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[1] The response of borehole water levels to barometric pressure changes in semiconfined
aquifers can be used to determine barometric response functions from which aquifer and
confining layer properties can be obtained. Following earlier work on barometric response
functions and aquifer confinement, we explore the barometric response function as a tool to
improve the assessment of groundwater vulnerability in semiconfined aquifers, illustrated
through records from two contrasting boreholes in the semiconfined Chalk Aquifer, East
Yorkshire, UK. After removal of recharge and Earth tide influences on the water level
signal, barometric response functions were estimated and aquifer and confining layer
properties determined through an analytical model of borehole water level response to
barometric pressure. A link between the thickness and vertical diffusivity of the confining
layer determined from the barometric response function, and groundwater vulnerability is
proposed. The amplitude spectrum for barometric pressure and instrument resolution favor
determination of the barometric response function at frequencies to which confining layer
diffusivities are most sensitive. Numerical modeling indicates that while the high frequency
response reflects confining layer properties in the immediate vicinity of the borehole, the
low frequency response reflects vertical, high diffusivity pathways though the confining
layer some hundreds of meters distant. A characteristic time scale parameter, based on
vertical diffusivities and thicknesses of the saturated and unsaturated confining layer, is
introduced as a measure of semiconfined aquifer vulnerability. The study demonstrates that
the barometric response function has potential as a tool for quantitative aquifer vulnerability
assessment in semiconfined aquifers.

Citation: Hussein, M. E. A., N. E. Odling, and R. A. Clark (2013), Borehole water level response to barometric pressure as an

indicator of aquifer vulnerability, Water Resour. Res., 49, 7102–7119, doi:10.1002/2013WR014134.

1. Introduction

[2] Aquifer vulnerability assessment is an important tool
in the protection of aquifers from surface contamination.
For semiconfined aquifers, quantitative vulnerability
assessment is frequently hindered by a lack of information
on the nature and spatial distribution of the confining layer
hydraulic properties. It is proposed here that quantitative
information on confining layer properties derived from bar-
ometric response functions can be used as an aid to quanti-
tative aquifer vulnerability assessment. It is well known
that water levels in boreholes tapping perfectly confined
aquifers (where the confining layer has negligible conduc-
tivity) fluctuate in response to changes in barometric pres-
sure while those in unconfined aquifers where the

unsaturated zone is thin and/or has a high conductivity,
show a shallow water table response with no reaction to
changes in barometric pressure [e.g., Jacob, 1940]. These
two cases represent ‘‘end members’’ of the wide range
found in nature and most aquifers are in fact either semi-
confined (where confining layer has significant permeabil-
ity) or unconfined, showing a deep water table response
(response to barometric pressure change due to a thick or
low permeability unsaturated zone). In case of a perfectly
confined aquifer, changes in barometric pressure are trans-
mitted instantaneously to the aquifer where they are distrib-
uted between the aquifer skeleton and pore waters while
the same changes are transmitted in total to the water sur-
face in the borehole [Batu, 1998]. This results in a pressure
imbalance between an open borehole and the aquifer so
that an increase in barometric pressure causes a decrease in
borehole water level and vice versa. In the case of a per-
fectly confined aquifer, the ratio of change in borehole
water level to change in barometric pressure is a constant,
termed the static barometric efficiency of the aquifer [Ja-
cob, 1940; Rojstaczer, 1988; Rasmussen and Crawford,
1997; Spane, 2002]. However, when the aquifer is semi-
confined or unconfined with a thick unsaturated zone and/
or unsaturated zone of low permeability, barometric effi-
ciency becomes frequency dependent [Weeks, 1979; Fur-
bish, 1991] and the response of borehole water level to
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barometric pressure is described by a barometric response
function which may be determined in either the time or the
frequency domain. System properties including the vertical
diffusivities (unsaturated zone pneumatic diffusivity and
saturated zone hydraulic diffusivity) can be estimated from
barometric response functions by fitting to an appropriate
model [e.g., Weeks, 1979; Rojstaczer, 1988; Evans et al.,
1991; Butler et al., 2011].
[3] Intrinsic vulnerability is commonly defined as a func-

tion of the nature and thickness of overlying confining
layer, depth to the water table, and the characteristics of the
aquifer and overlying materials [e.g., Robins, 1998; Boland
et al., 1999]. The heterogeneity of overlying material plays
an important role as more highly conductive lithologies
which form connected vertical pathways from surface to
aquifer limit the capacity of any confining layer to protect
the aquifer. Traditional pumping and slug tests give pre-
dominantly horizontal hydraulic conductivity. Estimates of
vertical hydraulic conductivity of confining layers can be
obtained from aquifer pumping tests when leakage from
the confining layer occurs [e.g., Hantush, 1956]. However,
to clearly see such leakage effects and accurately estimate
vertical hydraulic conductivity often requires pumping tests
lasting tens of hours which are not routinely undertaken for
observation boreholes. It is here suggested that vertical dif-
fusivity (ratio of conductivity to specific storage) of the
confining layer, derived from barometric response func-
tions, can be used to characterize the potential for contami-
nant transport through the confining layer to the aquifer,
providing a potential link with intrinsic groundwater vul-
nerability. The link between barometric response functions
and aquifer vulnerability has been tentatively suggested in
the past [Rojstaczer, 1988; Landmeyer, 1996] while others
have used barometric response functions to distinguish
between confined, unconfined, well skin and combined
responses [e.g., Rasmussen and Crawford, 1997; Spane,
2002] and to assess the degree of confinement [e.g., Butler
et al., 2011]. To the authors’ knowledge, however, applica-
tion of these techniques as an aid to quantifying aquifer
vulnerability has not yet been demonstrated. In this paper,
the application of the barometric response function to the
assessment of aquifer vulnerability in confined to semicon-
fined aquifers is described through application to the semi-
confined Chalk Aquifer of East Yorkshire, UK.

2. Previous Work on Barometric Response
Functions

[4] Work during the late 1980s and early 1990s estab-
lished time domain [Weeks, 1979; Furbish, 1991; Rasmus-
sen and Crawford, 1997] and frequency domain [Welch,
1967; Galloway and Rojstaczer, 1988; Evans et al., 1991]
techniques for determining barometric response functions
from borehole water level and barometric pressure records.
Estimation of the barometric response function is improved
by prior removal of Earth and ocean tides for which time
domain methods [Rasmussen and Crawford, 1997; Ras-
mussen and Mote, 2007; Toll and Rasmussen, 2007] and
frequency domain methods [Rojstaczer, 1988; Galloway
and Rojstaczer, 1988; Rojstaczer and Riley, 1990] have
been developed. To date, little attention has been given to
the impact of interference from recharge and many loca-

tions have been chosen in part for their lack of recharge
signal [e.g., Galloway and Rojstaczer, 1988; Rojstaczer
and Riley, 1990; Quilty and Roeloffs, 1991; Beavan et al.,
1991; Evans et al., 1991] while other authors have re-
stricted their analysis to selected time periods where such
interference is minimal or where effects can corrected by
simple linear trend removal [e.g., Butler et al., 2011].
[5] A number of analytical models for predicting bore-

hole water level response to barometric pressure have been
developed for semiconfined aquifers both in the time do-
main [Butler et al., 2011] and in the frequency domain
[Hsieh et al., 1987; Rojstazcer, 1988; Evans et al., 1991;
Ritizi et al., 1991]. These models have been used to esti-
mate confining layer and aquifer properties from baromet-
ric response functions for a variety of porous media and
fractured aquifers [Rojstaczer, 1988; Galloway and Roj-
stacer, 1988; Rojstaczer and Riley, 1990; Quilty and Roel-
offs, 1991; Evans et al., 1991; Beavan et al., 1991;
Ackworth and Brain, 2008; Butler et al., 2011]. Barometric
response functions have been used to correct borehole
water level response for barometric pressure effects where
they mask groundwater flow characteristics of interest
[Quilty and Roeloffs, 1991; Rasmussen and Crawford,
1997; Spane, 2002; Toll and Rasmussen, 2007]. The sensi-
tivity of barometric response functions to conditions in the
immediate vicinity of the borehole has been shown in the
time domain by Rasmussen and Crawford [1997] and
Spane [2002] and in the frequency domain by Rojstaczer
[1988].
[6] Barometric response functions have been used by a

number of previous workers to investigate degree of aquifer
confinement which relates closely to aquifer vulnerability.
Hare and Morse [1997, 1999] demonstrated that open bore-
holes within and outside the areal extent of a containment
system consisting of a clay cap and impermeable cutoff
wall showed different responses to barometric pressure var-
iations and used this to monitor the performance of the con-
tainment system. Acworth and Brain [2008] demonstrated
that even a thin (<2 m) weathered zone in fractured granite
can induce borehole water level responses to barometric
pressure indicating confined behavior with implications for
recharge and groundwater-surface water interactions (and
by implication groundwater vulnerability). Rasmussen and
Crawford [1997] showed how time domain barometric
response functions reflect the degree of aquifer confinement
and how comparison of response functions from adjacent
wells can be used to gauge hydrostatic continuity of the
confining layer. Butler et al. [2011] also showed how the
form of the barometric response function is related to the
degree of confinement and conditions in the vadose zone.
By fitting observed response functions from three boreholes
to a time domain model, they obtained values for aquitard
hydraulic diffusivity and conductivity which were in agree-
ment with pumping test results, and which demonstrated
aquitard continuity over a distance of at least 700 m.

3. The Study Area and Data Collection

[7] The study area (Figure 1) comprises the confined to
semiconfined Chalk Aquifer in East Yorkshire, UK. The
Chalk Aquifer occurs over approximately one quarter of
England and is the principal aquifer of the UK supplying
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more than 50% of total groundwater abstractions. In East
Yorkshire, the Chalk Aquifer is unconfined over the higher
ground in the west (The Wolds) where recharge is around
300 mm/year. In the east (the Holderness Peninsula), the
aquifer is confined by up to 50 m of highly heterogeneous
glacial deposits of Quaternary age comprising clay-rich till,
alluvium, and sands and gravels [see Smedley et al., 2004,
Figure 1]. The hydraulic conductivity of the chalk matrix is
very low at around 10�5 m/day [Hartmann et al., 2007]
and flow in the aquifer is fracture dominated [e.g., Smedley
et al., 2004]. In the confined aquifer, flow occurs princi-
pally in the upper 10 m of highly fractured chalk with
transmissivities ranging up to 500 m2/day [Smedley et al.,
2004; Hartmann et al., 2007; Odling et al., 2013]. The UK
Environment Agency (EA) maintains a network of some
100 monitoring boreholes distributed over the region. Aq-
uifer vulnerability is of concern throughout the aquifer due
to increasing nitrate levels in groundwater from the use of
agricultural fertilizers since the 1950s [Wellings and
Cooper, 1983; Stuart et al., 2007]. In the area of the con-
fined aquifer, aquifer vulnerability is closely linked to the
nature of the overlying glacial sediments.
[8] The current designated zones of high, intermediate,

and low vulnerability (Environment Agency, UK) are
based on maps of the Quaternary glacial sediments con-
structed from sparse borehole log and outcrop data and
reflect lithological variations on scale of 100 m or greater.
High vulnerability status is based on outcrops of sands and
gravels and low vulnerability on outcropping clay-rich tills.
However, a recent study [Kilner et al., 2005] has demon-
strated that sands and gravels may form highly conductive
vertical pathways through the clay-rich sediments on the

scale of meters to 10s meters. The vulnerability of the aqui-
fer is enhanced by widespread downward head gradients in
the confining sediments. Prolonged groundwater pumping
for municipal water supplies over the last 100 years has
lowered the water table along most of the western margin
of the confined aquifer (see Figure 1), reducing the zone of
natural artesian flow to its present extent [Smedley et al.,
2004] and generating year-round downward gradients else-
where. To the east, gradients are seasonal with upward gra-
dients in summer and downward in winter when recharge
occurs. Thus, the confined aquifer is potentially vulnerable
to contamination from the surface over most of it extent.
[9] In a recent study, water level and barometric pressure

data at 15 min time intervals were collected from 12 bore-
holes across the confined Chalk Aquifer, using absolute
(nonvented) automatic pressure transducers (manufac-
turers’ quoted resolution of 60.09 to 60.25 cmH2O and
range of 0–10 m), over periods of up to 799 days during
September 2008 to April 2011 [Hussein, 2012]. At each
borehole, a pressure transducer was placed below the water
level to measure total pressure (water plus barometric pres-
sure) and another placed in the air column to measure baro-
metric pressure. The borehole water level signals were
obtained by subtracting the barometric pressure from the
total pressure, where both are expressed in units of equiva-
lent water head (unit cmH2O). The analyses of data from
two boreholes representing the range in confining layer
properties which are situated 13 km (Benningholme) and
4.5 km (Thornholme Moor) from the margin of the con-
fined aquifer (see Figure 1), are presented here to illustrate
the application of the barometric response function as an
aid to aquifer vulnerability assessment. Details of borehole
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Figure 1. Map of the Chalk Aquifer in East Yorkshire, UK, showing Chalk outcrop, glacial deposits, and
monitoring and abstraction boreholes [after Edina-Digimap ‘‘Geological Map Data© NERC 2008’’; Smedley
et al., 2004; Gale and Rutter, 2006].
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construction are given in Table 1 and the time series data
of borehole water levels and barometric pressure are shown
in Figure 3.

4. Estimating the Barometric Response Function

4.1. Preprocessing the Water Level Signal

[10] The frequency range over which the barometric
response function may be determined depends on length of
monitoring record, the amplitude of the barometric pressure
spectrum, instrument resolution, and the presence of other
influences on borehole water level such as recharge, Earth
tides, and groundwater pumping. The barometric pressure
signal comprises aperiodic fluctuations at frequencies
below �0.8 cycles/day with the periodic atmospheric tides
S1 (diurnal component caused by ground heating) and S2
(semidiurnal component caused by ozone heating) [Chap-
man and Lindzen, 1970], see Figure 2a. The accuracy of
the barometric response function is greatly improved when
any influences on the borehole water levels other than baro-
metric pressure are removed. For the borehole records here,
these comprise recharge and Earth tides [Batu, 1998;
K€umple, 1997]. As a preliminary step in the data process-
ing, each signal is detrended (linear trend is removed and
mean subtracted). This is common practice in spectral anal-
ysis and is done to avoid spectral leakage which can mask
behavior at higher frequencies [e.g., Gubbins, 2004]. The
coherence, CWB, between borehole water level and baro-
metric pressure signals is then used to assess the frequency
range over which the barometric response function is valid
[Evans et al., 1991]:

CWB fð Þ ¼
jXWB fð Þj2

XWW fð Þ � XBB fð Þ
ð1Þ

where XWB fð Þ is the cross spectrum of the water level and
barometric pressure signals and XWW fð Þ and XBB fð Þ are the
auto-spectra of the water level and barometric pressure sig-
nals, respectively [Bendat and Piersol, 2010]. Recharge
and Earth tides can be seen to cause low coherence between
water level and barometric pressure signals at low to inter-
mediate frequencies and at the diurnal and semidiurnal fre-
quencies, respectively (see Figure 2d).
[11] Aquifer recharge depends on rainfall and evapo-

transpiration and thus the exact nature of the recharge sig-
nal may vary from year to year. Water level records from
boreholes in the unconfined aquifer (where barometric
pressure has negligible effect) display a strong recharge
signal (Figures 2b and 3c). The effect of recharge on the
water level signal in the confined aquifer can be seen at fre-

quencies below 0.1 cycles/day where water level ampli-
tudes (maximum 25 cmH2O) are higher than barometric
pressure amplitudes (maximum 7 cmH2O, see Figures 2a
and 2c). However, in the confined aquifer, the recharge sig-
nal becomes progressively attenuated and lagged with dis-
tance from the margin of the confined aquifer resulting in a
shift in the frequency limit affected by recharge to lower
frequencies. A cutoff coherence of 0.5 was used to deter-
mine this limit which at Benningholme (13 km from the
margin) is 0.015 cycles/day and at Thornholme Moor (4.5
km from the margin) is 0.03 cycles/day. The use of coher-
ence thus allows the lower frequency limit to the baromet-
ric response function to be determined on a borehole by
borehole basis, maximizing the extent of the barometric

Table 1. Details of Borehole Completiona

Parameter/Borehole Benningholme Thornholme Moor

TOC Elevation (m ASL) 2.5 13.5
Total depth (m) 78.8 50.0
Thickness glaciofluvial
sediments (m)

16.2 19.0

Plain casing depth (m) 23.0 28.0
Casing inner diameter (cm) 19.7 20.5
Record length (days) 799 312

aTOC denotes top of casing.
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Figure 2. Frequency spectra for components of the water
level signal from the Benningholme borehole. (a) Baromet-
ric pressure, Bp. (b) Recharge signal, R, from a nearby bore-
hole in the unconfined Chalk Aquifer. (c) Observed water
level signal, WL, is a combination of the influences of baro-
metric pressure, Bp, Earth tides, ET, recharge, R, and
anthropogenic effects, A. (d) Coherence between water
level and barometric pressure signals is low below 0.015
cycles/day due to recharge and above 0.85 cycles/day due
to low amplitude in the barometric pressure signal and
Earth tides. O1, S1, and K1 are the diurnal, and N2, M2, and
S2, the semidiurnal atmospheric and Earth tide components.
Water levels were recorded at 15 min intervals and fre-
quency measurement interval is 0.00073 cycles/day.
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response function at low frequencies. The influence of
recharge was then removed from the signal using a high
pass filter at the appropriate frequency for each borehole.
[12] Earth tides comprising the five major diurnal (O1,

K1) and semidiurnal (N2, M2, S2) components can clearly
be identified in the water level signals (Figure 2c), causing
low coherence at these frequencies (Figure 2d). Following
the removal of recharge effects, the data was detrended and
the effects of Earth tides removed by the method of Ras-
mussen and Mote [2007] using time domain regression
deconvolution (see Appendix A for more details). Water
level fluctuations resulting from Earth tides were found to
range up to 2 cm. Figure 4a illustrates the removal of
recharge and Earth tides on the water level data from the
Benningholme borehole. The final corrected signal shows a

clear inverse relationship with barometric pressure charac-
teristic of confined to semiconfined aquifers.

4.2. Barometric Response Functions

[13] The frequency domain form of the barometric
response function (gain and phase) is obtained by deconvo-
lution of the borehole water level signal by the barometric
pressure signal. This is done using the technique of cross-
spectral deconvolution by ensemble averaging [Welch,
1967] previously used by a number of investigators [Roj-
staczer, 1988; Rojstaczer and Riley, 1990; Beavan et al.,
1991; Quilty and Roeloffs, 1991]. In this technique, a num-
ber of partially independent barometric response functions
are determined from overlapping segments of the water
level and barometric pressure signals. These are then aver-
aged to give the final barometric response function with
one standard deviation errors. This technique smooths and
optimizes the accuracy of the barometric response function.
Further details of the technique are given in Appendix B
and the Matlab code used to compute barometric response
functions is available as supporting information accompa-
nying this article.
[14] Figures 4b and 4c illustrate the estimation of the

barometric response function for the Benningholme bore-
hole where three segment lengths are used. As segment
length decreases, the gain and phase curves become
smoother but with less information at low frequencies. The
use of three different segment lengths allows determination
of the barometric response function at lower frequencies
but with lower accuracy, while for higher frequencies the
use of shorter segments improves accuracy. The final valid
range of the barometric response function is determined
from frequencies where coherence is greater than 0.5. At
Benningholme, this gives a viable frequency range of
0.015–0.8 cycles/day plus one point at 1 cycle/day, shown
in Figure 4c. At 0.8 cycles/day, the water level signal am-
plitude is around 0.03 cmH2O (Figure 2c) which is consid-
erably lower than the manufacturers’ stated resolution for
the pressure transducers of 0.25 and 0.09 cm. However, a
better signal-to-noise ratio is obtained through stacking of
many observations in a long time series [Florsch et al.,
1991; Merritt, 2004] with over 76,000 data records for
Benningholme and almost 30,000 data records for Thorn-
holme Moor. In addition, the manufacturers quote instru-
ment resolutions as 0.25 cm (or better) and 0.09 cm (or
better) and are likely to be somewhat conservative.

5. Estimating Aquifer and Confining Layer
Properties

[15] Aquifer and confining layer properties are estimated
by fitting the analytical model of Rojstaczer [1988], modi-
fied to include capillary fringe attenuation [Evans et al.,
1991], to the barometric response function. An overview of
model equations is given in Appendix C and full details of
their derivation can be found in Rojstaczer [1988] and
Evans et al. [1991]. The model considers three flow prob-
lems that arise from a change in barometric pressure; (a)
vertical air flow in the unsaturated zone from the Earth’s
surface to the water table, (b) vertical groundwater flow
within the confining layer, and (c) horizontal groundwater
flow between the aquifer and the borehole (see Figure 5a).

Figure 3. Water level (red) and barometric pressure
(green) data from (a) Benningholme (799 days from 12
September 2008) and (b) Thornholme Moor (312 days
from 28 November 2010). (c) Water level time series data
from seven boreholes in the unconfined Chalk Aquifer
(September 2008 to January 2010) representing the
recharge signal which show a strong seasonal trend with
amplitudes up to 15 m. Numbers correspond to borehole
locations shown in Figure 1.
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The model parameters are static barometric efficiency of
the aquifer (BE), confining layer pneumatic and hydraulic
diffusivities (Dcon and Dunsat), capillary fringe attenuation
factor (Tcf), confining layer thickness (Lcon), unsaturated
zone thickness in the confining layer (Lunsat), aquifer trans-
missivity (Taqu), storativities of the aquifer and confining
layer (Saqu and Scon), and borehole radius (rw).
[16] A typical model barometric response function, con-

structed using parameters from this study, is shown in Figure
5b. Phase is plotted according of the sign convention of Roj-
staczer [1988] where phase advance is greater than, and
phase lag less than, �180�. The barometric response func-
tion can be divided into three stages comprising low, inter-

mediate and high frequency ranges within the barometric
pressure signal [Rojstaczer, 1988]. At low frequencies of the
barometric response function (stage A), gain increases and
phase decreases with increasing frequency, controlled pri-
marily by the properties of the confining layer. At very low
frequencies, equilibrium is maintained between the confining
layer, the aquifer and the borehole and the system behaves
as if unconfined (gain approaches zero). At intermediate fre-
quencies of the barometric response function (stage B) a pla-
teau exists at a gain which represents the static barometric
efficiency and a phase of �180�, and the behavior is similar
to that of a fully confined aquifer. At high frequencies (stage
C), the barometric response function is controlled by the rate
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Figure 4. (a) Segments of the time series data for barometric pressure (green) and water level for the
Benningholme borehole showing the initial water level signal (red), after removal of recharge (magenta)
and after removal of recharge and Earth tides (blue). (b) Gain and phase frequency plots showing esti-
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at which water can flow between aquifer and borehole, and
both gain and phase decrease with increasing frequency,
governed by borehole design and aquifer transmissivity and
storativity. The sensitivity of the barometric response func-

tion to model parameters is illustrated in Figure 6. Low to in-
termediate frequencies of the barometric response function
gain and phase are primarily sensitive to confining layer
pneumatic and hydraulic diffusivities, Dunsat and Dcon,
respectively, unsaturated zone thickness, Lunsat (and there-
fore saturated confining layer zone thickness bcon, for a given
confining layer thickness), and capillary fringe attenuation
factor, Tcf (Figures 6b–6e). High frequencies are primarily
sensitive to aquifer transmissivity, Taqu (Figure 6f). Varia-
tions in barometric efficiency, BE, simply scale the gain
curve with no effect on the phase curve (Figure 6a) and, by
comparison to the above parameters, the model shows little
sensitivity to the storativities of the aquifer and confining
layer, Saqu and Scon, consistent with observations on the sen-
sitivity to Saqu by Furbish [1991] (Figures 6g and 6h).
[17] The model is fitted to the barometric response func-

tion using six parameters; barometric efficiency (BE), pneu-
matic and hydraulic diffusivities of the confining layer
(Dunsat, Dcon), aquifer transmissivity (Taqu), capillary fringe
attenuation factor (Tcf), and unsaturated zone thickness (Lun-
sat). Four further parameters are treated as constants; total
confining layer thickness (Lcon), storage coefficients of the
confining layer and aquifer (Scon and Saqu), and borehole ra-
dius (rw). These parameters are either known (Lcon, rw) or do
not significantly impact on model results (Scon, Saqu). In
addition, barometric efficiency (BE) and capillary fringe
attenuation factor (Tcf) are constrained to lie between 0 and
1. The best fit solution is obtained by minimizing the sum of
square differences of observed and model barometric
response functions in the complex plane using a combined
hybrid genetic (GA) and pattern search (PS) algorithm [Alsu-
mait et al., 2010; Liuni at al., 2010]. This combines the
advantages of the pattern search method, which is computa-
tionally efficient but requires an initial estimate, with those
of the genetic algorithm which locates the global minimum
without the need for a starting point, but is computationally
intensive. The Matlab code used to compute the fit of the
model to the barometric response function is available as
supporting information accompanying this article.

6. Data Analysis and Parameter Estimation

6.1. Estimating Aquifer and Confining Layer
Properties

[18] Barometric response functions (gain and phase)
with one standard error are shown with best fit model
curves for two contrasting boreholes (Benningholme and
Thornholme Moor) in Figure 7. Borehole lithology logs
(Figure 8) show that the thickness of the glacial sediments
varies from 16 m at Benningholme to 19 m at Thornholme
Moor and contain significant proportions of clay rich ma-
terial (40% at Benningholme and 84% at Thornholme
Moor). The barometric response functions (Figure 7) are
strong functions of frequency indicating that the confining
layer in both cases has nonzero diffusivity. The gain for
Benningholme (Figure 7a) shows a typical bell-shaped
curve over a frequency range of 0.015 to 1 cycles/day
with a plateau at intermediate frequencies in both gain
and phase indicating a static confined barometric effi-
ciency of around 0.5. The barometric response function
for Thornholme Moor borehole (frequency range 0.045–
2.0 cycles/day) shows overall increasing gain and
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Figure 5. (a) Diagrammatic cross section showing aqui-
fer, confining layer, and borehole with key parameters and
flow directions in response to changes in barometric pres-
sure (WL—water level, WT—water table). (b) Illustrative
barometric response function based on the model of Roj-
staczer [1988] showing (A) low, (B) intermediate, and (C)
high frequency response stages constructed using input pa-
rameters typical for the semiconfined Chalk Aquifer in East
Yorkshire: static BE¼ 0.6, Dcon¼Dunsat¼ 35 m2/day,
Taqu¼ 20 m2/day, Tcf ¼ 1, Scon¼ 10

�3, Saqu¼ 10
�4,

Lunsat¼ 1.3 m, Lsat¼ 14.8 m and rw¼ 0.098 m.
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decreasing phase with increasing frequency over the range
of 0.045–0.5 cycles per day (Figure 7b) above which the
gain flattens indicating a static barometric efficiency of
around 0.4.
[19] The barometric response functions in Figure 7 were

fitted to the analytical model [Rojstazcer, 1988] from which
the parameters barometric efficiency (BE), confining layer
pneumatic and hydraulic diffusivities (Dcon and Dunsat), aq-
uifer transmissivity (Taqu), capillary fringe coefficient (Tcf),

and thickness of the unsaturated zone (Lunsat) were deter-
mined. Confining layer thickness was set to the values indi-
cated by the borehole logs (Figure 8) and specific storage
coefficients were held constant at 10�4 m�1 for the confin-
ing layer (typical for glacial sediments) and 10�5 m�1 for
the aquifer (typical for the Chalk Aquifer in East York-
shire). Upper and lower bounds to parameters were esti-
mated from the range of model curves that lie within the
one standard deviation errors for the barometric response
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Figure 6. Barometric response functions calculated from the model of Rojstaczer [1988] showing sen-
sitivity to (a) static barometric efficiency, BE, (b) vertical hydraulic diffusivity of the confining layer,
Dcon, (c) vertical pneumatic diffusivity of confining layer unsaturated zone, Dunsat, (d) thickness of the
unsaturated zone (confining layer), Lunsat, (e) capillary fringe attenuation factor, Tcf, (f) aquifer transmis-
sivity, Taqu, (g) storativity of the aquifer, Saqu, and (h) storativity of the confining layer, Scon. Model input
parameters are as listed in Figure 5 with parameters varied as indicated. The plots show that confining
layer properties Dcon, Dunsat, Lunsat, and Tcf, are sensitive principally to low and intermediate frequencies,
while Taqu is sensitive to intermediate and high frequencies. The model shows little sensitivity to stora-
tivities, Saqu and Scon. Double-headed arrows indicate range for which barometric response functions are
determined in this study (0.015–2 cycles/day).
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function (Figure 7). Best fit parameters with upper and
lower bounds are listed in Table 2. The best fit model curve
to the barometric response functions show overall good fits
for the gain and phase curves with some discrepancy for
the gain at low frequencies for the Benningholme borehole
(Figure 7a).
[20] The greatest difference between the results for the

two boreholes is seen in the vertical hydraulic diffusivities,
Dcon, which range from 10 m

2/day at Benningholme to 310
m2/day at Thornholme Moor. This is reflected in the posi-
tion of the gain and phase curves (Figure 7) where the Ben-
ningholme curves are shifted toward lower frequencies

relative to those of Thornholme Moor. The differing values
of BE reflect the positions of the gain curves (Figure 7)
where the Benningholme curve (BE 0.49) lies above that of
Thornholme Moor (BE 0.39). All parameters are well con-
strained by the upper and lower bounds except the pneu-
matic diffusivities at both boreholes and the unsaturated
zone thickness at Thornholme Moor for which only lower
bounds could be determined due to model insensitivity.
The narrow range of unsaturated zone thickness (0.7–1.2
m) is compatible with water table depths recorded in a
borehole screened within the confining layer at Benning-
holme (0.4–2.9 m) and the location of field drains at around

Figure 7. Barometric response functions with best fit model curves for (a) Benningholme borehole and
(b) Thornholme Moor borehole. The best fit model curves (solid magenta) are shown together with
curves (dashed) giving lower (blue) and upper (green) bounds for vertical hydraulic diffusivity of the
confining layer, Dcon, and aquifer transmissivity, Taqu. The best fit model curves give vertical hydraulic
diffusivities of 10 m2/day (Benningholme) and 310 m2/day (Thornholme Moor).
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0.5 m below the ground surface across the region. Aquifer
transmissivities (1.5 m2/day at Benningholme and 10.0 m2/
day at Thornholme Moor) lie toward the low end of the
range observed for the confined Chalk Aquifer (1–500 m2/
day) [Smedley et al., 2004; Hartmann et al., 2007]. These
estimates are also significantly less than transmissivities
estimated from pumping tests [Parker, 2009] which are 52
m2/day at Benningholme (5 h pumping test) and 264 m2/
day at Thornholme Moor (3 h pumping test).

6.2. Aquifer Transmissivity From Barometric
Response Functions

[21] The variations in borehole water levels induced by
barometric pressure changes over time periods of a few
hours are of the order of 1 cm or less (see Figures 3a and
4a) whereas drawdown induced during pumping tests is of
the order of a meter or more. To investigate the impact of
head change on the estimation of aquifer transmissivity, a
series of falling head slug tests inducing head changes from
2 to 41 cm (volumes 0.37–20 l) were conducted at Ben-
ningholme and Thornholme Moor. Slug tests were carried
out in ascending order of initial head and then repeated in
descending order, as recommended by Butler [1998]. The
slug tests were analyzed (AquiferWin32© software) using
the Hvorslev [1951] method and the results are shown in
Figure 9. The results of the slug tests in ascending order at
Benningholme indicate a power-law relationship between
initial head displacement and aquifer transmissivity with
the barometric response function and pumping test values
lying on the same trend. However, slug tests carried out in
descending order give transmissivities similar to that of the
largest slug test regardless of initial head displacement (see
Figure 9). This suggests that the observed scaling in trans-
missivity is caused by a skin effect in the immediate vicin-
ity of the borehole wall. It is thought likely that slugs of
increasing volume progressively break seals developed in
fractures adjacent to the borehole wall, which are likely to
be of precipitated calcium carbonate. Repeat trials of slug
tests show that this skin effect becomes re-established in 6–
18 months. At Thornholme Moor, all slug tests gave values
similar to the pumping test value of transmissivity, over an
order of magnitude larger than that derived from the baro-
metric response function (see Figure 9). This suggests that
the smallest slug test with a displacement of 3.5 cm, around
three times greater than head changes induced by baromet-
ric pressure, is sufficient to disrupt skin effects at this bore-
hole. A dependence of transmissivity derived from slug
tests on slug test initial displacement was found at a num-
ber of boreholes in the area of the confined aquifer showing
that the development of such skin effects is a wide spread
occurrence in this aquifer.

7. Discussion

7.1. Estimating System Properties From Barometric
Response Functions

[22] Barometric response functions are here estimated
over a frequency range of 0.015–2 cycles/day. This is

Figure 8. Borehole lithology logs for (a) Benningholme
and (b) Thornholme Moor (data provided by UK Environ-
ment Agency). The Chalk Aquifer is overlain by 16.2 m
(Benningholme) and 19 m (Thornholme Moor) of glacial
sediments comprising clay, sand, and gravel. Arrows indi-
cate the interface between aquifer and confining layer.

Table 2. Best Fit Values and Ranges of Parametersa

Parameter/Borehole
Benningholme
Best Fit (range)

Thornholme Moor
Best Fit (range)

BE (—) 0.49 (0.49–0.49) 0.39 (0.38–0.4)
Dcon (m

2/day) 10.0 (8.0–13.0) 310.0 (250.0–370.0)
Dunsat (m

2/day) 10.0 (�2.0) 50.0 (�20)
Taqu (m

2/day) 1.5 (1.2–1.9) 10.5 (5.0–90.0)
Tcf (—) 0.82 (0.7–0.9) 0.95 (0.93–0.97)
Lunsat (m) 1.2 (0.5–2.0) 0.7 (�1.5)

aBE, barometric efficiency; Dcon, vertical hydraulic diffusivity of confin-
ing layer; Dunsat, vertical pneumatic diffusivity of confining layer; Taqu,
aquifer transmissivity; Tcf, capillary fringe coefficient; Lunsat, thickness of
unsaturated zone.
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similar to the frequency ranges reported by others [Roj-
staczer, 1988; Galloway and Rojstaczer, 1988; Rojstaczer
and Riley, 1990]. Evans et al. [1991] obtained barometric
response functions over the wider range of 0.02–50 cycles/
day made possible by the use of high resolution, vented
pressure sensors. The highest frequency in the barometric
response function is controlled by the amplitude of the bar-
ometric pressure frequency spectrum, instrument resolution
and record length with enhanced resolution resulting from
long record lengths [Florsch et al., 1991; Merritt, 2004].
For the present case, frequencies are restricted to below
0.85 cycles/day with the addition of 1 and 2 cycles/day
when water level signals are corrected for Earth tides. Bar-
ometric pressure spectra from across the globe including
California, Nevada, NSW Australia, France and UK [Hsieh
et al., 1987; Galloway and Rojstaczer, 1988; Marsaud
et al., 1993; Spane, 2002; Merritt, 2004; Acworth and
Brain, 2008; Cutillo and Bredehoeft, 2010] show a similar
pattern with high amplitudes occurring at frequencies up to
around 1 cycle/day. Barometric pressure records from
many parts of the globe will therefore give rise to similar
restrictions on the upper frequency limit to the barometric
response function to those reported here. The highest theo-
retical frequency for which information can be obtained is
around 70% of the Nyquist frequency (inverse of twice the
recording time interval) [Gubbins, 2004]. Thus to detect a

frequency of 2 cycles/day, a recording time interval of 250
min or less is required. The lowest frequency of the baro-
metric response function is here constrained by recharge to
0.015 and 0.03 cycles/day. The minimum record length
required to reach these frequencies is given by the number
of segments used to determine the barometric response
function multiplied by the proportion of overlap and di-
vided by the lowest required frequency. For the data pre-
sented here, 20 segments with 50% overlap were required
which, with a lower frequency limit of 0.03 cycles/day
imposed by recharge, thus infers a minimum record length
of 333 days. The accuracy and resolution of absolute trans-
ducers, which are cheaper and easier to install and maintain
than vented instruments, is steadily increasing and this will
extend the upper frequency limit for barometric response
functions in the future.
[23] Extending the barometric response function to lower

frequencies requires the development of a filter to remove
the effects of recharge. The process of recharge is complex
depending on many factors including rainfall intensity and
duration, soil characteristics, and land use. Since the
recharge signal is complex (Figure 3c), containing a range
of frequencies whose amplitudes may vary from year to
year, the method used to remove Earth tides [Rasmussen
and Mote, 2007] which occur at known frequencies cannot
be directly applied but a technique in which a recharge sig-
nal was determined by maximizing the coherence between
water level and barometric pressure, conditioned by infor-
mation from boreholes where the aquifer is unconfined,
could possibly be developed. A recent study by Jimenez-
Martinez et al. [2013] which investigates recharge in the
frequency domain shows that the recharge is dominated by
large low frequency events with some high frequency
events of up to several cm at frequencies up to 0.5 cycles/
day can occur. Such an approach could, in theory, be used
to develop a filter to remove recharge signals and allow
determination of the barometric response function to lower
frequencies.
[24] A frequency range for the barometric response func-

tion of 0.015–2 cycles/day covers only the low and inter-
mediate frequency response stages of model barometric
response function curves in this study (Figure 6). This
range favors estimation of confining layer properties which
show greatest sensitivity to these lower frequencies (Fig-
ures 6b–6e). Thus, to determine confining layer properties
from barometric response functions, time series data of
borehole water level, and barometric pressure with a time
interval of 250 min or less over a time period of 1 year or
more is required giving a basic general recommendation
for data collection where estimation of confining layer
properties are the main aim. However a smaller recording
time interval should be chosen if information at frequencies
higher than 2 cycles/day are of interest, for instance if
higher resolution instruments than those used here were
available.
[25] The inclusion of capillary fringe attenuation in

the model affects the slope of the gain and phase curves
at low frequencies (Figure 6e). Evans et al. [1991]
explain the capillary fringe attenuation effect in terms of
a partial absorption of the air pressure wave due to vol-
ume changes of encapsulated air bubbles close to the
water table. Encapsulated air content and capillary

Figure 9. Slug tests analysis results (Hvorslev method)
for Benningholme and Thornholme Moor boreholes. At
Benningholme, ascending slug test results (filled symbols)
together with the barometric response function (BRF(Ben))
and pumping test values (PT(Ben)) borehole show a power
law relation between transmissivity, T and initial displace-
ment, H, while descending slug test results (open symbols)
give constant transmissivity close to the pumping test
value. At Thornholme Moor, slug tests give results similar
to the pumping test (PT(Tho)) which are an order of magni-
tude greater than the barometric response function value
(BRF(Tho)).
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fringe attenuation is greater in sandy than in clay-rich
sediments [Honig and Murphy, 2001] and an attenuation
of 20% (Tcf of 0.8) has been observed in silty loam soil
[Turk, 1975], close to the values for Tcf for Benning-
holme (0.82). The unsaturated zone in the region of the
confined aquifer in East Yorkshire ranges from 0.5 to
3.5 m, so that Tcf is controlled by the nature of the soil
and glacial sediments at shallow depths. This is consist-
ent with a soil layer of around 0.5 m and the presence of
0.65 m of sand beneath the soil layer at Benningholme
(Figure 8).
[26] Discrepancies of up to two orders of magnitude

between aquifer transmissivity derived from the barometric
response function and from pumping tests raise questions
about the validity of estimating aquifer transmissivity from
barometric response functions. The relationship between
slug initial head displacement and derived hydraulic trans-
missivity indicates the presence of skin effects, thought to
be caused by precipitation of calcium carbonate in fractures
close to the borehole wall. The small changes in borehole
water level (here of the order of 1 cm) induced by baromet-
ric pressure changes over the time scale of the slug tests of
1–2 h are not sufficient to overcome these effects so that
estimates of aquifer transmissivity from the barometric
response function are sensitive to any skin effect present.
Thus estimates of transmissivity from barometric response
functions where such skin effects may be present should be
regarded as lower bounds only.

7.2. Effect of Confining Layer Heterogeneity on
Barometric Response Functions

[27] The analytical barometric response function models
of Rojstazcer [1988] and Evans et al. [1991] assume that
both aquifer and confining layers are laterally and vertically
homogeneous. In nature, however, aquifers and their con-
fining layers are heterogeneous. The confining layer to the
Chalk Aquifer in East Yorkshire is composed of a range of
sediments (clay to sands and gravels) representing a wide
range of hydraulic conductivities and thus diffusivities. In
such a system, the lateral extent of the area around a moni-
toring borehole that influences the barometric response
function is important for interpreting estimated confining
layer properties in terms of aquifer vulnerability. To inves-
tigate the potential effects of heterogeneity in the confining
layer, a simple transient, 2-D, cross-sectional groundwater
model has been constructed using Visual MODFLOW
(Schlumberger). The model (Figure 10) represents a verti-
cal cross section of 10 km by 20 m comprising 14,800 cells
ranging in size from 20 � 0.5 m to 100 � 0.5 m. The model
consists of two layers, each 10 m thick, representing the
confining layer (hydraulic conductivity 0.01 m/day and
specific storage 10�3 m�1, typical of clay-rich sediments),
overlying an aquifer (hydraulic conductivity of 10 m/day
and specific storage 10�5 m�1, typical of the Chalk Aqui-
fer). The attenuation of barometric pressure in the unsatu-
rated zone is here assumed to be negligible (since Modflow
cannot model flow in the unsaturated zone) and the baro-
metric pressure signal is modeled as a constant head bound-
ary condition at the top of the model using the barometric
pressure signal observed at Benningholme (September–Oc-
tober 2008). The model lateral and lower boundaries are
represented by no flow boundaries. The transient model is

run with stress periods of 4 h and a total simulation time of
60 days. The impact of initial conditions (zero head every-
where) was found to be negligible after 20 days of simula-
tion. Four scenarios were created in which the confining
layer contains a block with a large hydraulic conductivity
of 10 m/day and a specific storage of 10�4 (typical for
sands) and the results are compared to those of the homoge-
neous scenario. This 2-D model represents the effect of a
channel of high hydraulic conductivity material that fully
penetrates the confining layer which is of infinite lateral
extent in the direction perpendicular to the plane of the
model. This geometry is similar to that formed by the gla-
ciofluvial sediments (sands and gravels) which form
channel-like bodies in the clay-rich tills in the confining
layer of the Chalk Aquifer in East Yorkshire. Figures 10b
and 10d show the results from a simulation period of 10
days (days 50–60).
[28] In the first scenario, (Figure 10a) a highly conduc-

tive block of 500 m width fully penetrates the confining
layer. Figure 10b shows that in the aquifer immediately
below the high conductivity block, the head signal is virtu-
ally unaltered from the imposed barometric pressure signal,
indicating unconfined conditions. With increasing distance,
D, from the center of the block, the signal observed in the
aquifer is progressively damped and lagged until, at distan-
ces greater than about 750 m, it becomes indistinguishable
from that observed the homogeneous case. In addition, it
can be seen in Figure 10b that high frequencies are more
severely damped than low frequencies. Figure 11 shows a
plot of the average difference over the ten day period
depicted in Figure 10, between the homogeneous and heter-
ogeneous models versus distance from the heterogeneity
edge. Taking twice the pressure transducer resolution (i.e.,
0.5 cm) as a conservative estimate of the head difference
between homogeneous and heterogeneous cases that is
needed to modify the barometric response function, the sig-
nal observed in the aquifer becomes indistinguishable from
the homogeneous case when the observation borehole is
around 600 m distant from the heterogeneity. In scenario 2,
where the width of the high conductivity block is reduced
to 20 m, very similar results were obtained (see Figure 11).
[29] In the third heterogeneous scenario (Figure 10c), the

highly conductive block of 500 m width penetrates only
half of the confining layer. The results in Figure 10d show
that the signal in the aquifer immediately below the hetero-
geneity is now significantly damped, particularly at high
frequencies. Using the same criteria as above, the presence
of the heterogeneity can be detected for distances of up to
300 m from the heterogeneity (Figure 11). Simulations in
which the width of the partially penetrating high conductiv-
ity block is reduced to 20 m (scenario 4), showed that in
this case results are not significantly different from the ho-
mogeneous case even directly under the heterogeneity itself
(Figure 11).
[30] The numerical model, generated using Modflow,

models only the propagation of barometric pressure
through the pore waters of the confining layer and aquifer
and does not include the grain-to-grain loading effects of
changes in barometric pressure that are also transmitted to
the aquifer. These models thus correspond to the situation
where the static barometric efficiency, BE, equals 1 and the
loading efficiency is therefore zero. This will maximize the
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head changes in the aquifer pore waters and in reality
within the Chalk Aquifer which has a static barometric effi-
ciency of around 0.5, the head changes will be around half
those recorded in the Modflow model. Conversely, the esti-
mate of the head difference required to distinguish between
simulations with and without the heterogeneity of twice the
pressure transducer resolution (0.5 cm) is very conservative
and therefore likely to underestimate the distance at which
a heterogeneity may be detected. Without using model
results to calculate the full barometric response function
(beyond the scope of the present article), it is not possible
be more precise and the distances given by the model can
be taken as rough guide only to the impact of a heterogene-
ity. However, this preliminary modeling suggests that the
presence of vertically continuous, highly conductive path-
ways through a low hydraulic conductivity confining layer
at distances up to several hundreds of meters from the mon-
itoring borehole will exert a significant influence on the
barometric response function. When highly conductive ma-
terial is present but does not provide a connected flow path-
way through the confining layer, the impact on the
barometric response function is markedly less. This shows
that the head signal observed in the aquifer, and thus the
barometric response function, is more sensitive to the verti-

cal connectivity of high conductivity heterogeneities than
to their lateral dimensions. The greater damping and lag-
ging of high compared to low frequencies indicates that the
high frequency response of borehole water level to baro-
metric pressure is controlled by confining layer properties
in the immediate vicinity of the borehole, while the low fre-
quency response reflects confining layer properties over a
region of considerable lateral extent around the borehole.
Thus, high and low frequencies in the barometric response
function may reflect different confining layer properties.
This provides one possible explanation for the relatively
poor fit between estimated and model gain curves at low
frequencies for the Benningholme borehole (Figure 7a)
which may reflect varying characteristics of the confining
layer with increasing distance from the monitoring bore-
hole, of which one possibility is the presence of a high con-
ductivity pathway at some distance from the borehole.
[31] A good illustration of these effects is seen at the

Thornholme Moor borehole where the high values of esti-
mated confining layer hydraulic diffusivity (310 m2/d) is in
conflict with the borehole lithology log (Figure 8) which is
strongly clay-dominated suggesting a low hydraulic diffu-
sivity. However, this borehole is situated 100 m from a
large outcrop (1200 by 500 m) of glaciofluvial sand and
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gravel deposits. Such deposits are observed to penetrate the
Chalk Aquifer where they are quarried 1 km distant from
the Thornholme Moor borehole. The large value of hydrau-
lic diffusivity derived from the barometric response func-
tion therefore reflects the presence of vertically connected,
high flow pathways through sand and gravel deposits
within the confining layer rather than the clay-rich deposits
which dominate in the immediate vicinity of the borehole.

7.3. Toward a Measure of Intrinsic Aquifer
Vulnerability

[32] The vertical hydraulic conductivity of the confining
layer is a key parameter in controlling the rate and quantity
of contaminants that can penetrate from the surface to the
aquifer and is thus a key parameter for intrinsic aquifer vul-
nerability. In a heterogeneous confining layer, the effective
vertical hydraulic conductivity will be dominated by the
presence of any vertically connected high flow pathways.
Traditional pumping and slug tests give predominantly hor-
izontal hydraulic parameters which will not, in general,
provide a good measure of effective vertical properties.
Pumping tests in leaky (i.e., semiconfined) aquifers may be
used to determine the vertical hydraulic conductivity of the
confining layer [e.g., Hantush, 1959]. However, such tests
are time consuming and generally not carried out on a rou-
tine basis for observation boreholes. Barometric response
functions can be used to obtain estimates of vertical hy-
draulic diffusivity (K/Ss) but vertical hydraulic conductivity
can only be determined if the specific storage is known

from other sources. However, a log-log plot (Figure 12) of
specific storage (Ss) versus hydraulic conductivity (K) for
glacial sediments from the literature [Urish, 1981;
Younger, 1993; Martin and Frind, 1998; Batu, 1998; Kil-
ner, 2004; Quinn, 2009] shows that while hydraulic con-
ductivity varies over 11 orders of magnitude, specific
storage varies only over two orders and thus hydraulic dif-
fusivity is most sensitive to hydraulic conductivity. In addi-
tion, a modeling study by Knudby and Carrera [2006]
indicates that hydraulic diffusivity in heterogeneous media
is largely controlled by the connected, highly conductive
pathways. This with the results of numerical modeling
described in this study (section 7.2), indicates that baromet-
ric response functions will reflect the presence of such con-
nected high flow pathways. In addition, the low frequencies
of the barometric response function which are those most
easily determined, are also those that are most useful in
estimating vertical diffusivity of the confining layer. The
above suggests that vertical hydraulic diffusivity derived
from barometric response functions can be used to provide
a quantitative measure of intrinsic aquifer vulnerability.
[33] A number of methods exist to characterize vertical

contaminant transport and pressure propagation in porous
media. The ratio of the square of thickness to the vertical
diffusivity has been used to define a characteristic time
scale for the vertical diffusion of aquifer pore pressure to
the water table [Roeloffs, 1996; Foster et al., 1993]. Kruse-
man and de Ridder [1994] suggested the use of hydraulic
resistance, defined as the ratio of confining layer thickness
to hydraulic conductivity (L/K), as a measure of vertical
transport potential. Building on the arguments above, we
suggest a characteristic time scale, Cts, that is a function of
the unsaturated and saturated confining layer vertical diffu-
sivities and their thicknesses, as a measure of intrinsic aqui-
fer vulnerability:

Cts ¼
L2unsat
Dunsat

þ
L2sat
Dcon

ð2Þ

[34] Low values of Cts reflect thin and/or highly diffusive
confining layers, implying high vulnerability, and vice
versa. In the case of the boreholes presented here, the thick-
ness of the unsaturated zone is small and Cts is dominated
by the second term in equation (2). Values of Cts with
thicknesses of clay-rich sediment for the two boreholes are
listed in Table 3. The Benningholme borehole shows the
largest Cts value (22.5 days) and therefore least vulnerabil-
ity, while the Thornholme Moor borehole indicates the
most vulnerable location with a Cts value of only 1.1 days.
This difference is reflected in positions of barometric
response function curves where the gain and phase curves
for Benningholme lie to the left (toward lower frequencies)
with respect to those for Thornholme Moor (Figure 7),
reflecting lower pneumatic and hydraulic diffusivities (see
Figures 6b and 6c). Note that Cts does not correlate well
with the percentage of clay-rich sediments seen in the bore-
hole logs (Table 3) where the Thornholme Moor borehole
gives the lowest value of Cts (1.1 days), and therefore high-
est vulnerability, but the highest percentage of clay-rich
sediments from the borehole log (84%).
[35] The characteristic timescales derived from the baro-

metric response functions can be compared to the existing
groundwater vulnerability designations at the localities of

Figure 11. Plot of the average difference between heads
observed in the aquifer over a 10 day period in heterogene-
ous and homogeneous models with distance from the heter-
ogeneity edge. 500 FP and 20 FP—fully penetrating
heterogeneities, 500 m and 20 m across, respectively. 500
PP and 20 PP—partially penetrating heterogeneities, 500 m
and 20 m across, respectively. Fully penetrating heteroge-
neities, regardless of width, have a much greater impact on
the head signal observed in the aquifer than partially pene-
trating heterogeneities.
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these two boreholes. The Benningholme borehole where
the confining layer comprises alluvial sediments is situated
in a zone classified as low vulnerability for the major aqui-
fer (the Chalk Aquifer) and high vulnerability for the sec-
ondary aquifer (comprising the confining layer). The large
characteristic time derived from the barometric response
function indicates that any high conductivity sediments
present do not form vertically connected pathways through
the confining layer and confirms that the vulnerability of
the major aquifer at this location is low. The Thornholme
Moor borehole is situated where the confining layer is com-
posed of clay-rich till where vulnerability of the major aq-
uifer is classified as low. However, at nearby glaciofluvial
deposits composed of sands and gravels (100 m away) vul-

nerable is classified as high for both major and minor aqui-
fers. The low characteristic time derived from the
barometric response function indicates high vulnerability,
confirming that the glaciofluvial sands and gravels pene-
trate vertically to the contact with the Chalk Aquifer
beneath. In these two cases, therefore, the barometric
response functions provide additional information on the
degree to which highly conductive sediments within the
confining layer provide connected, vertical flow pathways
from the surface to the aquifer.
[36] The increasing use of pressure transducers to auto-

mate routine monitoring of borehole water levels at hourly
or more frequent time intervals is replacing the traditional
manual dipping methods at monthly or larger time inter-
vals. Thus, many data sets that are suitable for the calcula-
tion of barometric response functions already exist. This,
with the abundance of monitoring boreholes in many major
aquifers, suggests that estimation of vertical diffusivities
from barometric response functions has the potential to
improve the quantitative assessment of aquifer vulnerabil-
ity in semiconfined aquifers.

8. Conclusions

[37] Confining layer and aquifer properties have been
estimated from barometric response functions and related
to aquifer vulnerability. The main conclusions are:
[38] 1. As previous studies have shown [e.g., Weeks,

1979; Rojstaczer, 1988; Spane, 2002; Butler et al., 2011],
barometric response functions can be used to estimate ver-
tical hydraulic and pneumatic diffusivities of the confining
layer. These diffusivities are of greater relevance to intrin-
sic aquifer vulnerability than horizontal hydraulic proper-
ties determined by the more traditional methods of
hydraulic testing (pumping and slug testing).
[39] 2. The limitations of barometric pressure signal am-

plitude at high frequencies and instrument resolution means
that, in this study, only the lower to intermediate frequen-
cies (0.015–2 cycles/day) of the barometric response func-
tion are readily determined. However, this frequency range
allows the estimation of confining layer pneumatic and hy-
draulic diffusivities which are most sensitive to frequencies
in this range.
[40] 3. Previous work [e.g., Furbish, 1991; Rasmussen

and Crawford, 1997; Spane, 2002] has shown the effect of
borehole storage and skin effects on the response of bore-
hole water levels to barometric pressure change. The pres-
ent study confirms that estimates of aquifer transmissivity
from barometric response functions are highly sensitive to
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sus hydraulic conductivity, K (m/day), for glacial sediments
[data from Urish, 1981; Younger, 1993; Martin and Frind,
1998; Batu, 1998; Kilner, 2004; Quinn, 2009]. While K
varies over 11 orders of magnitude, Ss varies only over 2
orders of magnitude.

Table 3. Vertical Hydraulic Diffusivity (Dcon) From Barometric

Response Functions, Thickness and Percentage of Clay-Rich Sedi-

ments in the Confining Layer, and Characteristic Time Scales

(Cts)

Parameter/Borehole Benningholme Thornholme Moor

Thickness clay (m) 6.8 16
% Clay-rich sediments 42 84
Dcon (m

2/day) 10 310
Cts (days) 22.5 1.1
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skin effects which can lead to underestimation of one to
two orders of magnitude.
[41] 4. Head signals in a semiconfined aquifer are more

sensitive to vertical connectivity of highly conductive heter-
ogeneities than they are to their lateral dimensions. This
indicates that barometric response functions will be sensitive
to the presence of highly conductive, vertically connected
flow pathways through the confining layer at distances of up
to several hundred meters from the borehole.
[42] 5. Higher frequencies in the barometric response

function are dominated by confining layer properties in the
immediate vicinity of the borehole, while low frequencies
reflect properties over a wider area.
[43] 6. A characteristic time scale, Cts, which is a func-

tion of vertical diffusivities and thicknesses of the unsatu-
rated and saturated zones in the confining layer is
suggested as a quantitative measure of intrinsic aquifer vul-
nerability for semiconfined aquifers.
[44] 7. With increasing use of pressure transducers to

routinely record borehole water levels, records with suffi-
cient temporal resolution for determination of the baromet-
ric response functions will become increasingly available.
This, with the abundance of monitoring boreholes through-
out most major aquifers, suggests that the barometric
response function provides a potential tool to improve the
quantitative assessment of vulnerability in semiconfined
aquifers.

Appendix A: Removal of Earth Tide Components
Water Level Signals

[45] The contribution of Earth tides in water level signals
is removed using the method of Rasmussen and Mote
[2007] comprising time domain regression deconvolution
of the water level and barometric pressure time series.
Before applying this method, the influence of recharge on
the borehole water level data is removed using a high pass
Butterworth filter and the borehole water level and baro-
metric pressure data are detrended (linear trend removed
and mean subtracted). The observed change in borehole
water level, DWL, over time interval, t, is then given by:

DWL ¼
X

m

�¼0

� �ð Þ � DBp t � �ð Þ þ � tð Þ ðA1Þ

where DBp is the change in barometric pressure over time
interval t, �(�) is the unit barometric response function at lag
� , and �(t) is the sum of the Earth tide components given by:

� tð Þ ¼
X

5

j¼1

ajcos!jt þ bjsin!jt
� �

ðA2Þ

where aj and bj are the Earth tide component coefficients
and !j is angular frequency of the jth component. The first
term on the right-hand side of equation (A1) represents the
influence of barometric pressure and the second term repre-
sents the contribution from the Earth tide components
(equation (A2)). The coefficients aj and bj are determined
and the influence of Earth tides removed from the water
level signal using time domain regression deconvolution.

This procedure allows the separation of the contributions
from Earth tides and barometric pressure at frequencies of
1 and 2 cycles/day. For full details of the method we refer
to Rasmussen and Mote [2007].

Appendix B: Estimation of the Barometric
Response Function

[46] The barometric response function (BRF) is obtained
from the borehole water level and barometric pressure sig-
nals using cross-spectral deconvolution by ensemble aver-
aging [Welch, 1967] used by previous investigators
[Rojstaczer, 1988; Rojstaczer and Riley, 1990; Beavan
et al., 1991; Quilty and Roeloffs, 1991]. The barometric
response function is given by:

BRF fð Þ ¼
XWB fð Þ

XBB fð Þ
ðB1Þ

where XWB fð Þ and XBB fð Þ are the cross spectra of water
level and barometric pressure signals and the auto-
spectrum of the barometric pressure signal, respectively.
Details of the cross-spectrum XWB fð Þ and the auto-
spectrum XBB fð Þ estimation methods can be found in
Bendat and Piersol [2010]. BRF(f) is a complex function
which can be expressed as the barometric response function
gain, ABRF fð Þ, and phase, �BRF(f), given by the modulus
and the argument of BRF(f), respectively:

ABRF ¼ jBRF fð Þj ðB2Þ

�BRF fð Þ ¼ arctan imag BRF fð Þð Þ=real BRF fð Þð Þð 	½ ðB3Þ

[47] Welch’s technique is applied as follows: the time
series for water level and barometric pressure (corrected
for recharge and Earth tides) are divided into a number of
segments, N, with 50% overlap, � [Bendat and Piersol,
2010]. Each segment is detrended, high frequency noise
above three cycles/day removed using a Butterworth filter
[Bendat and Piersol, 2010] and a tapering periodic Han-
ning window applied. A barometric response function is
computed for each pair of segments using equation (B1)
and these N partially independent estimates of the baromet-
ric response function are then averaged. This technique is
applied to five overlapping frequency bands, each with its
own number of segments, N, following the method of Bea-
van et al. [1991]. Using a small number of segments
extends the BRF to lower frequencies at lower accuracy,
whereas using a larger number of segments gives increased
accuracy at higher frequencies. The frequency range of the
final barometric response function is determined using

Table A1. The Five Main Earth and Atmospheric Tidal Compo-

nents, After Merritt [2004]

Component Frequency (cycles/day) Gravitational Source

M2 1.9323 Main Lunar semidiurnal
O1 0.9295 Main Lunar diurnal
N2 1.8959 Lunar semidiurnal
S2 2.0000 Main Solar semidiurnal
K1 1.0027 Lunar-Solar diurnal
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coherence and signal amplitude. Frequencies where the co-
herence between barometric pressure and water level sig-
nals is lower than 0.5 and/or where the amplitude of the
water level signal is less than 0.03 cm are excluded, follow-
ing Rojstaczer and Riley [1990].
[48] Standard errors for gain, �A(f), and phase, ��(f),

were determined using average coherences between baro-
metric pressure and water level signals, CWB fð Þ, over N
segments [Beavan et al., 1991; Bendat and Piersol, 2010]:

�A fð Þ ¼ � fð Þ � ABRF fð Þ ðB4Þ

�� fð Þ ¼ � fð Þ �
180

�
ðB5Þ

where the normalized standard error, �(f), is given by:

� fð Þ ¼
1

2p

1

CWB fð Þ2
� 1

 !" #1=2

ðB6Þ

and p ¼ N � N � 1ð Þ � �. From equation (B6), it can be
seen that the error reduces with increasing coherence,
CWB fð Þ, and number of segments, N.

Appendix C: Calculation of Theoretical
Barometric Response Functions

[49] The analytical model of Rojstaczer [1988] is fitted to
the barometric response functions and used to estimate aqui-
fer and confining layer properties. This model is formulated
in terms of three-dimensionless frequencies R, Q, andW :

R ¼
Lunsat

2!

2Dunsat
; Q ¼

Lsat
2!

2Dcon
; and W ¼

rw
2!

Taqu
ðC1Þ

where ! is angular frequency, Lunsat is the unsaturated zone
thickness, Lsat is the depth from water table to top of the aq-
uifer, and Dunsat and Dcon are the vertical pneumatic and
hydraulic diffusivities of the unsaturated and saturated
zones, respectively. Pore water pressure in the aquifer, P0,
far from the borehole is given by:

P0 ¼ M þ iNð Þ � 1� BEð Þ½ 	 � exp � iþ 1ð Þ � Q0:5
� �

þ 1� BE

ðC2Þ

where BE is the static barometric efficiency of the aquifer, i
is the imaginary number, and M and N are given by:

M ¼ Tcf
2cosh R0:5ð Þ � cos R0:5ð Þ

cosh 2R0:5ð Þ þ cos 2R0:5ð Þ

� �

ðC3Þ

N ¼ Tcf
2sinh R0:5ð Þ � sin R0:5ð Þ

cosh 2R0:5ð Þ þ cos 2R0:5ð Þ

� �

ðC4Þ

[50] Here we have added influence of the capillary fringe
in the form of an attenuation factor, Tcf [Evans et al.,
1991]. The barometric response function as a complex
function, BRFm, is then given by:

BRFm ¼
P0 � 1

1þ 0:5 � i �W � Zð Þ
ðC5Þ

where

Z ¼ K0 W 2 S2aqu þ
Scon

2Q

� 	2
 !" #0:25

� exp 0:5 � i � tan �1 2Qð Þ
� �

8

<

:

9

=

;

ðC6Þ

where K0 is the modified Bessel function of the second
kind and order zero, and Scon and Saqu are the storage coef-
ficients for confining layer and the aquifer, respectively.
The gain and phase of the barometric response function are
given by the modulus and the argument of BRFm, respec-
tively (equations (B2) and (B3)).
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