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Abstract

We recently found that older adults show reduced learning rates when learning a new pattern of coordinated rhythmic
movement. The purpose of this study was to extend that finding by examining the performance of all ages across the
lifespan from the 20 s through to the 80 s to determine how learning rates change with age. We tested whether adults
could learn to produce a novel coordinated rhythmic movement (90u relative phase) in a visually guided unimanual task. We
determined learning rates to quantify changes in learning with age and to determine at what ages the changes occur. We
found, as before, that learning rates of participants in their 70 s and 80 s were half those of participants in their 20 s. We
also found a gradual slow decline in learning rate with age until approximately age 50, when there was a sudden drop to a
reduced learning rate for the 60 though 80 year olds. We discuss possible causes for the ‘‘50 s cliff’’ in perceptuo-motor
learning rates and suggest that age related deficits in perception of complex motions may be the key to understanding this
result.
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Introduction

The coordination of perception and action is intrinsic to

numerous tasks of daily living such as walking, eating, dressing and

driving a vehicle. Coordination is of primary concern to older

adults because the loss of the ability to produce smooth

coordinated muscle activity will lead to an increased risk of falling

[1] and a decreased social and functional independence [2].

Perceptuo-motor learning, as well as performance, is essential for

retaining independence, maintaining health or recovering from

injury, and reducing the burden on caregivers and society at large.

Older adults are also often required to re-learn coordination skills

after injury, or learn new patterns of coordination such as

fastening buttons with one hand or walking with walking sticks. Of

course learning coordinative skills is relevant not only to older

adults but adults of all ages. New tasks need to be learned on a

continuous basis, especially with the advances in technology we

are experiencing at the moment, and anyone can suffer from an

injury that results in the need to re-learn previously attained

coordinative skills. We recently discovered that older adults in

their 70 s and 80 s learned a new pattern of coordination at half

the rate of a group of 20 year olds [3]. Here we investigated the

rest of the lifespan between these ages to determine how learning

rates change with age.

Coordinated rhythmic movement (first described by Kelso, [4])

is a useful way of assessing perceptuo-motor learning. When two

limbs, or two oscillators of any sort, move in phase (e.g. when two

fingers move upwards and downwards at the same time) they are

said to move at 0u relative phase. When they move in opposition

(or anti-phase) they are at 180u relative phase. 0u is the most stable

form of coordination. 180u can also be readily produced, but is less

stable than 0u with people spontaneously switching to 0u at high

frequencies. Both 0u and 180u can be produced with little intent or

conscious effort [5]. They are also said to represent the intrinsic

dynamics of the system and do not require learning [6]. Other

coordination patterns such as 90u are difficult to produce in the

absence of special circumstances (e.g. following metronomes) or

training [5–8]. Wilson et al [11] showed that, without special

training and perceptual learning, 90u relative phase is not

perceived well and discriminated from different relative phases

(other than 0u and 180u). Thus, it is not surprising that 90u relative

phase is not easy to envisage. Imagine two oscillators/dots moving

from left to right on a computer screen, one above the other. For

0u the dots move together – one always directly above the other

and in the same direction (See Figure 1). For 180u the dots move in

opposite directions. So when one moves left the other moves right

and vice versa. In 90u (halfway between 0u and 180u) the dots are

moving in the same direction only 50% of the time (see Figure S1).

When the dots move from left to right one dot reaches the right

side at the same time as the other one reaches the midpoint at peak

speed. Many people see the pattern as one dot ‘chasing the other’

and always staying half the amplitude of the movement behind it.

Due to the fact that it is hard to produce without training, we used

the 90u relative phase pattern in the current experiment because

we wanted to examine how people across the lifespan cope with

learning a novel task; akin to the idea of a person with

osteoarthritis learning to walk with a cane or a patient who has

suffered from a bad fall or had a hip replacement re-learning to
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walk properly. It’s not whether they can learn to produce 90 per

se, but whether they can produce a new pattern or coordination.

Perceptual information is considered a crucial element of

successful coordination [9–11]. In visual coordination studies

where only vision is available to couple movements, and

participants oscillate their limb to coordinate with the movement

of another oscillator on a computer display [12–13], or another

person [14–15], all the usual coordination dynamics are exhibited

showing that coordination is mediated by perception. From this

perception-action perspective on coordination it follows that

rhythmic production of 90u is difficult because participants are

unable to perceive and recognise it. This is not to say that

observers cannot learn to perceive and produce it with training,

they can [11,16], but stable production requires stable access to

perceptual information and this needs to be learned. Additional

evidence for the central role of perception comes from studies

using lissajous displays (position-position plots), where transformed

visual feedback information leads to improved performance of 90u
relative phase [17–18] and studies where 90u performance is

possible when the perceived phase relation displayed is trans-

formed to look like 0u [13,19].

Most research into perceptuo-motor performance and learning

has been carried out on young adults. Less is known about older

adults, and even less about those between these two age groups.

Serrien et al. [7] examined bimanual performance of 0u and 180u
relative phase in young (mean age 24) and older (mean age 75)

adults and found performance deteriorated for the older adults

when dissimilar limbs were used, and this was enhanced in the

anti-phase mode. Swinnen et al [6] investigated the performance

of bimanual 90u rhythmic movements with lissajous feedback by

nine older (mean age 73) and nine younger (mean age 19)

participants. They found that older adults showed lower perfor-

mance levels than the younger adults across acquisition and

retention and were more variable. In respect to learning, the

younger adults showed a steep decline in error on day 1, but this

decrease was equivalent to that of the older adults on day 2.

Wishart et al. [20] also examined bimanual performance and

learning of 90u by older and young adults with lissajous feedback.

Both groups could learn to produce 90u, although the older adults

were not as consistent as the younger adults, and only benefitted

from concurrent visual feedback at the end of day 3, whereas the

younger adults benefitted on day 1.

In a recent study, Coats et al [3] sought to fill a gap in the

existing literature by quantifying learning rates and changes in

learning rates. They examined unimanual/visual coordination

without transformed feedback in older and younger adults. They

found that older adults exhibited learning rates that were half

those of their younger counterparts and suggested that, while there

are likely to be a number of factors underlying these age

differences, emerging deficits in motion perception may be key.

In the current study, we set out to determine how and when this

change in learning rate occurs by examining the rest of the

lifespan. Is there a gradual change in performance with age? Or is

there a sudden drop, and if so at what age? Participants followed

the exact same procedure as those in Coats et al [3]. 9–10

participants from each age decade from 20 s to 80 s were tested on

a visual coordination task with concurrent feedback on perfor-

mance. Participants were tested on their baseline ability to move at

0u, 90u, and 180u, trained at 90u over 5 sessions, and re-evaluated

at post test and retention. The data yielded learning curves that

were fit by a model and used to estimate learning rates, separately

for each of the age groups. The majority of the data from the 20,

70 and 80 year olds have already been published [3] so we would

expect the same learning rates in these groups (with rates of the

older groups being half that of the younger group), but how

learning rates change across the lifespan (30 s, 40 s, 50 s, 60 s in

addition to 20 s, 70 s, and 80 s) remains to be seen.

Method

Ethics Statement
This study was approved by the Institutional Review Board at

IU Bloomington. Written informed consent was obtained from all

participants.

Participants
Ten young adult participants in their 20 s (3 male; mean age

22), 10 participants in their 30 s (5 male; mean age 33), 10 in their

40 s (3 male; mean age 44), 9 in their 50 s (2 male; mean age 54),

10 in their 60 s (8 male; mean age 67), 10 in their 70 s (3 male;

mean age 74) and 9 in their 80 s (3 male; mean age 84)

participated in the study. The majority of participants were

recruited from the Indiana University or wider Bloomington

community including the YMCA, IU Tennis Center, Meadowood

retirement community (six 70 year olds and seven 80 year olds),

and from fliers placed around the IU campus. Four of the 60 year

olds and one 83 year old were recruited from Sandbach Rugby

Club, UK. All participants had normal or corrected-to-normal

Figure 1. 06, 1806 and 906 degrees. The oscillators at the three
phase relations: 0u (a), 180u (b) and 90u (c).
doi:10.1371/journal.pone.0085758.g001
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vision. All participants were naı̈ve to the experimental questions

and their 90u relative phase production was worse than their 0u
and 180u relative phase production prior to training. Measures of

cognitive function were collected from the older adults (70 s and

80 s) using the Short Portable Mental Status Questionnaire [21]

and all participants scored within the range of normal mental

functioning. Data from all the 20 year olds, nine 70 year olds and

eight 80 year olds have already been published [3].

Procedure
The procedure was identical to that used in Coats et al. [3].

Participants sat in front of a Dell Latitude 1599 laptop, with the

monitor set to a resolution of 10246768 and a refresh rate of

60 Hz that was connected to a Logitech Force 3D Pro joystick

(force feedback feature disabled) via USB. The computer

presented a display showing two white dots, one above the other,

on a black background. In the display, the dots oscillated

horizontally from side-to-side. Except for task demonstrations,

the top dot was under the control of the computer, while the

bottom dot was under the control of the participant via the

joystick. All participants used their preferred hand to control the

joystick. The amplitude of movement of each dot was 300 pixels

and each dot was 60 pixels in diameter. Stimulus presentation,

data recording and all data analysis was handled by a custom

Matlab toolbox written by ADW, incorporating the Psychtoolbox

(http://psychtoolbox.org) [22–24].

There were four Assessment sessions (Baseline x2, Post Training

and Retention) and five Training sessions. These sessions were

spread over eight separate days (not necessarily consecutive but

within a nine week period). We conducted two baseline sessions

primarily to ensure that task novelty was not too large a

contributing factor to baseline performance. The measures that

we report for ‘‘baseline’’ represent the averaged performance

during these two sessions. In the assessment sessions, participants

first viewed an 8 s demonstration of the 0u target relative phase

then they attempted to produce 0u five times by moving the

joystick from side to side. All movement trials were 20 s in

duration. The first trial was practice and online feedback was

given. The feedback was a ‘‘hot/cold’’ signal where the dot that

the participant controlled turned green within a certain range and

is described below and in Wilson et al. [25]. Participants were told

prior to the practice trial that when the feedback was ‘‘on’’ during

the practice trial then they were moving successfully. During the

subsequent trials, no feedback was given (participants were

apprised that no feedback would be available during these trials).

This procedure was then repeated for the 180u and 90u target

relative phase conditions.

In each of five training sessions, participants performed ten 20 s

90u trials, with an 8 s demonstration before every trial. So,

participants performed a total of 50 trials over five separate days.

During each trial, online feedback was provided by changing the

colour of the person-controlled dot from white to green when the

participant was moving at 90u, +/2 an error bandwidth. The

error bandwidth was faded (decreased) across sessions when

performance reached a certain threshold. The level participants

were started on in the first training session was dependent on

performance at baseline: data were analysed to see at which error

bandwidth (from +/235u to +/210u in 2.5u intervals) the

participant could perform the task (i.e. stay within this bandwidth)

50% of the time, and this was the level at which they started. After

subsequent training sessions, data were again analysed in a similar

way, and the error bandwidth was altered for the next training

session (but only by a maximum of 5u each time) if performance

improved. Participants were informed of this change. If perfor-

mance did not improve the error bandwidth remained the same.

Changes to the error bandwidth, which drives learning, were

therefore self paced.

Data Analysis
The two position time series from each trial were filtered using a

low-pass Butterworth filter with a cut-off frequency of 10 Hz and

numerically differentiated to yield a velocity time series. These

were used to compute a time series of relative phase, the key

measure of coordination between the two dots.

To assess the stability of the coordination over the course of a

trial, we used a measure of proportion of time on task (PTT). The

measure is the proportion of time during a trial that the relative

phase falls within a +/220u window of the target relative phase

(e.g. 90u). We averaged PTT, for each participant, over the trials

performed in a given condition. We chose PTT as the primary

measure because, in human movement, stability is not indepen-

dent of mean relative phase; so measures that simply assess overall

movement variability (e.g. the standard deviation of mean relative

phase or mean vector length) are confounded with the actual

relative phase produced. Coordination stability at 90u can be

artificially elevated if participants spend time at other locations

(e.g. 0u or 180u), which they do as these locations are natural

attractors [5], (see Wilson et al. [13] for an extended analysis of

this problem). Proportion of time on task allows us to address this

problem (see Snapp-Childs, et al. [10] for an explicit comparison

of the two methods). It is simply the proportion of the relative

phase time series that falls within the range of the target phase +/

2 a tolerance (e.g. of 20u), thus summarizing the data of interest

(consistency and accuracy) and eliminating the confound. This

measure ranges from 0–1 and validly measures stability of

coordination at the required relative phase in a single number

[11,25].

We examined the differences between performance pre and

post-training at 0u, 90u and 180u for all age groups using mixed

design ANOVAs with session (baseline, post-test and retention)

and relative phase (0u, 180u and 90u) as repeated measures factors,

and group (20-year olds, 30-year olds, 40 year-olds, 50 year-olds,

60 year-olds, 70-year olds, 80-year olds) as a between-subjects

factor. Further mixed ANOVAs (group 6 session) were used to

look at relative phase separately, and paired t-test/one-way

ANOVAs utilised to examine interactions.

We also examined learning rate. Exponential functions were

fitted to the data. The functions were of the form:

PTT:a � exp {b=S

� �
ð1Þ

where PTT is ‘Proportion of Time on Task’, S is session (1 =

baseline and 7 = post-training), and a and b are parameters. The

function was fitted in three different ways and results were

compared to be sure they were essentially the same. First, the

function was fit to the means separately for each age group using

Quasi-Newton estimation in Systat 5.2. Secondly, the PTT means

and session numbers were transformed as follows:

PTT?ln PTTð Þand S?1=S

Least squares linear regression was used to fit a line to the

relation between the two sets of transformed values, again

separately for each group. Third and finally, transformation and

linear regression was used again applied to the combined

Perceptuo-Motor Learning Rates across the Lifespan
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individual participant data for each group, However, in this last

case, we also used multiple linear regression to test differences in

slope and intercept between the groups taken two at a time. Once

values for a and b parameters were identified (and judged to be

equivalent) we computed the first derivative of the function in

Equation (1) and evaluated it at Session 1 to get a value for

learning rate.

Results

Figure 2 shows the performance of all groups at baseline, post-

test and retention for all conditions, measured as proportion of

time-on-task (PTT) using a +/220u window. The figure shows

that all groups performed equally poorly at baseline for the 90u
pattern, and any group differences at 0u and 180u at baseline

appear small if present at all. All groups were better at performing

0u than 180uin all three sessions. For the 90u pattern, it is evident

that the younger groups (20 s, 30 s, 40 s and 50 s) showed a

greater improvement between baseline and post-test than the older

groups (60 s, 70 s and 80 s).

We performed 3-way mixed design ANOVA with session

(baseline, post-test and retention) and relative phase (0u, 180u and

90u) as repeated measures factors, and group (20-year olds, 30-

year olds, 40 year-olds, 50 year-olds, 60 year-olds, 70-year olds,

80-year olds) as a between-subjects factor. Group was significant

[F(6, 61) = 5.25 ; p,0.01, gp
2 = 0.34], with the 20, 30 and

40 year olds (mean time-on-task = 0.58, 0.58 and 0.59 respec-

tively) performing better than the 50 and 60 year olds (mean time-

on-task = 0.50 for both), who were better than the 70 and 80 year

olds (mean time-on-task = 0.46 and 0.45). A significant main effect

of session was also identified [F(2, 122) = 55.37 ; p,0.001, gp
2 =

0.48], with performance at post-training (mean time-on-task

= 0.54) and retention (mean time-on-task = 0.55) being better

than performance at baseline (mean time-on-task = 0.47). Relative

phase was significant [F(2,122) = 217.9 ; p,0.001, gp
2 = 0.78]

with performance at 0u (mean time-on-task = 0.69) being better

than performance at 180u (mean time-on-task = 0.52) and 90u
(mean time-on-task = 0.36). Significant interactions were found

between session and relative phase [F(4, 244) = 36.24 ; p,0.001,

gp
2 = 0.37], but not between session and group or relative phase

and group. The 3-way interaction between group, session and

relative phase was also significant [F(24, 244) = 2.73; p,0.01,

gp
2 = 0.21] so further analyses were required to reveal the nature

of this interaction.

90u
First, we wanted to determine whether all groups could learn

the 90u relative phase pattern. Although all groups seem to

improve between baseline and post-test, it is clear that the younger

participants (20s–50s) show a larger increase in time-on-task

Figure 2. Proportion of time on task across age, relative phase, and assessment session. Proportion of time spent within 20u of the target
mean relative phase (0u, 90u, or 180u) across the baseline (solid line), post-training (dash-dot line) and retention (dotted line) sessions for all age groups.
doi:10.1371/journal.pone.0085758.g002
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between baseline and post-test than the older participants (60s–

80s). A repeated measures ANOVA on the 90u performance data

at baseline, post-test and retention revealed a significant main

effect of group [F(1, 61) = 5.80 ; p,0.01, gp
2 = 0.36] and a

significant main effect of session [F(2,122) = 67.30 ; p,0.001,

gp
2 = 0.53]. There was also a significant group by session

interaction [F(2,122) = 2.79; p,0.01, gp
2 = 0.22].

To further analyze the main effects and interactions, we

performed paired t-tests which showed that there were significant

improvements in performance at post-training compared to

baseline for the 20 s [t(9) = 27.34 ; p,0.001], 30 s [t(9) =

28.79; p,0.001], 40 s [t(9) = 24.77; p,0.01], 50 s [t(8) =

22.80; p,0.05] and 80 year olds [t(8) = 23.75 ; p,0.01] but not

for the 60 s [t(9) = 21.93; p = 0.09] or 70 year olds [t(9) = 21.44 ;

p = 0.18]. However, examination of baseline versus retention [t(9)

= 24.40 ; p,0.01] revealed significant improvement from

baseline for the seventy year olds, but not for the 60 year olds

[t(9) = 20.87; p = 0.41]. No differences were found between post-

training and retention in separate tests for each age group apart

from the 70 year olds [t(9) = 22.47; p,0.05].

Separate one-way ANOVAS and pairwise comparisons (with

Bonferroni corrections applied) on the baseline and post-training

data revealed no significant differences between any of the groups

at baseline, but a significant difference between the 70 year olds

and 20 year olds [p,0.01], 30 year olds and [p,0.01] 40 year

olds [p,0.05] at post-training (in all cases the younger group

performing better).

Learning Rates for 90u Relative Phase
As well as examining potential differences in the amount of

learning between baseline and post-training or retention, we also

wanted to determine whether the learning rates between the groups

were different and if so, exactly how different. Figure 3 shows the

mean learning curve for each of the age groups performing 90u
relative phase across all sessions (apart from retention). Exponen-

tial functions were fitted to the data. The functions were of the

form:

PTT:a � exp {b=S

� �
ð2Þ

where PTT is ‘Proportion of Time on Task’, S is session

(1 = baseline and 7 = post-training), and a and b are parameters.

As mentioned in the methods section, the function was fitted in

three different ways and results were compared to be sure they

were essentially the same. First, the function was fit to the means

separately for each age group using Quasi-Newton estimation in

Systat 5.2. This yielded r2.0.80 in all cases. The values for

parameter a were 0.664 for the 20 s and 30 s, 0.597 for the 40 s,

0.554 for the 50 s, 0.391 for the 60 s, 0.369 for the 70 s and 0.360

for the 80 s. For parameter b they were 1.073, 0.750, 0.802. 0.919,

0.556, 0.607 and 0.577 for each group respectively from 20 s

through 80 s. Secondly, the PTT means and session numbers were

transformed as follows:

PTT?ln PTTð Þand S?1=S

Least squares linear regression was used to fit a line to the

relation between the two sets of transformed values, again

separately for each group. The r2 were 0.98, 0.96, 0.98, 0.90,

0.56, 0.69, and 0.89 for each group respectively from 20 s through

80 s. All were significant p,0.05 or better.

Third and finally, transformation and linear regression was used

again applied to the combined individual participant data for each

group. However, in this last case, we also used multiple linear

regression to test differences in slope and intercept between the

groups taken two at a time [26]. Both slope and intercept

differences yield a difference in learning rate as both form part of

the relevant equation, so differences in either are summarised

below. The results of the comparisons of 20 s and all other groups

were significant (p,0.01) with differences in slope (20 s vs. all

groups apart from the 50 s) and intercept (20 vs. all groups apart

from the 30 s). The 30 s were significantly different from the 50 s,

60 s, 70 s and 80 s in terms of intercept (p,0.01), as were the 40 s

and 50 s compared to the 60 s, 70 s and 80 s. The three older

groups were not significantly different from each other in terms of

either slope or intercept.

In the two sets of linear regression analyses (i.e. using means and

individual participant data), the resulting linear equations were

transformed back into the form of Equation (1). The values found

for the parameters a and b using all three approaches were

essentially the same. Then, in each case, we computed the first

derivative of the function in Equation (1), that is:

a � bð Þ=S2 � exp {b=S

� �
ð3Þ

We evaluated this derivative at S = 1 to derive an estimate of the

learning rate. Again, the resulting estimates were nearly identical

using all three fitting methods. The resulting learning rates were:

20 s = 0.243, 30 s = 0.228, 40 s = 0.215, 50 s = 0.203,

60 s = 0.125, 70 s = 0.122, 80 s = 0.117 (reporting the mean of

the results of the 3 methods in each case). You can see from

Figure 4 that there is a steep drop in learning rate between the 50 s

and 60 s. The learning rates for the 3 older groups were almost

exactly half that for young adults in their 209s.

0u and 180u Relative Phase
We wanted to determine if there were any changes in

performance for the untrained coordination patterns, 0u and

180u, as a function of age group and/or training at 90u. Learning

Figure 3. Learning 906. Proportion of time on task for each age
group across all training and assessment sessions.
doi:10.1371/journal.pone.0085758.g003
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90u does not typically transfer to either 0u or 180u, because

learning 90u entails learning a different perceptual coupling [16].

A repeated measures ANOVA on 0u performance revealed no

significant main effect of group (p.0.05), but there was a

significant main effect of session with performance being higher

at post-training (mean time-on-task = 0.69) than baseline (mean

time-on-task = 0.66) [F(1,61) = 10.78 ; p,0.01, gp
2 = 0.15].

There was also an interaction between group and session [F(6,61)

= 2.41 ; p,0.037, gp
2 = 0.19]. To further analyze the main effects

and interactions, we performed paired t-tests which showed that

there were significant improvements in performance at post-

training compared to baseline for the 60 [t(9) = 22.72; p,0.05]

and 70 year olds [t(9) = 23.01 ; p,0.05], but not any of the other

groups (p.0.05). Separate one-way ANOVAS and pairwise

comparisons (with Bonferroni corrections applied) on the baseline

and post-training data revealed no significant differences between

any of the groups at either baseline or post-test (p.0.05).

A repeated measures ANOVA on 180u performance revealed a

significant main effect of group [F(1,61) = 3.07 ; p,0.05, gp
2 =

0.23] with the mean time-on-task of each group as follows:

20 s = 0.61, 30 s = 0.57, 40 s = 0.59, 50 s = 0.47, 60 s = 0.48,

70 s = 0.45 and 80 s = 0.43. There was no main effect of session

or interaction (both p.0.05).

Overall therefore, all age groups were equally able to perform

0u coordination, showing that poorer performance by the older

adults in the 90u condition was not a function of problems using

the joystick or seeing the display. However, the older adult groups

(50 s, 60 s, 70 s and 80 s) performed 180u less well than the

younger participants (20 s, 30 s, and 40 s). 0u is an easy

coordination to maintain because the relative phase is clearly

perceived [13,27]. The two oscillators move together always in the

same direction with no speed difference between them, so that the

ability to resolve the phase relation is good throughout the motion

[9,28]. On the other hand, 180u yields oppositely directed motion

throughout, and the relative speeds of motion vary from zero to a

peak at the mid-point of motion. This variation makes relative

phase harder to perceive than at 0u. This pattern in the data shows

that people over 50 performed worse when the coordination

requirements increased in complexity. This suggests that the

difference in learning rates at 90u may be related to the visual

perception of coordination, i.e. relative phase.

Discussion

In a previous study [3] we found that older adults show reduced

learning rates when learning a new pattern of coordinated

rhythmic movement. The purpose of this study was to extend

that finding by examining the performance of all ages across the

lifespan from 20 s through to 80 s to determine how learning rates

change with age. We tested whether adults could learn to produce

a novel coordinated rhythmic movement (90u relative phase) in a

visually guided unimanual task. We also determined learning rates

to quantify changes in learning with age and to determine at what

ages the changes occur. We found, as before, that learning rates of

participants in their 70 s and 80 s were half those of participants in

their 20 s. We also found that learning rates for participants in

their 30 s were significantly greater than rates for participants aged

50 and above. Participants in their 40 s and 50 s were faster

learners than participants in their 60 s, 70 s and 80 s, and the

three oldest groups did not differ from one another in terms of how

fast they learned. What was most interesting was the gradual slow

decline in learning rate with age until approximately age 50, when

there was a sudden drop to a reduced learning rate for the 60

though 80 year olds. The reduced learning rate of the older

participants was about half the learning rate of the younger

participants.

The mechanisms underlying the reduced learning rates in the

60, 70 and 80 year olds are likely to be multiple, but as we

mentioned in our previous paper [3] we think deficits in motion

perception are key. If you cannot perceive 90u how can you be

expected to produce it? In addition to examining learning at 90u,
we also tested performance of 0u and 180u before and after

training at 90u. We found that the groups did not differ in their

ability to perform 0u, but that the 50, 60, 70 and 80 year olds

showed reduced performance at 180u compared to participants in

their 20 s, 30 s and 40 s. According to the Bingham model of

rhythmic coordination [9,10,28] the difference in stability of

performance between 0u and 180u is produced by differences in

the relative speeds of the two oscillators (empirically confirmed by

Snapp-Childs, et al. [10]). For 0u, the dots move together and the

relative speed difference between them is zero. In 180u, the relative

speed difference varies over the cycle to be zero at the end points

and greatest when the dots pass each other in the middle travelling

in opposite directions. Speed differences like these condition the

ability to see the relative directions of motion that, according to the

model, specify the relative phase. Learning to produce 90u entails

perceptual learning, namely, learning to perceive 90u. This has

been shown by Wilson et al. [11] who found that participants were

able to perform 90u once they had learned to see it, without any

actual motor practice of the coordinative movements. 90u is

specified by a more complex pattern of speeds and positions,

rather than merely relative direction. This more complex spatial-

temporal pattern is apparently difficult for older participants to

learn to perceive. Further research might investigate whether

training older participants to perceive 90u could compensate for

the 50 s cliff we found in learning how to produce it.

Aging has also been shown to negatively affect a variety of tasks

requiring visual perception of motion (see Andersen [29] for a

review). For example, visually discriminating speeds is difficult for

older adults [30–31] and aging detrimentally affects the ability of

older adults to visually perceive the 3-D shape of objects defined

by motion [32–33]. Changes such as these are likely to be

underpinned by general changes in cortical function that occur

with age, such as decreases in neuronal inhibition leading to

reduced centre-surround antagonism in visual cortex and less

finely resolved motion detection systems [34–36].

Figure 4. Learning rates for all age groups. Note the dramatic
drop from 50 s to 60 s.
doi:10.1371/journal.pone.0085758.g004
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Why we found the sudden drop in learning rate at around age

60 remains unclear. Perhaps we go through specific neurological

changes at this age, or the behavioural effects of cortical changes

are non-linear and at 60 become suddenly more apparent.

Interestingly, the fact that learning rates showed a sudden drop at

60, with the 50 year olds remaining at the top of the metaphorical

cliff, was not coincident with the decrement that we found in

performance of the 180u relative phase task, where the 50 year

olds showed a reduced performance level relative to younger

participants and looked very similar to those in their 60 s, 70 s and

80 s. Perhaps the ability to perform 180u degrees acts as a marker

for subsequent deterioration in learning rate at 90u, as the ability

to deal with more complex motion patterns begins to decline.

In conclusion, we have identified a dramatic change in

perceptuo-motor learning rates of a standard laboratory task

(coordinated rhythmic movement) at around the late 50 s or early

60 s. This is surprisingly early, and has implications for movement

rehabilitation following stroke (which disproportionately affects

older adults). Research on older adults typically focuses on older

age groups (e.g. 60 s and up); these data suggest that it is vital to

take a lifespan view in order to identify earlier, functionally

relevant changes.
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