curves of Schoolmeesters et al. [2012] gives a range of possible trapping conditions for each individual fluid

type. Pressures for the PT curves of Schoolmeesters et al. [2012] are calculated assuming either hydrostatic

pressure or lithostatic pressure from the depth of the top core pressure/depth-temperature curve in their

Figure 6 using a water column of 3500 m and a rock density of 3000 kg m23. Seawater-like fluid (type 1a)

could have been trapped at depths between 1.8 and 3.8 kmbsf and temperatures between 190 and 250�C

if in an active buoyancy-driven convective system under hydrostatic conditions. If they were isolated from

any active system they could have been trapped deeper and at higher temperatures (2.8 to �4.2 kmbsf and

up to 300�C) (Table 5). Low-salinity fluid with respect to seawater (type 1b) could have been trapped at

hydrostatic pressure of 780–800 bars and temperatures up to 290�C. They would have been trapped at

greater pressures (up to 1.9 kbars at 460�C) under lithostatic conditions it they were isolated from any active

Figure 7. Temperature/fluid pressure and pressure/depth diagrams in the system H2O-NaCl for a fluid of seawater composition (3.2 wt % NaCl eq). The figure illustrates two processes:

(a–c) phase separation and (d) magmatic exsolution. (Figure 7a) Seafloor is at an approximate depth of 3500 m corresponding to the TAG model. The two-phase curve is shown for

hydrostatic conditions and separates the single phase liquid field from the two-phase vapor1 liquid field [Sourirajan and Kennedy, 1962]. The critical point (Cp) of seawater is also shown

(407�C, 298 bars) as well as the three phase curve that separates the stability field of liquid and vapor from that of vapor and halite. (b) Relationship between fluid pressure and depth

for hydrostatic pressure under cold (100 bars/km) and hot (30 bars/km) gradients [Coumou et al., 2009] and a lithostatic pressure gradient. (Figure 7c) The two-phase curve is shown here

in a temperature against depth diagram for cold and hot hydrostatic conditions using both diagrams of Figures 7a and 7b, and for lithostatic conditions. In this case, at a given depth,

phase separation will occur at higher temperature under lithostatic conditions than under cold hydrostatic conditions, and in turn at higher temperature under cold hydrostatic condi-

tions than under hot hydrostatic conditions. (d) The solidus of a water-saturated tonalite [Wyllie, 1977], whose intersection with the two-phase curve under lithostatic pressure separates

the crystal1melt1 liquid1 vapor field from the crystal1melt1 liquid field, is plotted. At depth <8 km and temperature> the solidus, an exsolved fluid following path 1 will consist of

supercritical droplets of brines in a vapor phase; whereas a fluid exsolving along a path similar to 2 will exsolve as a single phase.
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conductive system (Table 5). High-salinity fluid with respect to seawater salinity (type 3a) could have been

trapped at hydrostatic pressure of 870 bars and at temperature of 470�C if connected to a convective sys-

tem whereas it would have been trapped at higher pressure of 2.2 kbars and higher temperature of 635�C if

not connected to such system (Table 5). If hypersaline fluids (type 3b) were connected to a conductive sys-

tem, they could have been trapped at depths of �5 kmbsf and at temperatures of 430�C. Under lithostatic

conditions, these same fluids would have been trapped at greater depths (5.5 kmbsf) and greater tempera-

tures (500�C; Table 5).

5.4. Processes Modifying the Salinity

Several processes have been suggested to explain the variations in salinity observed in fluids circulating in

the oceanic crust. They include subcritical phase separation (boiling) or supercritical phase separation (con-

densation) of a seawater-like fluid [Kelley et al., 1993; Kelley and Malpas, 1996] or magmatic fluid [Kelley and

Figure 8. Range of possible trapping conditions for each type of fluid. A range of possible trapping conditions can be read at the intersec-

tion between the isochore and the P-T curves from Schoolmeesters et al. [2012]. These P-T curves were calculated for hydrostatic and litho-

static gradients from depths in their Figure 6 using a water column of 3500 m (assumed to be the depth at the end of detachment fault

movement) and a rock density of 3000 kg m23. The liquid-vapor curve and the liquid-vapor-halite curve are from Khaibullin and Borisov

[1966] and Sourirajan and Kennedy [1962]. The isochores were calculated with the software Loner38VC from http://fluids.unileoben.ac.at and

from equation 4 of Bodnar and Vityk [1994].

Table 5. Pressure-Corrected Trapping Temperatures for All Samples and Mean for Each Types of Fluid Inclusiona

P Hydrostatic P Lithostatic

Th Mean (�C) Tt (�C) Pt (bars) Depth t (kmbsf) Tt (�C) Pt (bars) Depth t (kmbsf)

1R-1 41–44 180.8 214 589 2.39 266 1508 3.86

40R-1 17–19 208.7 253 727 3.77 308 1594 4.15

40R-1 21–24 161.5 188 496 1.46 225 1193 2.81

Fluid type 1a mean 185.8 221 616 2.66 273 1523 3.91

5R-3 107–110 273.0 334 783 4.33 422 1828 4.93

10R-1 127–129 292.0 359 799 4.49 461 1907 5.19

Fluid type 1b mean 280.8 344 789 4.39 438 1860 5.03

40R-1 21–24 (3a) 388.6 467 873 5.23 635 2232 6.27

40R-1 21–24 (3b) 383.4 426 845 4.95 505 1997 5.49

aValues are calculated with the averages of every type of inclusion, using the P-T curves of Schoolmeesters et al. [2012] for both hydro-

static and lithostatic pressure gradients and an assumed water depth of 3.5 km. Th5 temperature of homogenization; Tt5 temperature

of trapping in degree Celsius; Pt5 Pressure of trapping in bars; Depth t5Depth of trapping in kmbsf.
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Fr€uh-Green, 2001], magmatic fluids exsolving from melts [Kelley et al., 1992, 1993; Kelley and Malpas, 1996],

hydration/dehydration reactions with precipitation/dissolution of associated chloride-bearing minerals [Kel-

ley and Robinson, 1990; Kelley et al., 1992], and variable mixing of hydrothermal fluid with a phase-separated

brine or vapor [Kelley and Robinson, 1990]. The most common explanation for the generation of low-salinity

fluids is phase separation of seawater-like fluids, and the most usual explanation for generation of high fluid

salinities is phase separation of either magmatic or seawater-like fluids. Hydration reactions may also play a

role. Variable mixing of hydrothermal seawater with phase-separated brines and vapor can also change the

salinity of fluids as a late process.

5.4.1. Hydration/Dehydration

Under rock dominated conditions, hydration reactions or retrograde dissolution of chloride-bearing mineral

phases have the potential to modify the ionic strength of hydrothermal fluids by consuming or liberating

chloride ions [Kelley and Robinson, 1990; Kelley et al., 1992]. Formation of secondary amphibole containing

up to 4 wt % chlorine [Vanko, 1986] can then result in decrease of fluid salinities, and dissolution of such

phases might increase fluid salinities [Seyfried et al., 1986]. These processes could then account for slight

changes in fluid salinity (low-temperature, low-salinity fluid generation) at relatively low water-rock ratio

conditions, preferentially in a near axis environment recharge zone [Kelley et al., 1995], in contrast to an out-

flow zone where fluids rapidly pass through the oceanic crust [Delaney et al., 1987].

Electron microprobe data (Tables (1–3)) of amphiboles in samples from which microthermometry was

undertaken, show Cl/H2O of 0.000–0.049 with a mean of 0.016 0.014, whereas Cl/H2O in seawater is 0.0195.

Formation of such amphiboles is unlikely to have influenced salinity of the residual fluid as Cl content is too

low compared to that of seawater. The complete collection of electron microprobe data from holes U1309B

and U1309D show a Cl/H2O ratio of 0.000–0.148 with a mean at 0.0246 0.028 (unpublished data of our col-

lection). In general, formation of this type of amphibole cannot account for the great variety of salinity

observed in U1309D, but some amphiboles show such high Cl/H2O (0.148 for the maximum in this study)

that precipitation of such minerals can lead to a slight salinity decrease in the residual fluid.

5.4.2. Phase Separation

5.4.2.1 Generation of Brines

Fluid sources and pressure conditions for brine-bearing inclusions are difficult to determine. Brine inclusions

homogenize by disappearance of the vapor bubble at temperature >400�C. Two models for the generation

of brine are as follow:

1. Brine and vapor are generated during supercritical phase separation (condensation) of either magmatic

or seawater-derived fluids with segregation of the phases driven by density differences and entrapment of

the brine at depth.

2. Direct exsolution of magmatic brine from late stage melts with significant cooling during the migration

of the brines along microfractures (Figure 7).

The system H2O-NaCl will be used in the discussion below as an analog for fluid circulating in the oceanic

crust. In a temperature-pressure diagram, the two-phase curve separates the one-phase field (liquid) from

the two-phase field (liquid1 vapor) at pressure-temperature conditions greater than the critical point of

seawater (Cp: 407�C; 298 bars). Fluids of seawater-like salinity or magmatic fluids that circulate at deep lev-

els of the oceanic crust and intersect the two-phase curve will undergo supercritical phase separation (com-

monly described as condensation) where droplets of brines will separate out of a vapor-rich phase (Figure

7a). Fluids circulating under low-pressure conditions will boil and separate a vapor from a low-salinity fluid.

However, since a water depth of approximately 3500 mbsf is assumed in our TAG-based model for the

Atlantis Massif, boiling cannot happen in this system. In addition, seawater-like fluids in hydrothermal sys-

tems mainly circulate at temperatures of 400�C or less [Coumou et al., 2009]. According to Figure 7c, fluids

which circulate at this temperature and at any depth or pressure will stay in the single phase region, and

phase separation is therefore impossible. Fluids need to be heated up by magmatic intrusion such as dia-

base dikes [McCaig and Harris, 2012] to undergo phase separation in this system.

As seawater-like fluids circulate down to depth, fluids will traverse several condensation curves depending

on the composition while approaching the heat source [Kelley et al., 1993]. For instance, a fluid of seawater

composition (3.2 wt % NaCl), which circulates at crustal depth of approximately 2 km and under 550 bars of

pressure assuming a water column of 3.5 km and cold hydrostatic conditions, will encounter the two-phase
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curve if heated to 500�C by intrusions, and will condense a fluid containing 25.3 wt % NaCl and a vapor

with 2.2 wt % NaCl (Figure 9a). Under hot hydrostatic conditions, the fluid would need to circulate at a total

depth of �10 km—crustal depth of �6.5 km (Figures 7b and 7c) in order to generate the same result by

phase separation at 550 bars and 500�C. This would imply that fluids were trapped almost immediately after

being generated since the maximum depth of circulation in the TAG model is 6–7 kmbsf [Canales et al.,

2007; deMartin et al., 2007; McCaig et al., 2010]. Higher-salinity fluids (in comparison to seawater) circulating

under the same pressure temperature conditions would give the same compositions for brine and vapor,

but would separate a bigger proportion of brine. If fluids circulate at shallower levels, they will separate out

a greater volume of vapor given the pressure dependence on the shape of the two-phase curve [Kelley

et al., 1993]. Under lithostatic conditions, the same fluids must be at higher temperature (�600�C) in order

to undergo phase separation (Figure 7c).

Generation of hypersaline magmatic brines can be explained by two different processes. Figure 7d shows

the two-phase curve for a fluid of seawater salinity (3.2 wt % NaCl eq) for lithostatic conditions and illus-

trates two scenarios:

1. Exsolution of magmatic fluids under supercritical conditions and condensation of droplets of brines in a

vapor phase (Figure 7, path D1) [Kelley and Delaney, 1987; Kelley and Fr€uh-Green, 2001], Fluids in the melt

are under lithostatic pressure, and at depth <8 km and at temperature above the solidus, crystal, melt, liq-

uid, and vapor coexist. A fluid exsolving under conditions of the two-phase field will undergo exsolution

under supercritical conditions and condensation of immiscible droplets of brine in a vapor phase.

2. Direct exsolution of brines in the absence of a vapor phase (Figure 7, path D2). At depths greater than 8

km, the solidus separates a field where solid, melt, and liquid coexist from a field with a single liquid plus

Figure 9. Processes generating variations in salinity observed in the Atlantis Massif. (a) P-X projection of the system H2O-NaCl contoured

for T under hydrostatic conditions. The critical curve (dashed line), the isotherms (dotted lines), and the three phases curve (plain line) are

from Sourirajan and Kennedy [1962]. A seawater-like fluid which intersects the two-phase curve, at a temperature of 500�C and pressure of

�550 bars will undergo supercritical phase separation (condensation) and separate droplets of brines with salinities of �25.3 wt % NaCl

eq from a vapor of salinity close to 2.2 wt % NaCl equivalent. (b) In this model, it is assumed that the vapor-like fluid generated by phase

separation has a salinity of �0.2 wt % NaCl. That salinity can be obtained under various conditions that will generate different brine salin-

ities. The minimum temperature, at which supercritical phase separation generates a vapor phase of 0.2 wt % NaCl under hydrostatic con-

ditions, is 450�C at a pressure of 340 bars and the maximum temperature is �600�C at 550 bars. (c) Temperature-depth diagram under

hydrostatic conditions above seafloor (dashed line) [Sourirajan and Kennedy, 1962] and lithostatic conditions under seafloor (dotted line),

showing maximum and minimum conditions for brine generation by exsolution under supercritical conditions and condensation.
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solid, such that any fluid under those conditions would be exsolved as one single phase of uncertain

salinity.

Halite-bearing inclusions have been found only in trondjhemite. Trondjhemite being a late magmatic intru-

sion, a seawater-derived parent fluid is not likely. A magmatic fluid source for generation of hypersaline

inclusions seems then to be the most probable. The condensation model is preferably applicable for brines

and associated low-salinity vapor-rich inclusions, whereas the direct exsolution of brines model is more

applicable to inclusions that homogenize by halite dissolution [Kelley and Fr€uh-Green, 2001]. Since hypersa-

line inclusions in IODP hole U1309D homogenize by vapor disappearance and not by halite dissolution, it is

suggested that brines have been formed by exsolution of a magmatic fluid under condensation (Figure 9c).

The maximum pressure-temperature conditions are 770�C and �7 km depth, which is equivalent to �1.5

kbars according to the lithostatic gradient of Figure 7b. The minimum conditions in terms of pressure depth

are 790�C and �4 km depth, which is equivalent to �515 bars according to Figure 7b. Note that since it

concerns a magmatic intrusion (trondjhemitic intrusion), the maximum conditions seem to be the most

probable.

5.4.2.2 Generation of Low-Salinity Fluid

Fluid of low salinity relative to seawater can be generated by phase separation as described above. Trap-

ping of a low-salinity vapor fluid has not been observed. What is in fact observed, are liquid-dominated

low-salinity fluids in plagioclase at lower temperature than the brine inclusions. As brine and vapor are seg-

regated after separation by density effects, late mixing between the initial vapor-like fluid with seawater-

like fluid can occur to reach the salinity and temperatures of homogenization observed. Note that the phase

separation event does not have to be the same event described in the previous paragraph for generation

of brine observed in trondjhemite. In the model of Figure 9b, we discuss the conditions for the generation

of low-salinity fluid (fluid type 1b) with respect to seawater salinity. It is assumed that the vapor-like fluid

generated by phase separation has a salinity of �0.2 wt % NaCl because that is the minimum salinity of

low-salinity inclusions (type 1b) found in the system. That salinity can be obtained at various conditions

that will generate different brine salinities. The minimum temperature, at which supercritical phase separa-

tion generates a vapor phase of 0.2 wt % NaCl under hydrostatic conditions, is 450�C at a pressure of 340

bars (Figure 9b). However, the minimum hydrostatic pressure possible in the system constrained by our

TAG-based AM model is the seafloor pressure (P5 350 bars). The maximum temperature is �600�C at a

hydrostatic pressure of 550 bars (Figure 9b). Such temperatures can most easily be reached if fluids are

heated up by dikes or other intrusions [McCaig and Harris, 2012] that are formed deep and that are

unroofed during exhumation of the massif. However, in both cases, significant cooling must occur in order

to reach the trapping temperatures of such inclusions that do not exceed �345�C on average under hydro-

static conditions and �440�C on average under the maximum pressure correction at lithostatic conditions.

Estimated pressures of trapping based on the Schoolmeesters et al. [2012] exhumation curves (790–1860

bars; Figure 8 and Table 5) are much higher than those suggested by our H2O-NaCl model. At 790 bars

under hydrostatic conditions, fluid that intersects the critical curve cannot produce such a low-salinity fluid.

It may be that the assumed water depth of 3.5 km in the model is too great, or that some of the assump-

tions regarding exhumation rate in the Schoolmeesters et al. [2012] exhumation paths need adjusting.

5.5. Detachment-Controlled Fluid Discharge—The TAG Model

Tivey et al. [2003] first hypothesized that the TAG hydrothermal field [Alt and Teagle, 1998; Rona et al., 1993;

Teagle et al., 1998a, 1998b, 1998c] is located on the hanging wall of an active detachment fault. deMartin

et al. [2007] studied seismic refraction and microearthquake from the TAG segment and suggested that the

TAG hydrothermal field is sited on the hanging wall of a dome-shaped detachment fault that penetrates to

depths of >7 km below the seafloor. Their results suggest that high-temperature fluid discharge at TAG is

controlled by the detachment fault, a hypothesis supported by evidence that exhumed detachment faults

in the Atlantic were the locus of significant fluid flow at black smoker temperatures [McCaig et al., 2007,

2010]. A seismic refraction study from Canales et al. [2007] also supports this hypothesis and adds that mag-

matic intrusions at depth (>4 km and perhaps as deep as 7 km) must be the heat source for sustaining the

long term, high-temperature hydrothermal circulation at TAG. McCaig et al. [2010] interpreted the cross sec-

tion of deMartin et al. [2007] and added isotherms to the model in order to predict the thermal evolution of

the TAG detachment fault and its footwall. It is assumed that the configuration of the TAG hydrothermal

mound fits the possible early configuration of Atlantis Massif. Schoolmeesters et al. [2012] propose a similar
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model with hydrothermal cooling of

the detachment fault and its foot-

wall, but with lower fluid tempera-

tures as suggested by

thermochronometric data. Thermal

balance arguments suggest that

large black smoker systems like TAG

cannot be continuously active for

long periods [Cannat et al., 2004],

yet TAG has a long history of activity

[Lalou et al., 1995]. It may be that

black smoker circulation was epi-

sodic, punctuated by periods of

lower temperature flow, with an

average temperature consistent

with the Schoolmeesters et al. [2004]

cooling curves. The importance of

the TAG model is that fluid is pre-

dicted to circulate much deeper

than in previous models used to

understand fluid inclusion micro-

thermometry in seafloor hydrother-

mal systems [Kelley and Delaney,

1987; Kelley et al., 1993, 1995; Kelley

and Malpas, 1996].

Seawater fluids circulating at 400�C

or less should remain in the single

phase region throughout (Figure

7c). Figure 8 and Table 5 indicate

that these type 1a fluids could have

been trapped between 1.5 and 3.8 kmbsf in the Schoolmeesters et al. [2012] model at hydrostatic pressures.

In Figure 10, this would be between locations A and B. These fluids may have circulated much deeper in the

system before being trapped, or they could be recharge fluids. In an active hydrothermal system such fluids

would be expected to remain at hydrostatic pressures. However, a trapping pressure of around 900 bars

would be required to reconcile the fluid inclusion temperatures with those based on chlorite geothermome-

try (283–242�C, see section 4) in sample 1R1 41–44. This suggests a trapping pressure between hydrostatic

and lithostatic, although the depth of trapping may be little different. These data suggest some cycling of

pressure between hydrostatic and higher values, perhaps during quiescent phases of circulation. Small var-

iations in salinity in these fluids may be due to hydration reactions or mixing with type 1b or type 3 fluids.

Type 1b fluids require higher temperatures in their history in order to allow phase separation (Figures 7 and

9). The detachment fault was intruded by diabase dykes, including the host of the vein in U1309D 1R-1 41–

44. These contain high-temperature amphiboles [McCaig and Harris, 2012], indicating intrusion into a wet

zone of hydrothermal flow. In the footwall of the detachment, intrusion of gabbroic magma creating a con-

ductive thermal boundary layer to the hydrothermal system has been suggested [McCaig and Harris, 2012].

In either of these circumstances transient temperature increase could lead to phase separation if the pres-

sure is not too high. The low-salinity fluids cooled and mixed with seawater before trapping. Dyke injection

could have happened between locations A and B.

Finally, we suggest that the hypersaline type 3 inclusions formed by magmatic exsolution of fluid, which

could occur either in the single- or two-phase region depending on pressure. If the melt lens was at a depth

of 7 kmbsf as suggested by de Martin et al. [2007], this would be too deep to allow exsolution in the two-

phase region according to Figure 9c, but this diagram assumes seawater salinity and it is not clear what the

salinity of a single phase fluid exsolving from a melt would be. Melt could also have intruded shallower as

suggested by the range of U-Pb zircon ages reported by Grimes et al. [2008]. These fluids were not trapped

Figure 10. Interpreted cross section for the Atlantis Massif showing the depth of trap-

ping of each type of fluid of IODP Hole U1309D at different times of the fluid history.

(a) Late stage quartz precipitation and trapping of type 1a seawater-like salinity fluid.

(a and b) Trapping of low-salinity fluid in plagioclase. The vapor fluid phase of a

phase-separated, seawater-derived fluid is mixed with recharged seawater. Dashed

line shows a schematic dike injection to induce phase separation and generate low-

salinity fluid. (c) Trapping of exsolved magmatic fluid generating hypersaline brine

observed in trondjhemite. Depth and size of the magma chamber are unknown, but

the depth of intrusion is suggested to extend up the footwall of the fault. Isotherms

are based on McCaig et al. [2010], modified according to the thermochronometric

data of Schoolmeesters et al. [2012]. Positions of these isotherms away from the

detachment fault are speculative.
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at magmatic temperatures, but at temperatures of 505–635�C assuming lithostatic conditions (Table 5). The

fact that the inclusions occur as secondary inclusion within quartz grains in a trondjhemite suggests that

the brine may have been carried upward within the host intrusion before being remobilized into the

observed fluid inclusions. This may have occurred as result of hydrofracture as the lithostatic pressure fluid

was decompressed by exhumation. Based on Figure 8, we have suggested a depth of around 5 kmbsf for

the trapping of these inclusions, with exsolution from the melt occurring somewhat deeper. The trondjhe-

mite (sample 40R1 21–24) was then cut by a crack-seal quartz vein containing type 1a fluid inclusions. This

likely happened at higher levels, between A and B, and in a hydrostatic regime, although lithostatic fluids

cannot be ruled out.

The pattern of circulation shown in Figure 10 is highly schematic, and in reality both up and downflow

zones are likely to be focused within the fault zone in the third dimension. It is also likely that fluid flow was

episodic, with strong upflow events at black smoker temperatures of 350–400�C triggered by magmatic

intrusion and intervening periods of less intense, lower temperature circulation [McCaig et al., 2010].

6. Conclusions

Fluid inclusion microthermometry demonstrates the occurrence of four different types of fluids in IODP

Hole U1309D with different salinities (ranging from 1.4 to 35 wt % NaCl eq) and homogenization tempera-

tures (160 to >400�C). The lowest homogenization temperature is exhibited by fluid trapped in quartz veins

(type 1a), and the highest by fluid type 3.

High-salinity (Type 3b) fluid, only found in the evolved trondjhemite intrusion, is proposed to have been

generated by condensation of a magmatic fluid at maximum temperature of 770�C at depth of 5–6 kmbsf.

These fluids were trapped as fluid inclusions at somewhat lower temperatures during exhumation of the

trondjhemite.

Low-salinity fluids (Type 1b), only found in plagioclase, are believed to have been generated by mixing

between seawater-derived fluid and supercritical phase-separated seawater at temperatures of 450–600�C

and pressures of 340–550 bars and are assumed to have been trapped at a depth of �3 kmbsf. Black

smoker fluids do not normally circulate at such temperatures and it is suggested that phase separation

occurred due to injection of dikes.

A late stage fracturing event has provoked precipitation of quartz veins at low pressure (450 bars) and tem-

perature (210�C) that have trapped seawater-like salinity fluid after the footwall had been excavated to shal-

lower depths. Comparison with chlorite geothermometry results suggests that these inclusions may have

been trapped at suprahydrostatic pressures, possibly during relatively quiescent phases of fluid circulation.

Results show that the TAG model of McCaig et al. [2010], with temperature data refined by Schoolmeesters

et al. [2012] provides a good framework for explaining the fluid evolution at the Atlantis Massif.
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