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A three­dimensional numerical model of the Earth’s core with a
viscosity two orders of magnitude lower than the state­of­the­art
suggests a link between the observed westward drift of the mag­
netic field and super­rotation of the inner core. In our model,
the axial electromagnetic torque has a dominant influence only
at the surface and in the deepest reaches of the core, where it
respectively drives a broad westward flow rising to an axisym­
metric equatorial jet, and imparts an eastward­directed torque on
the solid inner core. Subtle changes in the structure of the internal
magnetic field can alter not just the magnitude but the direction of
these torques. This not only suggests that the quasi­oscillatory
nature of inner­core super rotation (Tkalc̆ić, et al. (2013) Nature
Geosci 6:497–502) may be driven by decadal changes in the mag­
netic field, but further that historical periods in which the field
exhibited eastward drift were contemporaneous with a westwards
inner­core rotation. The model further indicates a strong inter­
nal shear­layer on the tangent cylinder which may be a source of
torsional waves inside the core.

Westward drift | inner­core super­rotation | electromagnetism | torsional

waves

Seismic probing of the Earth’s deep interior has shown that
the inner core, the solid core of our planet, rotates slightly faster
(i.e. eastwards) than the rest of the Earth. Quite indepen-
dently, observations of the geomagnetic field provide evidence of
westward-drifting features at the edge of the liquid outer-core.
This paper describes a computer model that for the first time
suggests that the geomagnetic field itself may provide a link be-
tween them: the associated electromagnetic torque is currently
westwards in the outermost outer-core, whereas an equal and op-
posite torque is applied to the inner core. Decadal changes in the
geomagnetic field may cause fluctuations in both these effects,
consistent with recent observations of a quasi-oscillatory inner-
core rotation rate.

The slow westward drift of the geomagnetic field is one of the best
and longest known features of the historical field, for which the

most likely explanation is a latitudinally-dependent westward flow in
the outermost outer core [1, 2]. Another westward-propagating and
possibly related feature is equatorial waves [3], caused perhaps either
by advection or instabilities on an equatorial westward jet. However,
longer timeseries provide evidence of periods of eastward drift of the
field over the past 3000 years [4, 5]. Although some geodynamo
models have reproduced westward drift [6, 7], many rely on thermal-
winds whose structure is tied to the boundary conditions imposed
by the lowermost mantle, which only changes on a timescale of 10-
100 million years. A seemingly unrelated phenomenon is the super-
rotation (relative to the mantle) of the inner core, whose estimates
vary from zero to several degrees per year [8]. Links between core-
surface flows and inner core rotation are difficult to quantify because
a coupling mechanism extending across the entire outer core has re-
mained elusive. While there is some evidence of such a coupling
through thermal-winds in polar regions [9], because their amplitude
is linked to the mass and thermal flux at the inner-core boundary, un-
less the inner core is very young the effect is likely to be small [10].

The fluid outer core, bounded by the solid inner core and over-
lying mantle, is likely in a quasi-magnetostrophic balance, where the

forces of pressure, buoyancy, Coriolis and Lorentz are almost in equi-
librium [6]. Two key nondimensional parameters in any model are
the Ekman and Rossby numbers, measures of viscosity and inertia
respectively, believed to be approximately 10−15 and 10−6 in the
core. However, due to the vast range of temporal and spatial scales in
the rapidly rotating system, current models of the geodynamo strug-
gle to reach values of these parameters lower than E = 10−7 and
Ro = 10−3 [7, 6, 11, 12, 13]. While scaling laws can attempt an ex-
trapolation to the extreme Earth-like parameters [14], this is difficult
over so many orders of magnitude. In the idealised regime of zero
inertia and viscosity, the internal magnetic field B must satisfy Tay-
lor’s constraint [15], in which the axial electromagnetic (EM) torque,
T 1,

T (s) =

∫

C(s)

s
(

[∇×B]×B
)

φ
s dφ dz

must integrate to zero over any concentric axially aligned cylinder
C(s), where (s, φ, z) are cylindrical polar coordinates and ()φ de-
notes the azimuthal component. A full understanding of the Earth’s
core is likely only possible by investigating the dynamics in the vicin-
ity of this limit.

In this study we use a novel method (see methods) that accesses
a regime very close to a magnetostrophic balance, by seeking steady,
inertia-free, ultra-low viscosity solutions of the geodynamo equa-
tions with a prescribed poloidal magnetic field [16] that matches the
xCHAOS model [17] to degree 4 at the core-mantle boundary. This
technique suppresses the short time-scales that prevent current mod-
elling strategies from reaching low viscosities and we are able to
compute models in the range E ≥ 3 × 10−9, two orders of mag-
nitude lower than any previous calculation. By slowly decreasing E
in small discrete steps, we were able to identify well-defined limiting
behaviour at small E. In numerical models at larger Ekman num-
bers [18], it is acknowledged that inertia, particularly in a turbulent
regime, can play an important role in balancing EM torques. Our
model excludes this possibility on the grounds the Rossby number
for the Earth is small2, and we achieve an “Ekman state” balance in
which viscosity must absorb any unbalanced torque, and indeed may
itself play an important role in the determination of the geostrophic
flow [19, 20].

Reserved for Publication Footnotes

1Note that the symbol T (s) is not to be confused with the Taylor integral, a closely related
quantity, but which differs by a factor of s from the axial electromagnetic torque that we consider
here.
2Because viscosity enters into boundary­layer scalings as E1/2 rather than E, since

E1/2 ≈ Ro arguably both viscosity and inertia may be equally important in the Earth’s
core. However, our goal was to explore the magnetostrophic limit and, as such, we chose to
focus attention on the “Ekman state” balance at very small viscosity.
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The total axial electromagnetic torque integrated over the core
may be subdivided into four parts: the three contributions from each
of the fluid regions, labelled I, II and III in figure 1 which partition
the fluid outer core (FOC), and the torque over the solid inner core
(SIC). Surrounded by an electrically insulating mantle, in a steady
state this net torque must sum to zero [15], and therefore the axial
EM torque on the inner core may be expressed as

∫

SIC

s ([∇×B]×B)φ dV = TSIC = − (TI + TII + TIII) .

Figure 1 shows how the magnetic field approaches the Taylor
limit of E = 0 in terms of the regionally-integrated EM torques.
The torques do not scale uniformly as a function of E: that in the

outermost outer-core (region I) is consistent with a scaling of E1/4,
dominating the contributions from regions II and III within the tan-

gent cylinder that are bounded by E1/2. These different scalings
may arise due to the increased influence of the boundary conditions
on cylinders of largest cylindrical radii, which impart constraints on
the magnetic-field not just at either end of the cylinder but every-
where on its surface. Because the westward-directed torque in region
I dominates the contributions to the FOC, the SIC experiences an

eastward directed EM torque that scales also as E1/4. In our model
the inner core is assumed gravitationally locked [21] to the mantle
and so cannot move. However, should this constraint be relaxed [22]
the dynamical response of the inner core would be a tendency for
an (eastwards) super-rotation: in this sense our model is simply an
end-member case of a spectrum of models in which the locking gets
progressively stronger.

An important quantity in the weak-viscosity limit is the

geostrophic flow, ug(s)φ̂, the azimuthal component of flow averaged
on a cylinder C(s). In the absence of inertia but in the presence of
weak-viscosity, ug is linked to how quickly T decreases with E, in
region I by the relation [6]

ug(s) =
E−1/2(1− s2)1/4

4πs2
T (s). [1]

Figure 2(a) shows the magnitude of the flow decomposed into its
geostrophic and ageostrophic components as a function of E. The
toroidal-dominated ageostrophic part is almost independent of E,
whereas the geostrophic flow (both rms and maximum value) scales

as E−1/4, as anticipated from (1) and the scaling T ∼ E1/4 in re-
gion I. For values of E greater than 10−7, the geostrophic flow is a
subdominant feature of the model. However, as E is decreased be-
low the threshold at approximately 6 × 10−8, the geostrophic flow
becomes dominant (in rms). Using the scaling of ug , extrapolating to
the Earth’s core gives dimensional flow velocities of O(10−4) m/s,
consistent with values derived from studies of core-flow [23, 3]. Fol-
lowing the derived scalings, the geostrophic flow would dominate
the ageostrophic component by a factor of about 100 at E = 10−15.
However, thermal-wind effects which are not included in our model
may drive a much stronger ageostrophic flow with an amplitude con-
sistent with typical estimates coming from large-scale core flow in-
versions [24]; such flows may have a significant zonal component.

Although the westward flow is of broad structure (figures 3 and
4), it rises to a peak close to s = 1 creating an equatorial jet [25]. Fig-
ure 2(b) shows the location of the maximum geostrophic flow in co-

latitude (derived from the fit s = sin θ = 1− 0.63E1/5 to the data).
This scaling of E1/5 is derived using empirical means but suggests a
connection with the lateral extent of the equatorial viscous boundary

layer, a distance from the equator that scales identically as O(E1/5).

The scaling of E1/4, although occurring in other quantities in the
model, does not fit the data well. Extrapolation to E = 10−15 shows
that in the Earth-like regime the maximum geostrophic flow would lie
less than 5o from the equator. Analysis of secular variation [3] shows
that there is rapid change within a narrow equatorial belt (latitude -5o

to +10o), suggesting that these changes may be caused by instabili-
ties on an equatorial jet. Furthermore, because the geostrophic flow

is axisymmetric, this model predicts that the same westward jet, re-
sponsible for the westward drift in Atlantic regions, must be present
in Pacific regions where secular variation is low [26]. Inverse studies
that determine the magnetic field strength inside the core from the
motion of torsional waves, show that there is a local minimum in its
cylindrical radial component in the outermost FOC [27]. Since mag-
netic fields in general quench shearing motions, such a minimum is
consistent with the existence of a strong equatorial jet.

We perturb the poloidal magnetic field structure to reverse its
(dominant) contribution to the electromagnetic torque in region I, by
changing the sign of its degree 3 and 4 components [28]. Our model
shows that an eastward flow (of comparable magnitude to the west-
ward flow of figure 4a) was then driven in region I with an associated
westward-directed torque on the inner core.

Studies of core-surface secular variation show that changes in
the internal field occur on the decadal–centennial timescale of core-
convection [29]. Assuming that the magnetic field deep inside the
core changes on similar timescales, the model then predicts con-
comittant changes in drift direction and the rotation of the inner-
core relative to the mantle, and plausibly even episodic reversals
in direction. Gravitational coupling of the inner-core to the man-
tle will dampen the rotational-response of the EM torques, and al-
though poorly constrained in magnitude [30], is likely to have an
associated inner-core deformation time of decades. We suggest that
both the directions of drift and of the inner-core rotation would then
be effectively enslaved to decadal–centennial secular-changes in the
magnetic field; in the absence of any obvious periodicity within the
internal magnetic field, it is likely that the inner-core rotation rate
and drift velocities will have a non-constant and probably complex
time-dependence. Of particular relevance here is a recent study [31]
that reports inner core rotation rates from 1961–2007 that are quasi-
oscillatory with a ∼ 20 year period, superimposed on a small con-
stant positive (eastwards) trend. Our model suggests that decadal
changes in the magnetic field itself may be responsible for the fluc-
tuations in inner-core rotation3. With regard to longer timescales,
our model has significant bearing on the seismically-observed degree
one structure of the inner-core [8]. Assuming the magnetic field had a
comparable time-variation in the past as it does in the present-day, the
unavoidable time-dependent torques and ensuing quasi-oscillatory
rotation rate would likely smear any mantle-induced texturing that
would otherwise have taken place with a gravitationally-locked inner-
core over a million-year timescale. This suggests an alternative
mechanism such as convection [33, 34] is required to explain the
hemispheric structure.

It is of additional interest to identify the structure of the flow
close to the tangent cylinder (the cylinder aligned with the rotation
axis and tangent to the SIC), a likely location of shear layers [35].
Figure 3 shows such an asymmetric shear layer in uφ, which requires
high resolution to resolve. If such shear layers exist in Earth’s core,
instabilities could trigger torsional oscillations, which have been ob-
served to propagate away from the tangent cylinder [27].

Finally, we remark that the magnitude of the geostrophic flow
depends on E, in contrast to scaling laws derived for other quan-
tities based on much more viscous models that are independent of
viscosity [14]. Ultimately the kinetic energy of the flow must be con-
trolled by a global energy budget and therefore independent of E as
E → 0, suggesting that some physics that we have neglected become
important in the low-E regime. One prime candidate is inertia, whose
estimated size (given by the Rossby number Ro ≈ 10−6) is compa-

rable to E1/2 ≈ 10−7 in the core, and thus is likely of comparable
importance to viscosity. Our scalings may therefore only be a valid
description for the dynamics of the modelled core in which viscosity

3Although our model provides a consistent description of the dynamics of inner­core rotation
over the 10–100 year timescale, different dynamics may be important on millennial timescales
[32].
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dominates inertia, i.e. E ≫ R2
o ≈ 10−15. We speculate that the

macrodynamics of ug at core-conditions would then be given by the
Ekman state description, and the dominance of inertia over viscosity
at E < 10−15 would remove the singularity in ug as E → 0.

Methods

In a spherical shell using coordinates (r, θ, φ) we evolve the coupled
dimensionless Navier-Stokes and the toroidal component of the in-
duction equation,

Ro
∂u

∂t
+ 2ẑ× u = −∇Π+ E∇2

u+ (∇×B)×B, [2]

∂B

∂t
= ∇× (u×B) +∇2

B [3]

to a steady state. The SIC (radius ri of 0.35) is a nonslip conduc-
tor of identical electrical conductivity to the outer core; the man-
tle (radius 1) is modelled as a nonslip electrical insulator. In a
steady state, the magnetic field satisfies ∇2

B = 0 in the SIC whose
solutions supply a boundary condition at the ICB for the toroidal
field: evolving the magnetic field within the SIC is therefore not
required. The equations have been nondimensionalised based on
the core-mantle-boundary radius 3485km (L), the magnetic diffu-
sion timescale T = L2/η = 2 × 105yr (where η is the magnetic
diffusivity) and velocity scale U = LT−1 = 5 × 10−7) ms−1;
Ro = (ΩT )−1 and E = ν(ΩL2)−1 then take the approximate
values 10−9 and 10−15, where Ω is the Earth’s rotation rate and ν
the viscosity of the fluid core. We focus only on the axial torques,
associated with the manner with which the magnetic field achieves
the balance required of Taylor’s constraint; since a radial buoyancy
force does not contribute to these torques, we ignore any thermal or
compositional driving. Following Aurnou et al. [16], the system is
driven instead by prescribing the poloidal field structure: only the
toroidal magnetic field and the flow is evolved; this is equivalent to

the artificial insertion of a time-dependent forcing f̃ into the induction
equation which renders constant the poloidal field.

The poloidal field is chosen to match the xCHAOS model [17] at
epoch 2004 to degree 4, extrapolated inside the core using a smooth
minimum-Ohmic-dissipation profile [36]:

(2l + 3)rl+1 − (2l + 1)rl+3;

higher degrees of the poloidal field are zero. This particular trunca-
tion is adopted in order to minimise the bandwidth of the poloidal-
generated Lorentz force (degree and order 8), and therefore of the
flow that must be resolved, while keeping the large scale features
of the Earth’s field. Calculations using the poloidal field prescribed
nonzero to degree 14 are more difficult but show the same scaling
and drift direction and similar threshold Ekman number as when us-
ing degree 4.

Holding fixed the poloidal field not only allows us to impose
an Earth-like structure on the system, but also suppresses the short-
timescale dynamics (e.g. Alfv«en waves) that prevent standard mod-
els from reaching very low viscosities. Empirical tests at E = 10−6

show that allowing the poloidal magnetic field of degrees 5 and up-
wards to evolve subject to the insulating boundary conditions (while

keeping degrees 1-4 fixed) results only in very small differences in
the eventual steady state but requires a significant drop in time-step
for stability. Since we seek only a steady state, stability may be
further improved by taking the Rossby number to be 1 rather than
O(10−9); in so doing we were able to use a time-step no smaller
than 0.05 (and this at the smallest E). There is no a priori guaran-
tee that steady states exist, but if they do it is automatic that they are
independent of Ro and approach a steady Taylor state as E → 0.

The poloidal and toroidal components of velocity, along with the
toroidal component of magnetic field are expanded in solid angle us-
ing spherical harmonics and in radius using Chebyshev polynomials,
and the equations for their coefficients evolved to a steady state us-
ing the second order exponential time-differencing evolution method
[37] which preserves fixed points of the equations. The nonlinear
terms were evaluated using standard pseudo-spectral transforms; to
ensure accuracy, all time-evolution matrices and spherical harmonics
were computed to quadruple precision. Considerable care was taken
to ensure that the calculations were adequately converged, principally
in terms of the decay of their spectra. The highest resolution used
was spherical harmonic degree 700, order 26 and 300 in Chebyshev
degree. The code, parallelised in MPI, was especially developed to
handle these large resolutions.

Six models were produced with decreasing values of E =
10−k, k = 4, 5, 6, 7, 8 and 3 × 10−9. The first run had zero ini-
tial conditions; each subsequent run took the final steady state of the
previous as an initial condition. Since the system is nonlinear, mul-
tiple steady solutions may exist, although this process seeks only a
single branch. The small generated toroidal field (taking rms values
of only 2—3 % of the poloidal field) is sufficient to perturb the sys-
tem towards a Taylor state.

In order to extrapolate from our models to the Earth, we note that
our poloidal field is roughly 3-5 times weaker than expected inside
the Earth; this can be quantified in one of two ways. First, by the
rms value of Br on the core-mantle boundary, which for our mod-
els is 0.26mT, 3 times smaller compared to the anticipated value of
0.69mT from nutation studies [38]. Second, by the volumetric rms
value of the magnetic field being 0.5mT, 2-8 times smaller than ex-
pected values of 1-4 mT [27]. Since ug depends quadratically on B

(principally on its poloidal component, the toroidal component be-
ing much weaker), our prescribed poloidal magnetic field will drive a
geostrophic flow at least 10 times too small. Scaling up the solution
using the factor of 10 discussed above along with the dependence

E−1/4 from 10−7 to E = 10−15 produces a dimensional flow of
O(10−4) m s−1. Furthermore, our toroidal field is relatively small
(2–3% of the poloidal field), compared to a toroidal field expected in
the core of equal or larger magnitude than the poloidal field: stronger
toroidal field may drive even stronger geostrophic flows.

Further details of the model may be found in a manuscript
planned for submission elsewhere.
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scales identically and is oppositely orientated. The black lines indicate apparent asymptotic

scalings.
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Fig. 2. (a) The rms and maximum geostrophic flow and the rms ageostrophic flow as

a function of the Ekman number computed from the models; below the threshold of ap­

proximately 6× 10
−8 the geostrophic flow becomes dominant in rms. (b) The colatitude

θ of the maximum geostrophic velocity with an extrapolation to E = 10
−15 using the

empirical law sin θ = 1− 0.63E1/5.
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Fig. 3. Cut­away isosurface plot of uφ showing the dominant westward axisymmetric

equatorial jet in the model with E = 3 × 10
−9; strong non­axisymmetric shear on the

tangent cylinder is also visible. The contour surfaces shown are c (red, eastwards) and ­c

(blue, westwards) where c is taken to be 90% of the maximum value of |ug |. The inner

core and rotation axis are shown in grey.
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Fig. 4. Contours in a meridian plane of the axisymmetric component of the azimuthal

flow uφ at (a) E = 10
−7, close to the threshold at which the geostrophic flow becomes

dominant; (b) E = 3× 10
−9 showing strong westward flow in the outermost FOC.
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