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Abstract

This paper is concerned with the adaptive control of continuous-time nonlinear dy-
namical systems using neural networks. A novel neural network architecture, referred to
as a variable neural network, is proposed and shown to be useful in approximating the un-
known nonlinearities of dynamical systems. In the variable neural networks, the number
of basis functions can be either increased or decreased with time according to specified
design strategies so that the network will not overfit or underfit the data set. Based on the
Gaussian radial basis function variable neural network, an adaptive control scheme is pre-
sented. The location of the centres and the determination of the widths of the Gaussian
radial basis functions in the variable neural network are analysized to make a compromise
between orthogonality and smoothness. The weight adaptive laws developed using the
Lyapunov synthesis approach guarantee the stability of the overall control scheme, even
in the presence of modelling error. The tracking errors converge to the required accuracy
through the adaptive control algorithm derived by combining the variable neural network
and Lyapunov synthesis techniques. The operation of an adaptive control scheme using
the variable neural network is demonstrated using a simulated example.

Keywords: Neural networks, nonlinear systems, adaptive control, radial basis func-
tions.
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1 Introduction

Neural networks are capable of learning and reconstructing complex nonlinear mappings and
have been widely studied by control researchers in the identification analysis and design
of control systems. A large number of control structures have been proposed, including
supervised control [51], direct inverse control [30], model reference control [35], internal model
control [13], predictive control [14] [52], gain scheduling [12], optimal decision control [10],
adaptive linear control [7], reinforcement learning control [1] [3], indirect adaptive control [35)
and direct adaptive control [19] [41] [46] [47]. The principlal types of neural networks used for
control problems are the multilayer perceptron (MLP) neural networks with sigmoidal units
[30] [35] [44] and the radial basis function (RBF) neural networks [37] [39] [43].

Most of the neural network based control schemes view the problem as deriving adaptation
laws using a fixed structure neural network. However, choosing this structure such as the
number of basis functions (hidden units in a single hidden layer) in the neural network must
be done a priori. This can often lead to either an over-determined or an under-determined
network structure. In the discrete-time formulation, some approaches have been developed
to determine the number of hidden units (or basis functions) using decision theory [4] and
model comparison methods such as minimum description length [50] and Bayesian methods
[29]. The problem with these methods is that they require all observations to be available and
hence are not suitable for on-line control tasks, especially adaptive control. In addition, the
fixed structure neural networks often need a large number of basis functions even for simple
problems. '

Another type of neural network structure developed for learning systems is to begin with
a larger network and then to prune this [28] [32] or to begin with a smaller network and
then to expand this [9], [38] until the optimal network complexity is found. Amongst these
dynamic structure models, the resource allocating network (RAN) developed by Platt [38] is
an on-line or sequential identification algorithm. The RAN is essentially a growing Gaussian
radial basis function (GRBF) network whose growth criteria and parameter adaptation laws
have been studied and extended further [20], [21] and applied to time-series analysis [24]
and pattern classification [23]. The RAN and its extensions addressed the identification of
only autoregressive systems with no external inputs and hence stability was not an issue.
Recently, the growing GRBF neural network has been applied to sequential identification
and adaptive control of dynamical continuous nonlinear systems with external inputs [8] [22]
[27]. Though the growing neural network is much better than the fixed neural network in
reducing the number of basis functions, it is still possible that this network will induce an
overfitting problem. There are two main reasons for this. It is difficult to known how many
basis functions are really needed for the problem and secondly the nonlinearity of a nonlinear
function to be modelled is different when its variables change their value ranges. Normally,
the number of basis functions in the growing neural network may increase to the one that
the system needs to meet the requirement for dealing with the most complicated nonlinearity
(the worst case) of the nonlinear function. Thus, it may lead to a network which has the
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same size as the fixed neural networks.

To overcome the above limitations, a new network structure, referred to as the variable
neural network, is proposed in this paper. The basic principle of the variable neural network
is that the number of basis functions in the network can be either increased or decreased over
time according to a design strategy in an attempt to avoid overfitting or underfitting. In order
to model unknown nonlinearities, the variable neural network starts with a small number of
initial hidden units and then adds or removes units located in a vafiable grid. This grid
consists of a number of subgrids composed of different sized hypercubes which depend on the
novelty of the observation. Since the novelty of the observation is tested, it is idealy suited for
on-line control problems. The objective behind the development is to gradually approach the
appropriate network complexity that is sufficient to provide an approximation to the system
nonlinearities and consistent with the observations being received. By allocating GRBF units
on a variable grid, only the relevant state-space traversed by the dynamical system is spanned,
resulting in considerable savings on the size of the network.

The parameters of the variable neural network are ad justed by adaptation laws developed
using the Lyapunov synthesis approach. Combining the variable neural network and Lyapunov
synthesis techniques, the adaptive control algorithm developed for continuous dynamical non-
linear systems guarantees the stability of the whole control scheme and the convergence of
the tracking errors between the reference inputs and the outputs.

The remainder of the paper is organised as follows: In Section 2, the modelling of nonlinear
dynamical systems by the GRBF network is discussed and a one-to-one mapping of the state-
space to form a compact network input space is also introduced. In Section 3, a variable neural
network is developed, based on a proposed variable grid. The selection of the Gaussian radial
basis functions for the variable neural network is discussed. The adaptive control scheme
using the variable neural networks and the Lyapunov synthesis techniques is developed in
Section 4. The stability of the overall control scheme and the convergence of the tracking
errors are also analysed. The operation of the adaptive control scheme is demonstrated by a
simulated example in Section 5.

2 Nonlinear System Modelling

Consider a class of continuous nonlinear dynamical systems which can be expressed in the
canonical form [18] [36] [49):

y™(t) + F(y™(t), ..., yO(2), y(2)) = Gy (1), ..., yO(), y(1))u(t) (1)

where y(t) is the output, u(t) the control input, y*) the i-th derivative of the output with
respect to time, and F(.) and G(.) unknown nonlinear functions. The above system represents
a class of continuous-time nonlinear systems, called affine systems. The above equation can
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also be transformed to the state space form

x = Ax - bF(x) + bG(x)u (2)
y=1x; (3)

where
A= [g I“O" (4)

b= [0,0,...,1]T and I,; isan (n—1) x (n - 1) identity ﬁatrix, and x = [z, z3, ...,a:,,]T is
the state vector.

Due to some desirable features such as local adjustment of weights and mathematical
tractability, radial basis function networks (RBF) have recently attracted considerable atten-
tion (see, for example, [2] [5] [6] [26]). Their importance has also greatly benefited from the
work of Moody and Darken [31] and, Poggio and Girosi [40] who explored the relationship
between regularization theory and radial basis function networks. The good approximation
properties of the radial basis functions in interpolation have been well studied by Powell and
his group [43]. With the use of Gaussian activation functions, each basis function in the RBF
network responds only to inputs in the neighbourhood determined by the centre and width
of the function. It is also known that if the variables of a nonlinear function are in compact
sets, the continuous function can be approximated arbitrarily well by GRBF networks [39].
Here, the GRBF networks are used to model the nonlinearity of the system.

If z; is not in a compact set, we introduce the following one-to-one (1-1) mapping [27]:

brizi

5—.

i_m for i=1,2,...,n, (5)

where a,;, b,; are positive constants, which can be chosen by the designer (e.g., az;,by; are
1). Thus, it is clear from equation (5) that Z; € [—bg, bsy) for z; € (=00,+00). The above
one-to-one mapping shows that in the n—dimensional space the entire area can be transferred
into an n—dimensional hypercube denoted by the compact set X. Clearly, if x is already in a
compact set, we only need to set X = x.

Thus the nonlinear part G(x)u — F(x) of the system can be described by the following
GRBF network:

G(x)u— F(x) = (8"(K)u - *(K))T8(x, K) + ¢(K) (6)

where
®(x, K) = [¢(X; e1,d1), $(X; €2, d3), ..., (X; ek, dg)]T (7)
#(x; ¢4, d;) = exp {—%H X —c; ||2} , for i=1,2.,K (8)
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£*(K) = [f1, 31, [%]T and g*(K) = [9],93,---,9%]T are the optimal weight vectors, % =
[Z1,Z2,...,Z4)T the variable vector, ¢; the i-th centre, d; the i-th width, £(K') the modelling
error, and K the number of the basis functions.

It is known from approximation theory that the modelling error can be reduced arbitrar-
ily by increasing the number K, i.e., the number of the linear independent basis functions
¢(X; c;,d;) in the network model. Thus, it is reasonable to assume that the modelling error
e(K) is bounded by a constant ex, which represents the accuracy of the model and this is
defined as,

€k = sup |e(K)| 9)
teR+

Although ex can be reduced arbitrarily by increasing the number of the independent basis
funétions, generally when the number is greater than a small value the modelling error ek is
improved very little by increasing the number further. It also results in a large sized network
even for a simple problem. In practice, this is not realistic. In most cases, the required
modelling error can be given by considering the design requirements and specifications of the
system. Thus, the problem now is to find a suitable sized network to achieve the required
modelling error. In other words, it is how to determine the number, centres, widths and
weights of the Gaussian radial basis functions in the network.

3 Variable Neural Networks

Two main neural network structures which are widely used in on-line identification and control
are the fixed neural network and the growing neural network. The fixed neural network usually
needs a large number of basis functions in most cases even for a simple problem. Though
the growing network is much better than the fixed network in reducing the number of the
basis functions for a number of problems, it is still possible that this network will lead to
an overfitting problem for some cases and this is explained in Section 1. To overcome the
above limitations of the fixed and growing neural networks, a new network structure, called
the variable neural network, is proposed in this section.

3.1 Variable Grid

In GRBF networks, the very important parameter is the location of the centres of the Gaussian
radial basis functions over the compact set X', which is the approximation region. Usually,
an n-dimension grid is used to locate all centres in the gridnodes [47). Thus, the distance
between the gridnodes affects the size of the networks and also the approximation accuracy.
In other words, a large distance leads to a small network and a coarser approximation, while
a small distance results in a large size of network and a finer approximation. However, even
if the required accuracy is given, it is very difficult to know how small the distance should

4
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be since the underlying function is unknown. Also, the nonlinearity of the system is not
uniformly complex over the set X. So, here a variable grid is introduced for the location of
the centres of all GRBFs in the network.

The variable grid consists of a number of different subgrids. Each subgrid is composed
of equally sized n-dimensional hypercuboids. It implies that the number of the subgrids can
increase or decrease with time in the grid according to a design strategy. All the subgrids
are named, the initial grid is named the 1-st order subgrid, then the 2-nd order subgrid and
50 on. In each subgrid, there are a different number of nodes, which are denoted by their
positions. Let A; denote the set of nodes in the i-th order subgrid. Thus, the set of all nodes
in the grid with m subgrids is

N=)N (10)

=1

To increase the density of the gridnodes, the edge lengths of the hypercubes of the i-th
order subgrid will always be less than those of the (i — 1)-th order subgrid. Hence the higher
order subgrids have more nodes than the lower order ones. On the other hand, to reduce the
density of the gridnodes, always remove some subgrids from the grid until a required density
is reached.

Let all elements of the set A represent the possible centres of the network. So, the more
the subgrids, the more the possible centres. Since the higher order subgrids probably have

some nodes which are the same as the lower order subgrids, the set of the new possible centres
provided by the i-th order subgrid is defined as

Pi={c:c€N;, and c¢P; for J=12,..,i-1} (11)

where P is an empty set. It shows that the possible centre set P; corresponding to the i-th
subgrid does not include those which are given by the lower order subgrids, i.e.,

NP;=0. (12)

For example, in the two-dimensional case, let the edge length of rectangulars on the i-th
subgrid be half of the (i — 1)-th subgrid. The variable grid with three subgrids is shown in
Figure 1.

3.2 Variable Network

The variable neural network has the property that the number of the basis functions in the
network can be either increased or decreased over time according to a design strategy.

5
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1% subgrid 3™ gubgrid

Figure 1: The variable grid with 3 subgrids.

For the problem of nonlinear modelling with neural networks, the variable network is
initialised with a small number of basis function units. As observations are received, the
network grows by adding some new basis functions or is pruned by removing some old ones.

To add new basis functions to the network the following two conditions must be satisfied:
a) The modelling error must be greater than the required accuracy. b) The period between
the two adding operations must be greater than the minimum response time to the adding
operation.

To remove some old basis functions from the network, the following two conditions must
be satisfied: a) The modelling error must be less than the required accuracy. b) The period
between the two removing operations must be greater than the minimum response time of
the removing operation.

It is known that if the grid consists of the same size n-dimension hypercubes with the edge
length vector p = [py, p3, ..., ps), then the accuracy of approximating a function is in direct
proportion to the norm of the edge length vector of the grid [42), i.e.,

ex |||l (13)

Therefore, based on the variable grid, the structure of a variable neural network is proposed
here. The network selects the centres from the node set A of the variable grid. When the
network needs some new basis functions, a new higher order subgrid (say, (m + 1)-th subgrid)
is appended to the grid. The network chooses the new centres from the possible centre set
Pm+1 provided by the newly created subgrid. Similarly if the network needs to be reduced,
the highest order subgrid (say, m-th subgrid) is deleted from the grid. Meanwhile, the network
removes the centres associated with the deleted subgrid. In this way, the network is kept to a
suitable size. How to locate the centres and determine the widths of the GRBF's is discussed
in the next section.
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3.3 Selection of Basis Functions

It is also known that the Gaussian radial basis function has a localisation property that the
influence area of the k** basis function is governed by the centre ¢; and width di. In other
words, once the centre c; and the width dj are fixed, the influence area of the Gaussian radial
basis function ¢(X; ci,d) is limited in the state-space to the neighbourhood of c;.

On the basis of the possible centre set A/ produced by the variable grid, there are large
number of basis function candidates, denoted by the set B. During the system operation, the
state vector X will gradually scan a subset of the state-space set X’. Since the basis functions
in the GRBF network have a localised receptive field, if the neighborhood of a basis function
¢ € B is located ‘far away’ from the current state %(t), its influance to the approximation
is very small and could be ignored by the network. On the other hand, if the neighborhood
of a basis function ¢ € B is near to or covers the the current state X(t), it will play a very
important role in the approximation. Thus it should be kept if it is already in the network
or added into the network if it is not in.

Given any point X, the nearest node %} = (23,2}, ...,25]T to it in the i-th subgrid can
be calculated by,

. _ 5 .
i £} = round (#) i (14)
for j = 1,2,...,n, where round(-) is an operator for rounding the number (-) to the nearest
integer, for example, round(2.51) = 3, and 6;; is the edge length of the hypercube correspond-

ing to the j-th element of the vector x in the i-th subgrid. Without lose of generality, let
b;=6;1 = b3 = ... = 6.

Define m hyperspheres corresponding to the m subgrids, respectively,

n
Hi(xF,0;) = {i - Z(Iﬁ - :E;‘;)’ < crf} (15)
=1

for ¢ = 1,2,...,m, where o; is the radius of the i-th hypersphere. In order to get a suitable
sized variable network, choose the centres of the basis functions from the nodes contained in
the different hyperspheres Hi(xF,0;), which are centred in the neartest nodes X7 to X in the
different subgrids with radius o;, for i = 1,2,...,m. For the sake of simplicity, it is assumed
that the basis function candidates whose centres are in the set P; have the same width d; and
d; < d;_y. Thus, for the higher order subgrids, use the smaller radiuss, i.e.

Om < Op-1 < ... < 03 (16)
Usually, choose
0i = N10i-1 )
where 7; is a constant and less than 1. Thus, the chosen centres from the set P; are given by
the set:
Ci={c:ceP; and ceH;x}, o)} (18)

7
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In order that the basis function canditates in the set P; which are less than an activation
threshold to the nearest grid node X} in the i-th subgrid are outside the set Hi(xF, 0%), it
can be deduced from (8) and (15) that the o; must be chosen to be

0: > \log(671,)d: (19)

for i =1,2,...,m, where 6,nin, € (0,1) represents the activation threshold.

Thus, the centre set of the network is given by the union of the centre sets C;, for i =
1,2,...,m, that is,

c={)c (20)

=1
For example, in the 2-dimension case, the radii are chosen to be the same as the edge
lengths of the squares in the subgrids, that is,
o;=26;, for i=12,..,m. (21)

The chosen centres in the variable grid with four subgrids are as shown in Figure 2.

3
NE

I 1

- Figure 2: The location of centres in the variable grid with 4 subgrids. The number i (i =
1,2,3,4) denotes the centres chosen from the i-th subgrid.

Now, consider how to choose the width di of the k** basis function. The angle between
the two GRBF's ¢(x; ¢;, d;) and ¢(x; c;,d;) is defined as

0;; = =1 [ = ¢(x; Ci,dl')’gb(X; Cj,dj) >)
ke (II¢(x;q,di)llllcﬁ(x;c,-,d,-)||

where < .,. > is the inner product in Hilbert space. The angle can be given by [20],

6;; = cos™! ((1@) ) ¢(C:;;Ci,di)’_f‘+-’) : (23)

(22)

£+ 1

8
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where £ = d?/d?. It shows from the above that the cos(6;;) depends on three factors: the
dimension n, the width ratio £ and the output of a basis function at the centre of the other
basis function, ¢(c;; ¢;, d;).

If the centres of the two basis functions are chosen from the same subgrid, i.e., £ = 1, it
is clear from Eq.(23) that

cos(8;) = ¢(es3 i, di)E. (24)

On the other hand, if the centres of the two basis functions are from different subgrids, it
is possible that their centres are very close. The worst case will be when ¢(c;;c;, d;) is near
to 1. In this case, the angle between the two basis functions can be written as

M)

COS(G{j) < (f 1

(25)

Given the centre ¢, in order to assign a new basis function ¢(x;ck,d;) that is nearly
orthogonal to all existing basis functions, the angle between the GRBFs should be as large
as possible. The width di should therefore be reduced. However, reducing di increases the
curvature of ¢(x; cx,dy) which in turn gives a less smooth function and can lead to overfitting
problems. Thus, to make a trade-off between the orthogonality and the smoothness, it can be
deduced from Eqs. (24) and (25) that the width dj, which ensures the angles between GRBF
units are not less than the required minimum angle 6y,;,, should satisfy

1+4/1 57 (Bmen) \
+ — cos®/ ™ (Boin :
§£2 ( C054/"(6min) ) (26)
or .
1- \/] — c0s8/™(0,in)
£ < ( cosAT™ (i) ) (27)
and

di < \/ log™* cos(bimin )6k (28)

For example, assume that the s satisfies Eq.(26). If the width of the basis functions whose
centres are located in the set C;, which corresponds to the i-th subgrid with §; = £6;_y, is
chosen to be d; = £yd;_; and the width d; of the basis functions associated to the initial grid
satisfies

d < \/log™* c0s(Bmin )61 (29)

then the smallest angle between all basis functions are not less than the required minimum
angle 0,,;n.. '
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Therefore, based on a variable grid with m subgrids, the nonlinear function approximated
by the GRBF network in Eq. (6) can also be expressed by

Gx)u— F(x) = 305 (fius + 084 0065, cong i) + (K) (30)
=1 j=1
where
K = i m; (31)

Ci+; is the j-th element of the set C;, m; is the number of its elements, and fi4; and g7, are
the optimal weights. So, the next step is how to obtain the estimates of the weights.

4 Adaptive Control

The stability of the overall control scheme is an important issue in the design of the system.
The overall stability depends not only on the particular control approach that is chosen but
also on the control laws that are used. In practice, one of the design objectives for a system is
that the tracking error between inputs and outputs should converge to the required accuracy.
Those problems are solved here by developing a stable adaptive control law based on Lyapunov
stability techniques [25] and the variable GRBF network discussed in Section 3.

4.1 Adaptation Laws

We assume that the basis functions ¢(X;ck,di) for k =1,2,..., K are given. Section 4.2 will
discuss how the basis functions of the network model are chosen.

The control objective is to force the plant state vector x to follow a specified desired

trajectory yq = [va, ygl), - y&“_l)]T. The tracking error vector and the weight error vectors,

respectively, are defined as,

e = X-—-Yy4 (32)
f(K) = *(K)-1(K) (33)
g(K) = g'(K)-g(K) (34)

where f(K') and g(K) are the estimated weight vectors. From Eq.(1), it can be shown that
x = Ax + b(g"(K)u — {T(K))®(%, K) + b(gT(K)u - {7(K))®(%, K) + be(K)  (35)
Hence, from Egs.(32)-(35), the dynamical expression of the tracking error is,
e = Ae—by{” +b(gT(K)u—17(K))®(x, K) + b(gT (K )u — I7(K))®(%, K) + be(K) (36)

10
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One approach to this problem is to take the control input satisfying
gT(K)®(x, K)u = y{ + T(K)$(x, K) + aTe (37)
where the vector a = [a;, a3, ...,a,)7 makes the following matrix

0 1 0 .. 0
1 w B

Ag = 0 0 I B (38)
Ll-a —a3 -a3 .. -a,

stable, i.e., all the eigenvalues are in the open left plane. The control input consists of a linear
combination of the tracking errors a’e, the adaptive part f7(K)®(x, K') which will attempt
to estimate, and cancel, the unknown function F(.), and yﬂ"‘) is a feedforward of the n-th
derivative of the desired trajectory.

Consider the following Lyapunov function,
V(e,f,g)=e"Pe+ %?T(K)T(K) + %'T (K)&(K) (39)

where P is chosen to be a positive definite matrix so that the matrix Q = ~PA, — ATP is
also a positive definite matrix, and a and § are positive constants which will appear in the
sequential adaptation laws, also referred to as the learning or adaptation.rates. Using Eq.
(36), the derivative of the Lyapunov function V with respect to time is given by

Vie.f,g) = -e"Qe+2PTe((g7(K)u-IT(K))®(%, k) + e(K))
+20 T (K)E(K) + 267 &7 (K)§(K) (40)

where the vector P, is the n-th row of the matrix P, i.e., P, = [l s Bim e i)

Since f* is a constant vector, we have that f = —f, similarly, g = —g. If there is
no modelling error, i.e., ¢(K) = 0, the weight vectors f and g can simply be generated
according to the following standard adaptation laws: f(K) = —aPTed(x; K) and g(K) =
BPTeud(x; K). In the presence of a modelling error £(K), to ensure the stability of the system
» a lot of algorithms, e.g., the fixed or switching o-modification [16] [17], £-modification [33] .
and the dead-zone methods [34] [48], can be applied to modify the above standard adaptation
laws.

Define the following sets:

Fi=A{f:|f| <My or (|fll=M and PTlefTd(x)> 0)} (41)
5 Fo={f:|f|=M, and PTefTd(x)< 0} (42)
Gi={g:llgll<M> or (llg=M: and Pjeug™®(x)<0)} (43)
Go={g:ligll=Mz2 and PJeug”d(x)> 0} (44)

11
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where M; and M; are positive constants.

Here, in order to avoid parameter drift in the presence of modelling error, the application
of the projection algorithm [11] [15] [41] gives the following adaptive laws for the parameter
estimates f and g:

) —-aPled(x; K) if f(K)enr

f(K) = 45)
—aPled(%; K) + aM{*PLefT(K)®(%; K)I(K) if f(K)€ F

) BPTeud(x; K) if g(K)eG

g(K)= . _ _ _ 46)
BPLeud(%; K) — fM;*Pleug” (K)&(%; K)g(K) if g(K)€ G,

It is clear that if the initial weights are chosen such that f(K,0) € 7, UF; and g(K,0) €
01 UGz, then the weight vectors f and g are confined to the sets F; |J F; and G, U Ga, respec-
tively. With use of the adaptive laws (45) and (46), Eq. (40) becomes,

n
V(ea 1, g) < -eTQe +2 E lpﬂi”eiIEK (47)

=1

For the sake of simplicity, the positive definite matrix Q is assumed to be diagonal, i.e.,
Q = diag[g:1, 92, .-, gn). Also define

o(¢ { gq,(lm-"’“') s}": : } (48)

where ( is a positive variable, i.e., ( > 0.

If there is no modelling error (i.e., ex = 0), then from Eq.(47), V is negative semidefinite.
Hence the stability of the overall identification scheme is guaranteed and

e—0, f—-0, g—0. (49)

On the other hand, in the presence of modelling error, if e  ©(ek), it is easy to show
from (47) that V is still negative and the tracking errors will converge to the set O(ex). But,
if e € ©(ek), it is possible that V > 0, which implies that the weight vectors f(K) and g(K)
may drift to infinity over time. The adaptive laws (45) and (46) avoid this drift by limiting
the upper bounds of the weights. Thus the tracking error always converges to the set ©(e K)
and the overall control scheme will remain stable in the case of modelling error.

4.2 Adaptive Control Algorithm

From the set ©(ex) which gives a relationship between the tracking and modeling errors, it
can be shown that the tracking error depends on the modelling error. If the modelling error

12
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ek is known, then the set ©(ex) to which the tracking error will converge is also known.
However, in most cases the upper bound ¢x is unknown.

In practice, control systems are usually required to keep the tracking errors within pre-
scribed bounds, that is,

le;] < €50, for i=1,2,...n (50)

where £;p is the required accuracy. At the beginning, it is very difficult to know how many

neural network units are needed to achieve the above control requirements. In order to find

a suitable sized network for this control problem, first set lower and upper bounds for the

tracking errors, which are functions of time t, and then try to find a variable network such
- that

le:| € [aF(t), AY()+ew), for i=1,2,..,n (51)

where A¥(t), AV(t) are monodecreasing functions of time ¢, respectively. Those bounds are
usually defined as

AY(t) = pyAY(0) (52)
Af(t) = BLAK(0) (53)

where By, fr are constants and less than 1, A?(O),A?(O) are the initial values. It is clear
that AY(t), AL(t) decrease with time ¢. As t — 0, AY(t), A¥(t) approach 0. Thus, in this
way the tracking errors reach the required accuracies given in Eq.(50).

According to the relationship between the modelling error and the tracking error, it is
easy to know that given the lower and upper bounds Al(), AL(t) + €40 of the tracking errors
the modelling error corresponding to the above should be

ek (1) € [ec(t), eu(t)) (54)

It is easy to know that the area that the set ©(¢) covers is a hyperellipsoid with the center

( Q1 ¢ q2 SIS qn C)' (55)

Thus, it can be deduced from the set ©(ek(t)) given by Eq.(48) that the upper bound ey (t)
and the lower bound ¢ L(t) are given by

-0.5

o n g 0.5 .
— L i 4 :
er(t) = _max ol E o Ay (1) (56)
0.5\ —0.5
: |Pri] ® pa; | U
eu(t) = L T o Z "E (A7 (1) + €4i0) (57)
pdigassy '3 J=1 1
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Hence, if the tracking error e € O(ey(t)), the network needs more basis functions. Add the
(m+1)-th order subgrid to the grid. The parameters associated with the GRBF units are
then changed as follows:

Om+1 = 710m (58)
Sm41 = Y26m (59)
dmt1 = 73dm (60)
m+1
P=J 7 (61)
i=1 ’
m+1
c=c (62)
=1
m+1
K= 2 m; (63)
=1

where 7;, for ¢ = 1,2, 3, is a constant and less than 1.

But, if the tracking error e € O(eL(t)), the network needs to remove some basis functions.
Just remove the units associated with m-th subgrid. The parameters associated with the
GRBF units are then changed as follows:

m—1

P= P (64)
=1
m-—1

e=1l]& | (65)

=1
m-1
K=Y m (66)
=1
In both above cases, the adaptive laws of the weights are still given in the form of (45) and
(46), based on the above changed parameters. For the two dimensional case, the convergence

area is shown in Figure 3. At the beginning, the convergence area of the tracking area is Eq.
Finally it approaches to the expected convergence area E, that is, |e;] < g5, for i = 1,2.

5 Simulation Results

The dynamical system used in the simulation example is given in [47],

ij—4 (sinfyxy)) (sinﬂ(.;rﬂ))a = (2 4+ sin(37y — 1.57))u (67)

which is a second order nonlinear system.

The parameter values used in this example are as follows: the reference input yg = sin(t);
the initial value of the output y(0) = 0.5; the initial value of the output derivative (0) = 0;

14
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Figure 3: The two-dimensional convergence area.

the required accuracy of the tracking error vector [£10, €20] = [0.05,0.1]; the constants By =
Br = 0.96; the initial values AY(0) = 0.005, AE0) = 0.05, for i = 1,2; the required minimum
angle between the GRBFs cos(fmin) = 0.951: the edge length of the rectangles in the 1-st
subgrid is & = 0.5; the radius of centre selection in the 1-st subgrid o, = 0.99; the width
of the GRBF units corresponding to the 1-st subgrid d; = 1.11; the activation threshold
Omin = 0.45; the initial number of the variable networks is 45; the vector a = [1,1]; the
matrix P = [[0.75,0.5]7,[0.5, 1)7]; the adaptation rates a = 1.5 and B =3.

The parameters associated with the variable network are
6; = 0.6186;_1, o;= 0.6180;_1, d;=0.618d;_, (68)

for i = 2,3,...,m. The maximum of m (the number of the subgrids) is limited to be 11.

The weights are adaptively adjusted by the laws in Egs.(45) and (46). The adaptive
control law is given by Eq.(37). The results of the simulation are shown in Figures 4-6.
Though the difference between the system output and the desired output is very large at the
beginning, the system is still stable and the tracking error asymptotically converges to the
expected range, which is also shown in Fig.5. As it can be seen from Fig. 6, the number of
GRBF units in the neural network also converges in a period of time.

6 Conclusions

A variable neural network structure has been proposed, where the number of the basis func-
tions in the network can be either increased or decreased over time according to some design
strategy to avoid either overfitting or underfitting. In order to model unknown nonlinearities
of nonlinear systems, the variable neural network starts with a small number of initial hid-
den units, then adds or removes units on a variable grid consisting of a variable number of
subgrids with different sized hypercubes, based on the novelty of observation. The adaptive
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derivative §(¢) of the system.
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Figure 5: The tracking error y(t) — ya(t) of the system.

control algorithm, developed by combining the variable Gaussian radial basis function net-
work and Lyapunov synthesis techniques, guarantees the stability of the control system and
the convergence of the tracking errors. The number of GRBF units in the neural network also
converges by introduing the monodecreasing upper and lower bounds of the tracking errors.
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Figure 6: The control input u(t) of the system and the number K of GRBF units in the
variable neural network.

The results of the simulation example illustrate the operation of the variable neural network
for adaptive nonlinear system control.

Acknowledgements

The authors gratefully acknowledge the support of the Engineering and Physical Sciences
Research Council (EPSRC) of UK under the contract GR/J46661.

References

[1] C. W. Anderson, “Learning to control an inverted pendulum using neural networks” JEEE
Control Systems magazine, Vol. 9, pp. 31-37, 1989.

[2] P. J. Antsaklis, (ed.), Special Issue on Neural Networks in Control Systems, IEEE Control
Systems magazine, Vol.10, No.3, 1990.

(3] A. G. Barto, Neural Network for Control, MIT Press, Cambridge, MA, 1990.

[4] E. Baum and D. Haussler, “What size net gives valid generalization”, Neural Computation,
Vol .1, No.1, 1989.

(5] S. A. Billings and S. Chen, “Neural Networks and System Identification”, In K. Warwick et al.,
(eds.) Neural networks for systems and control, pp.181-205, 1992,

(6] S. Chen, S. A. Billings and P. M. Grant, “Nonlinear system identification using neural networks”,
International Journal of Control, Vol.51, No.6, pp.1191-1214, 1990.

17




, . |

Liu, Kadirkamanathan & Billings

[7] S. R. Chi, R. Shoureshi and M. Tenorio, “ Neural networks for system identification,” IJEEE
Control Systems Magazine, Vol. 10, pp. 31-34, 1990.

(8] S. Fabri, and V. Kadirkamanathan, “Dynamic structure neural networks for stable adaptive
control of nonlinear systems”, to appear in the JEEE Trans. on Neural Networks, 1996.

[9] S. E. Fahlman and C. Lebiere, “The cascade-correlation architecture”, In D. S. Touretsky (ed.),
Advances in Neural Information Processing Systems 2, Morgan Kaufmann, CA: San Mateo, 1990.

(10] K. S. Fu, “Learning control systems — review and outlook,” IEEE Trans. on Aut. Control, Vol.
16, pp.210-221, 1970. |

[11] G. C. Goodwin and D. Q. Mayne, “ A parameter estimation perspective of continuous time
model reference adaptive control,” Automatica, Vol. 23, No. 1, pp. 57-70, 1987.

[12] A. Gues, J. L. Elibert and M. Kam, “Neural network architecture for control,” IEEE Conirol
Systems Magazine, Vol. 8, pp. 22-25, 1988.

[13] K. J. Hunt and D. Sbararo, “Neural networks for nonlinear internal model control,” Proc. IEE
Pt. D, Vol. 138, pp. 431-438, 1991.

[14] K. J. Hunt, D. Sbararo, R. Zbikowski and P. J. Gawthrop, “Neural networks for control systems
— a survey,” Automatica, Vol. 28, No. 6, pp. 1083-1112, 1992.

[15] P. A. Ioannou and A. Datta, “Robust adaptive control: design, analysis and robustness bounds,”
in Foundations of Adaptive Control, P.V. Kokotovic (ed.), pp. 71-152, Springer-Verlag, Berlin,
1991.

[16] P. A. Ioannou and P. V. Kokotovic, Adaptive Systems with Reduced Models, Springer-Verlag,
New York, NY, 1983.

[17] P. A. Joannou and Tsakalis, “A robust direct adaptive control,” IEEE Trans. Aut. Controel, Vol.
31, pp. 1033-1043, 1986

[18] A. Isidori, Nonlinear Control Systems: An Introduction, Springer-Verlag, Berlin, 1989.

[19] A. Karakasoglu, S. L. Sudharsanan and M. K. Sundareshan, “Identification and decentralised
adaptive control using neural networks with application to robotic manipulators,” IEEE Trans.
on Newral Networks, Vol. 4, No. 6, pp. 919-930, 1993.

[20] V. Kadirkamanathan, Sequential Learning in Artificial Neural Networks, Ph.D Thesis, University
of Cambridge, UK, 1991.

[21] V. Kadirkamanathan, “A statistical inference based growth criteria for the RBF network,” In
Proc. IEEE Workshop on Neural Networks for Signal Processing, PP- 12-21, 1994,

[22] V. Kadirkamanathan and G.P. Liu, “Robust identification with neural networks using multiob-
Jective criteria,” Preprints of 5th IFAC Symposium on adaptive Systems in Control and Signal
Processing, Budapest, Hungary, pp. 237-242, 1995.

[23] V. Kadirkamanathan and M. Niranjan, “Application of an architecturally dynamic network
for speech pattern classification”, In Proceedings of the Institute of Acoustics, Vol.14, Part 6,
pp.343-350, 1992.

18




Variable Neural Networks for Adaptive Control

[24] V. Kadirkamanathan and M. Niranjan, “A function estimation approach to sequential learning
with neural networks”, Neural Computation, Vol.5, pp.954-957, 1993.

[25] 1. D. Landau, Adaptive Control — The Model Reference Approach, Marcel Dekker, Inc., New
York, 1979.

[26] G. P. Liu and V. Kadirkamanathan, “Learning with Multiobjective Criteria,” Proceedings of
Fourth International Conference on Artificial Neural Networks, Cambridge, U.K., pp.35-40, 1995.

[27] G. P. Liu V. Kadirkamanathan and §. A. Billings, “Identification of nonlinear systems using
growing RBF networks,” Proceedings of the Third European Control Conference, Rome, 1995.

[28] Y. LeCun, J.S. Denker and S.A. Solla, “Optimal brain damage.” In advances in Neural In-
Jormation Processing Systems 2 (D.S. Touretsky, ed.) pp. 598-605. San Mateo, CA: Morgan
Kaufmann, 1990.

[29] D.J. C. MacKay, “Bayesian interpolation”, Neural Computation, Vol .4, No.3, pp.415-447, 1992,

[30] T. M. Miller, R. S. Sutton III and P. J. Werbos (eds), Neural Networks Jor Control, MIT Press,
Cambridge, MA, 1990.

[31] J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned processing units”, Neural
Computation, Vol.1, pp.281-294, 1989,

[32] M. C. Mozer and P. Smolensky, “Skeletonisation: A technique for trimming the fat from a
network via relevance assignment”, In D. S. Touretzky (ed.), Advances in Neural Information
Processing Systems 1, Morgan Kaufmann, CA: San Mateo, 1989.

[33] K.S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adaptation with persistent
exitation,” IEEE Trans. Aut. Control, Vol. 32, No.2 pPp- 134-145, 1987.

[34] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems, Prentice-Hall, Engelwood Cliffs, .
New Jersey, 1989.

[35] K. S. Narendra and K. Parthasarathy. “Identification and control of dynamical systems using
neural networks”, IEEE Trans. on Neural Networks, Vol.1, No.1, pp.4-27, 1990.

[36] H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag,
New York, 1990.

[37] M. Niranjan and F. Fallside, “Neural networks and radial basis functions for classifying static
speech patterns,” Computer Speech and Language, Vol .4, Pp.-275-289, 1990, §

[38] J. Platt, “A resource allocating network for function interpolation”, Neural Computation, Vol 4,
No.2, pp.213-225, 1991.

[39] T. Poggio and F. Girosi, “Networks for approximation and learning”, Proceedings of the IEEE,
Vol. 78, No. 9, 1990.

[40] T. Poggio and F. Girosi, “Regularisation algorithms for learning that are equivalent to multilayer
networks”, Science, Vol.247, pp.978-982, 1990.

[41] M. M. Polycarpou and P. A. Ioannou, “Identification and control of nonlinear systems using
neural network models: design and stability analysis”, Technical Report 91-09-01, Department
of Electrical Engineering-Systems, University of Southern California, USA, 1991.

19




.

Liu, Kadirkamanathan & Billings

[42] M. J. D. Powell, Approzimation Theory and Methods, Cambridge University Press, Cambridge,
1981.

& [43] M.J. D. Powell, “Radial basis functions for multivariable interpolation: A review”, In J. C. Ma-
son and M. G. Cox, (eds), Algorithms for Approzimation, pp.143-167, Oxford University Press,
Oxford, 1987.

[44] D. Psaltis, A. Sideris and A.A. Yamamura, “A multilayered neural network controller,” IEEE
Control Systems Magazine, Vol. 8, pp. 17-21, 1988

[45] S. Z. Qin, H. T. Su and T. J. McAvoy, “Comparison of four net learning methods for dynamic
system identification”, JEEE Trans. on Neural Networks, Vol.3, No.1, pp.122-130, 1992.

[46] N. Sadegh, “A perceptron network for functional identification and control of nonlinear systems”,
IEEE Transactions on Neural Networks, Vol .4, No.6, pp.982-988, 1993.

= [47) R. M. Sanner and J. J. E. Slotine, “Gaussian networks for direct adaptive control”, IEEE Trans.
on Neural Networks, Vol.3, No.6, pp.837-863, 1992.

[48] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness, Prentice-
Hall, Engelwood Cliffs, 1989.

[49] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall International, Englewood
Cliffs, New Jersey 1991.

[50] P. Smyth, “On stochastic complexity and admissible models for neural network classifiers”, In
R.P. Lippmann, J. Moody and D. S. Touretzky (eds.), Advances in Neural Information Processing
Systems 8, Morgan Kaufmann, CA, San Mateo, 1991.

[51] R. J. Werbos, “Backpropagation through time: what it does and how to do it”, In Proceedings
of the IEEE, Vol.78, pp-1550-1560, 1990.

(52] M. J. Willis, G. A. Montague, C. Di. Massimo, M. T. Tham and A. J. Morris, “Artificial neural
networks in process estimation and control”, Automatica, Vol.28, No.6, pp.1181-1187, 1992.

20




