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The increasing use of multi-member climate model ensembles for making future climate
impact assessments presents both opportunities for understanding uncertainties, and
challenges for interpreting the results. We outline current approaches to assessing
uncertainties in climate impacts, statistical methods for assessing uncertainties, issues
regarding model integration and complexity, and ways in which uncertainty frameworks
can be used to inform adaptation decisions, with case studies focused on agriculture.
Finally, we highlight future research needs and provide recommendations for making
further progress.
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INTRODUCTION
Robust assessments of climate change impacts are important for
assessing the scale of adaptation required, and for estimating
the implications of climate mitigation pathways (Collins, 2007;
IPCC, 2014). A comprehensive understanding of uncertainties
in projected impacts is a key element of making robust assess-
ments (Challinor et al., 2013; Katz et al., 2013). Uncertainties
arise from a range of sources in climate projections (model struc-
tural differences, initial conditions, scenarios, parameters and
resolution/bias-correction), climate impact models (CIMs) and
observations (e.g., Challinor et al., 2009a,b; Hawkins and Sutton,
2009; Osborne et al., 2013). Multi-member model ensembles
(Collins et al., 2010, for example) and model intercomparison
projects (MIPs) are used to assess uncertainties in future cli-
mate and climate impacts. These studies include the Coupled
MIP (CMIP—Taylor et al., 2012), Water MIP (WaterMIP—
Haddeland et al., 2011), the Agricultural MIP (AgMIP—
Rosenzweig et al., 2013), and the Inter-Sectoral Impacts MIP
(ISI-MIP—Warszawski et al., 2013), which contributed to the
IPCC reports (IPCC, 2013, 2014).

The use of ensemble projections and the outputs of MIPs in
impact assessments raises the issue of how to interpret the result-
ing uncertainty ranges (e.g., Smith et al., 2009; Knutti et al., 2010;
Tebaldi et al., 2011), which are dependent on experimental design.
For instance, “high-end” impacts (e.g., under global mean tem-
perature changes >4 K) are less sampled (Challinor et al., 2009a,
2010). Uncertainty ranges may be interpreted differently by scien-
tists and decision-makers, potentially resulting in poor decision
making.

The appropriate treatment of uncertainty ranges will vary
according to the nature of adaptation required. In agriculture
for example, adaptation could mean coping (altering planting

dates or crop varieties), adjusting (new crops or livestock
species), or transforming (new production systems, livelihoods,
migration). Bottom-up approaches (beginning by assessing the
decision-making context) are important for incremental (coping)
strategies while top-down approaches (beginning with climate
scenarios) are important for transformative strategies (Vermeulen
et al., 2013; Figure 1). Our aim is to highlight challenges in using
ensembles to assess uncertainties in future climate impacts and
identify priorities for making further progress.

STATISTICAL METHODS FOR UNDERSTANDING AND
REDUCING UNCERTAINTY
Large-scale models of natural and physical systems inherently
contain uncertainties. These uncertainties originate from the
complex nature of the system, and from our limited knowledge of
it. Uncertainty is described in a variety of ways, from qualitative
statements such as “likely” and “unlikely,” or “low,” “medium”
and “high” confidence (IPCC, 2012, 2013, 2014) to quantita-
tive representations like a range of plausible values, a standard
deviation or a full probability distribution providing confidence
bounds.

MULTI-MODEL DIVERSITY
For models of large-scale complex systems, a common approach
to assessing model uncertainty is the use of MIPs (see introduc-
tion). This involves taking a selection of models which often differ
in their representation of system processes, and evaluating their
outputs for a range of scenarios. The resulting comparisons allow
uncertainty in predictions due to model diversity to be quantified.
However, these estimates must be used with caution if the mod-
els compared are not independent, or contain mutual errors and
omissions (e.g., regional precipitation biases), as this can lead to
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FIGURE 1 | Top-down scenario, impacts-first approach (left panel) and bottom-up vulnerability, thresholds-first approach (right panel)—comparison

of stages involved in identifying and evaluating adaptation options under changing climate conditions (© IPCC, 2012; from Lal et al., 2012).

unrepresentative estimates of uncertainty. It can also be difficult
to determine the causes of uncertainty since the resulting ensem-
ble contains little information on how process representations
affect the outputs (Davie et al., 2013).

By focusing on a single model, sources of uncertainty within
that model may be evaluated more rigorously (Deser et al., 2012).
While uncertainty is quantified for only one model, evaluation
of how the uncertainty in the processes and parameters within
that model affects the outputs can be very informative, leading to
more focused model development.

PARAMETRIC UNCERTAINTY
There are many statistical tools for understanding model para-
metric uncertainty. Classical methods involve direct Monte Carlo
simulation, where the entire parameter space is explored by
running the simulator for a large number of input param-
eter combinations and evaluating the model response (e.g.,
the Generalized Likelihood Uncertainty Estimation: GLUE
(Beven, 2007) method used in hydrology). For a complex
model with a large run time this may become unfeasi-
ble, although distributed experiments such as climatepredic-
tion.net are pioneering such approaches (Stainforth et al.,
2005).

Bayesian statistical framework-based approaches have been
used to overcome such computational barriers. For example, Lee
et al. (2013) explored the sensitivity of cloud condensation nuclei
(CCN) concentration estimates to parameters in a global aerosol
model following the Bayesian approach of Oakley and O’Hagan
(2004). Here, Gaussian process emulation (O’Hagan, 2006) was
used to reduce the computational cost and probabilistic variance-
based sensitivity analysis (Saltelli et al., 2000) was applied to
evaluate which inputs were driving uncertainty in the outputs.

This approach is rarely used for assessing climate change impacts,
in comparison to projections of climate.

Inverse modeling approaches involving Markov chain Monte
Carlo simulation to evaluate a full Bayesian posterior parame-
ter distribution have been used to assess the effects of parameter
uncertainty for aerosol-cloud interactions (Partridge et al., 2012)
and hydrology (Vrugt et al., 2008). The comparison of model
simulations to observations (model calibration) and the use of
observations to reduce an uncertain parameter space (history
matching) can help to assess model uncertainty. For example,
McNeall et al. (2013) show the potential of these methods to
constrain a complex ice sheet model.

TREATMENT OF UNCERTAINTY IN IMPACT STUDIES: A CASE
STUDY FOR WHEAT
Climate impact studies depend on the choice of climate data and
the impact model used. Recent impact studies have used climate
model ensembles to account for the uncertainty due to global cli-
mate models (GCMs) and their parameterizations, building on
earlier approaches using small numbers of scenarios or models.
Less emphasis has been placed in making progress via impact
studies using raw GCM output (e.g., Falloon et al., 2011; Taylor
et al., 2013; Betts et al., 2013; Mathison et al., 2013), and in under-
standing uncertainty introduced through downscaling methods,
bias-correction methods or the use of weather generators. Bias-
correction methods for GCM output may be as important as
GCM uncertainty (e.g., Done et al., 2013), and potentially greater
than uncertainty due to scenarios as shown for the number of
summer days where maximum temperature exceeds a certain
threshold across Europe (Hawkins et al., 2013).

There is considerable diversity in present crop models
(Rivington and Koo, 2010): e.g., statistical models based on
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observed relationships, dynamic process-based models for par-
ticular crop types, and generalized large and field scale process-
based models. Crop models vary in their complexity, how they
simulate dynamic processes (e.g., crop development), and which
processes they simulate (e.g., high temperature stress around
anthesis and/or microclimate). Crop models based on observed
relationships have set parameters for a given cultivar (“genetic
coefficients”), determined through field experiments; thus not
accounting for parametric uncertainty. Regional scale crop mod-
els may be optimized to observed yield data and a parameter
ensemble may be used (Challinor et al., 2009a). Impact model
studies are limited by the number of observable output variables
that can be used for parameterization, regardless of the approach
taken and the application.

Several studies have assessed the importance of different
sources of uncertainties in crop models. An ensemble of wheat
models performed well compared to experimental data from four
contrasting growing environments but only when provided with
sufficient calibration data (Asseng et al., 2013). With increasing
temperatures, crop development may make a large contribu-
tion to uncertainties in simulated impact, both between models
(Asseng et al., 2013) and in one model exploring a range of
common functions and cardinal temperature settings (Koehler
et al., 2013). Changes in growing season precipitation affected
simulated yield but showed little change in the variation between
models in simulated yield change (Asseng et al., 2013). Warming
may expose crops to more high temperature stress around anthe-
sis (the onset of flowering). However, not all models include
a direct temperature effect during anthesis, and accounting for
anthesis may not result in correctly simulating the effect (Asseng
et al., 2013), illustrating the importance of understanding model
behavior for predictive uses. For processes where threshold val-
ues are important (e.g., heat stress), ignoring microclimate may
lead to large systematic errors, since in irrigated systems panicle
(loose branching flower cluster) temperatures may vary strongly
from air temperature depending on vapor pressure deficit (Julia
and Dingkuhn, 2013).

Lessons learnt from the AgMIP-wheat pilot study (Asseng
et al., 2013) were taken forward into the next set of simula-
tions, which cover a wide temperature range during different
growth stages with non-limited conditions for nutrients and
water (Ottman et al., 2012). Crop models are often developed
for a specific region and/or purpose and may depend on regional
characteristics. With the strong focus on global studies, the same
crop model may be applied outside its “design region,” so key
processes for crop growth need to be identified, and contrasting
regions (e.g., hot humid versus hot dry) should be prioritized in
MIPs.

DOES UNCERTAINTY INCREASE WITH GREATER
INTEGRATION OF IMPACTS?
A more comprehensive integration of sectors and processes in
Earth System Models (ESMs) and CIMs should provide a more
complete picture of system behavior since impacts and the
earth system are interlinked in reality. There are also numer-
ous feedbacks between impacts and weather and climate (Falloon
and Betts, 2010). Critical thresholds and non-linear responses

also exist between impacts and climate drivers, such as the
effect of extreme temperature on crop flowering (Wheeler et al.,
2000).

To illustrate the interactions between climate impacts, we
describe how water systems may be affected by climate change
with implications for agriculture (Falloon and Betts, 2010). Direct
climate effects on water include changing location, amounts
and timing of precipitation, snowmelt, runoff, evaporation and
groundwater recharge. Indirect effects include altered water man-
agement practices, responding to the changing climate and direct
effects. For example, higher summer temperatures may increase
industrial and domestic water demand, increase abstraction and
reduce river flows. This may increase inter-user competition for
water, affecting agricultural water availability. Higher summer
temperatures may increase agricultural water demands, further
increasing inter-sectoral pressures.

Feedbacks between climate and impacts include both changes
in local and remote weather and climate, and biophysical and
biogeochemical effects. For example, Falloon et al. (2012) used
an ESM to investigate the effect of future vegetation change on
the climate itself, finding warming of ∼1 K in high latitudes
where forest expansion reduced albedo, and over the Amazon
where reduced tree cover reduced evaporative cooling. Carbon
storage increased in the high latitudes but was reduced over
Amazonia. McCarthy et al. (2010) showed that the inclusion of
cities in a climate model led to increased frequency of extreme hot
nights, due to both the urban land surface and due to increased
anthropogenic heat sources.

Several approaches may be taken to integrate climate impacts.
Bio-physical impacts may be linked in “online” approaches where
impacts are included within weather/climate models. “Offline”
approaches may link different impacts in stand alone models
driven by climate model outputs (e.g., Krysanova et al., 2007;
Mahmood et al., 2007; Davie et al., 2013). Integrating biophysical
impacts with socioeconomic factors is complex but approaches
include integrated assessment models (e.g., Warren et al., 2008),
global economic models (e.g., linking crops, trade, irrigation
and river flows—Calzadilla et al., 2013), and loose linkages (e.g.,
Barthel et al., 2008).

There are a range of potential issues to consider when inte-
grating climate impacts. In some cases, meaningful compar-
isons between models and observations may be challenging. For
instance, ESMs provide a wide range of estimates of contempo-
rary soil C stocks (510–3040 Pg C), and observational estimates
vary widely (500–1260 Pg C). There are also differences in what
is represented by models (Todd-Brown et al., 2013). It may
be difficult to find data to parameterize impact models for all
the processes needed to realistically reproduce observed behav-
ior (Challinor et al., 2013). Finite computing resources mean
that tradeoffs will need to be made between complexity/breadth,
detail, and risk assessment—the ability to represent multiple sec-
tors, processes and sample uncertainties using large ensembles.
The ISI-MIP study suggested that ensembles of both impact
and climate models are needed for making robust future assess-
ments, although the bias-correction applied to the climate model
output may alter the impacts (e.g., Ehret et al., 2012; Hawkins
et al., 2013). Finally, interactions between biophysical impacts and
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socioeconomic drivers are important, including decisions made
on small space/time scales.

Several approaches may be taken to assessing the appropri-
ate level of model integration and complexity for a particular
purpose. Testing for relationships between observed impact (e.g.,
crop yield) and weather would provide a top-level justification for
combining models of impact and climate (e.g., Challinor et al.,
2003), as would the existence of significant feedbacks between
impact and climate (e.g., river flow impact on ocean circulation;
carbon cycle; or albedo). Several authors have selectively removed
model components or fixed parameters, and then retested model
performance (e.g., Crout et al., 2009; Tarsitano et al., 2011). This
may be challenging with large, complex models. The appropriate
level of model integration will also depend on the time and space
scale in question, the location, climate and needs of stakeholders
(Challinor et al., 2009a).

HOW SHOULD UNCERTAINTY BE TREATED FOR
ADAPTATION?
Adapting to a changing climate is a complex societal process
of activities, actions, decisions and attitudes that reflect exist-
ing social norms and processes (Adger et al., 2005). Systems and
actors do not adapt to climate change in isolation—adaptation
happens in a world of multiple stresses and drivers of which cli-
mate is one. The significance of the climate driver depends on the
adaptation context.

There are two approaches for evaluating climate adaptation
options (IPCC, 2012; Figure 1): “top-down” and “bottom-up.”
The top-down climate models, scenario, impacts-first approach
starts with the question: “how will future climate change?”
(Dessai and van der Sluijs, 2011), and the assessment of uncer-
tainty at each stage led Schneider (2001) to coin the phrase:
“cascade and explosion of uncertainty” (Figure 2). Once relevant
impacts have been assessed, adaptation options can be designed
and assessed. Given the uncertainties involved in climate impact
assessments, a more fruitful approach may be to begin with the
decision-making context (Dessai et al., 2009a,b; Wilby and Dessai,
2010). Such bottom-up, vulnerability, threshold-first approaches
first identify vulnerabilities, sensitivities, and thresholds to pro-
posed adaptation measures. These measures and their timing are
assessed against present and future uncertain drivers of which
climate is but one. The characterization of climate uncertainty
should be commensurate with that of other uncertain drivers
in adaptation assessments. Rigorous sensitivity analysis of mod-
els that inform adaptation decisions (e.g., Saltelli et al., 2000)
can produce a more robust assessment of relevant uncertain-
ties, which is more fit-for-purpose for decision making. However,
individual responses to climate change and adaptation may them-
selves be a significant source of uncertainty.

The top-down approach has been dominated by climate
model projections. A bottom-up approach can use climate model
information to characterize climate uncertainty. However, other
approaches (that are potentially more appropriate alongside
other uncertain drivers) include climate change narratives (e.g.,
a description of how circulation changes will affect climate
in a location), expert judgment and theory based principles.
The bottom-up approach enables the assessment of trade-offs

between different adaptation options due to different uncer-
tainties (e.g., climate, socio-economic, land use changes) and
multiple criteria (e.g., maximizing expected utility, saving lives,
protecting the environment).

While the top-down approach is still very common, there
is an emerging body of work which applies the bottom up
approach, particularly in water resources (Risbey, 1998; Lempert
and Groves, 2010; Prudhomme et al., 2010; Korteling et al.,
2013). The bottom-up approach requires information providers
to work and communicate closely with decision makers (Dilling
and Lemos, 2011) to understand their plans and goals, before tai-
loring the uncertainty description to focus on key factors. This
can be very effective, but often needs to be individually cus-
tomized for each decision context (Lempert and Kalra, 2011;
Lempert et al., 2012).

RECOMMENDATIONS AND FUTURE RESEARCH NEEDS
While the design and implementation of MIPs tends to focus on
comparing model responses (outputs), there is a need to consider
how they can be better used to improve and develop models, and
to synthesize knowledge more effectively (Challinor et al., 2014).
For instance, multiple variables (e.g., nitrogen availability, water
use, crop quality, yield) could be assessed within single (e.g., crop
model) impact studies.

The interlinked nature of climate and impacts requires
comprehensive treatments of uncertainty including relation-
ships/feedbacks between climate and its impacts. A more con-
sistent approach should be taken to assessing the effect of
model integration, particularly considering “offline” and “online”
approaches. Key issues include the ability to model the individual
components at the right level of complexity, whether the com-
ponents need to be modeled individually or together, impacts
on model performance, and whether integration provides more
insight into system behavior. There is a need to assess the ben-
efits and tradeoffs between model complexity, resolution and
ensemble size for making impact assessments.

The use of statistical methods to assess uncertainty should
be promoted. The growing use of statistical methods to evalu-
ate, understand and reduce model uncertainty means that more
robust conclusions can be obtained from model applications,
including an assessment of uncertainties. This can also lead to
an improved understanding of model behavior, indicating where
a model can be most improved and where greatest confidence
can be placed in results. Impact modeling approaches may ben-
efit from experiences gained in the climate modeling community
(and potentially vice-versa).

The usability of impact assessments for decision making could
be improved through:

• Greater clarity in the methods and assumptions used (e.g.,
use of GCMs, scenarios, timescales, ensembles, bias correc-
tion, downscaling, and impact models), and assessment of their
impact on results (e.g., Watson and Challinor, 2013).

• Appropriate selection of assessment approaches—for instance
a top-down framing when uncertainties are shallow (and for
broad scoping assessments), or a bottom-up framing when
uncertainties are deep (Dessai et al., 2009a).
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FIGURE 2 | The cascade of uncertainty from illustrating the growth of the envelope of uncertainty from various sources going from future society to

adaptation response. Used with permission from Wilby and Dessai, 2010, (© Royal Meteorological Society, 2010).

• Common, clear ways of reporting and describing uncertainties
(e.g., Challinor and Visman, 2014).

• The use of models as tools from which information is
extracted, rather than as competing attempts to represent
reality (Challinor et al., 2003).

• Assessment of methods which go directly from climate model
to decision parameter, removing intermediate steps and poten-
tially reducing embedded uncertainty (e.g., Holland et al.,
2010).
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