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A BOUND FOR THE MAGNITUDE CHARACTERISTICS OF
NONLINEAR OUTPUT FREQUENCY RESPONSE FUNCTIONS

PART I: ANALYSIS AND COMPUTATION

S.A. Billings and Zi-Qiang Lang

Department of Automatic Control and Systems Engineering
University of Sheffield, Mappin Street
Sheffield, S1 3JD, U.K.

Abstract: A bound for the magnitude frequency domain characteristics associated with the outputs of
a wide class of nonlinear systems is derived as a relatively simple function of the generalised
frequency response functions and properties of the system inputs. It is shown how the practical
computation of the new bound can be easily performed for nonlinear systems with finite but arbitrary
order nonlinearities and worked examples are included. The paper is divided into two parts. In Part I,
an expression for the output magnitude bound is derived, properties of the result are discussed and
general procedures for the practical computation of the bound are developed. In Part II the practical
computations associated with applying the bound to the polynomial NARX model (Nonlinear
AutoRegressive model with eXogenous input) are discussed.

1. INTRODUCTION

The frequency domain analysis of nonlinear systems has to date been largely based upon
the generalised frequency response functions (GFRFs) which represent the nonlinear
frequency response behaviour in the form of multidimensional transfer functions which are
independent of the input. The estimation and analysis of the GFRFs have been studied by
several authors (Bedrosian and Rice 1971, Bussgang et al. 1974, Vinh et al. 1987, Kim and
Powers 1988, Billings and Tsang 1989(a) and 1989(b), Peyton Jones and Billings 1989,
Billings , Tsang and Tomlinson 1990, Billings and Peyton Jones 1990, Cho, et al. 1992,
Zhang, Billings and Zhu 1993) and important properties and characteristics of practical
nonlinear systems have been investigated based on a graphical interpretation of these
functions (Powers and Miksad 1987, Worden et al. 1993 , Billings and Yusof 1994).

But analysis in the frequency domain usually involves two other problems which are often
referred to as the analysis and synthesis problems. The analysis problem involves determining
how the output frequency response is determined as a function of the frequency
characteristics of the input and the frequency domain properties of the system. The synthesis
problem consists of determining the frequency domain characteristics of the system in order
to obtain a satisfactory output frequency response for a given input excitation. Solutions to
both these problems rely on the analysis of the relationship between the frequency
characteristics of the system input and output. These problems are well known and solutions
exist for linear systems but few results are available when the system is nonlinear.
Extension of the linear results to the nonlinear case is far from straightforward and in the
present study this problem is partially solved by deriving a new expression for the bound on
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the output magnitude frequency domain characteristics of a wide class of nonlinear systems,
The results reveal how the effect of the GFRFs and the input characteristics can be analysed
as separate influences on the system output frequency domain properties. Practical
computations based on the new frequency domain output magnitude bound can easily be
performed using the methods developed in this paper for nonlinear systems with finite but
arbitrary order nonlinearities. This new concept provides a basis for the analysis and synthesis
of nonlinear systems in the frequency domain and provides valuable information for studies
which involve truncation of nonlinear system expansions.

The paper is divided into two parts. The new bound on the output magnitude expression in
the frequency domain is derived in Part I together with general aspects relating to the
practical computation and two simple examples. Part II is focused on the practical
computation of the bound for the polynomial NARX model (Nonlinear AutoRegresive model
with eXogenous input).

2. THE SYSTEM INPUT AND OUTPUT DESCRIPTIONS IN THE
FREQUENCY DOMAIN

For a linear system it is well known that the output frequency response can be related to
the corresponding input frequency characteristic by the simple linear relationship

Y(jo)=H(jo)U(jo) (2.1)

where Y(jw) and U(jw) represent the Fourier transforms of the output and input and
H(jw) is the system frequency response function.

For nonlinear systems which are stable at the zero equilibrium point and can be described
in the neighbourhood of the equilibrium point by the Volterra series

s =3 [T [T h @t [ Jue-1,)ds,
_ _ 22)

where y(f) and u(r) represent the system output and input respectively and A (T,,...,T,)is

the nth order Volterra kernel, the extension of the linear frequency domain description (2.1)
can be obtained as (Lang and Billings 1994)

r

N
Y(jo)=) Y, (jo) for Vo
n=1

1/n
(ZTC )n-l

A

Y. (jo)=

[t (o,.....j0,)do, (2.3)

W) +,.,+0,=0

Y, (j@,.ees j@,) = H,(jo,,.... jo N[ JUG®,)

L i=]

when the system is excited by the general input
wty=Uy + Yo j: 2JU(jo) cosfot + £U(jo)ldo = Vo [~ U(jw)e™ dw (2.4)

where U, = 12T[ U(0).In (2.3) Y, (jw) represents nth order output frequency characteristic,
and




H,(jo,,....jo,)= _E“E A(T,,..., T, Je OOt dr (2.5)

is known as the nth order generalised frequency response function of the system, and
_[Yn(jcol,...,jcan)dom denotes the integration of Y (j®,,...,j®,) over the n-
O+ 0+, =0
dimensional hyperplane ® = ®,+,...,4+0,.
The output frequency response of a system contains the information about both the
magnitude and phase. But the magnitude information is often considered to be more
important because according to Parseval’s theorem the energy of the system output can be
completely represented by the magnitude characteristic of the output frequency response.
From (2.1) , the magnitude characteristic of Y(jw) can be obtained as

Y (jo)| = |H(jo)|U(jo) (2.6)

which is an important basis of most analysis and synthesis methods for linear systems in the
frequency domain. From (2.3) the extension of (2.6) to the nonlinear case is given as

N n
|Y(jw)|=21/\/; f Hn(J'w“---,jw,.)HU(jm;)dcm 2.7)

n-1
n=1 (2r) O+, 0, =0

Because of the complexity of (2.7) this is generally very difficult to analyse. In order to
resolve this problem the concept of a bound for |Y(jw)| in (2.7) is proposed in the next

section and an expression is derived which has a form similar to (2.6) in the sense that the
effects of the GFRFs and U(jw) on this bound are decomposed for each term in the
expression.

3. EXPRESSION FOR THE BOUND ON THE OUTPUT MAGNITUDE
FREQUENCY DOMAIN CHARACTERISTICS OF NONLINEAR
SYSTEMS

Consider a nonlinear system excited by the general input and expressed in the frequency
domain by (2.3). From the first and second equation in (2.3) it is obvious that

N N : N
[Y(jm)|52yn(jm)]sz(;{t‘)/i JY,,(jm,,...,jmn)dcm =Y Y () (3.1)
where
1/Jn . .
Y¥ ()= T mln:[ﬁ):i;&,...,j(un)a’cm (3.2)
Define
Yo (@)=Y (@) (3.3)

which is clearly a bound for the magnitude characteristic of the system output frequency
response.

Substituting the third equation from (2.3) into (3.2) yields




I/Jr_l J'

any H,(jo,,....jo )] JUGo,)do, (3.4)

i=l

Y ()=

For the simplest case of n=1 in (3.4),

Y@ =X @)= ) o|H (o) uie) =¥ (o) (3.5)
indicating that if N=1 then the bound for the magnitude frequency response of the system and
the response itself are identical.

For the case of n=2, (3.4) can be written as

/42

B =
Y:z (@)= (2n)2—1

(3.6)

2
H,(jo,,jo )[]U(jo,)ds
i=]

@)+ ;=0

Considering that in Calculus the integration of a function f(x,,x,)over a two dimensional
curved line S: x, = x,(x,) canbe expressed and calculated using (Spiegel 1971)

jf(x, x,)do s = [ flx,,x,(x,)] }14{3 ] dx, 3.7)

where do, represents the length of a minute line segment on S and S, represents the

projection of § onto the axis x, =0, (3.6) can be further expressed as

/42

@)™ J’ Lo, @ —ouGo Ul -o,)]V2do,

B =
(2) j|H Lo, @ -0 )UGe UL -o,)]de, (3.8)

where S, denotes the projection of d)l +®, = onto the axis @, =0. Assume that the
input frequency characteristic U(jw) satisfies the following relationship

{IU(jm )J#0  wheno[<b (3.9)

|U(jw) =0 otherwise

The integration area for the case n=2 can then be illustrated as shown in Fig.1 and

Yf(co)—(lé‘/— j|H (Jjo,,o )|H|U(_]CD o —
1
= [|H,lo,, j@ -0 UG )|ULie -o,)]do,

W)W




- 1
" (@2m)

J‘::|H2 [.fm | :J(m -, )}”U(J’ﬂ): )”U[_]((D - )}|du}E (3 10)

0=0,+0,

-b

Fig.1. Tllustration of the integration area for the case of n=2

In integration theory, it is well known from one of the theorems of mean value (James and
James, 1959) that if a function g(x) is continuous and f(x) is integrable and does not

change sign in the interval ¢ < x <d, then

J| g = g®)[ o) (3.11)
where c <€ <d.

Applying this theorem to (3.10) witﬁ

f=UGo)|ULje-,)] (3.12)
and
g=H,[jo, j©-0,)] (3.13)
yields
Y2 (o) = ﬁ]ﬂz Ljo3,, i@ -0})] j UG UL -o,)]do,
1 # # = , ,
=Gy H:lieb je -0}, ] vGe ) ulie -o,)lde,
_ 1 o # . # * .
S |H, Ljo$,, jos,))Ul*|UGo) (3.14)




where IUI*IU(JCD)| :I: |U(j0)1)“U[j(a)—0)])]|d£D|, mzl €lw,,0,], (’3;2 =0 —0.);,, and
as shown in Fig.1 (03,,®3,) is a point on the straight line ®, +®, =@ between the two
points A and B.

For n=3 in (3.4),

3
Tl )‘(IZN)— ] Hs(fmlsmz»ffﬂs)HU(j(x),.)do
1/4/3 o | | |
=~———-——(2/;/): [Hlio,, jo,.j© -0, -0 ,)UGo)|UGo )|Vl -0, -©,)]
S,

@12

2 2
14 0(0-w, —0,) L|@-0,~0,) o A,
awl 8(02
1 e B _ . .
= T _HHs[JUJI:szz.](OJ -0, —0,)]U,)|Ujo,)|Ule -, -0,)]do,do,
35,

Lo

(3.15)

where S, , represents the projection of @, +®, +®; =® onto the plane @, =0. Under
the assumption for U(jw)given in (3.9) and illustrated in Fig.2 equation (3.15) can be
written as

YaB(w)_ J’“’l J“”((:‘j [j®,,jo,,j0-0, -0 )]l

(27c)

(3.16)
UG )|UGe UL -0, -0,)]do, do,

0, +0,+0, =0

Fig.2 Tllustration of the integration area for the case of n=3




Applying the theorem of mean value to the integration for @, in (3.16) with
f=|U(o UGVl -0, -6,)]

g =|H,[jo,, j0,, j(© -0, -0,)]

yields

Y () =—7F ] Lo, jos(,), /(0 -0, -05(@,)]
(2 m)’

mz{m,) : ’ :
[se, lGOUG, UL -0, —0,)]do,dv,
where @ (®,) is a function of ®, and satisfies

0} (0,)<0l,)<ol(o,)

Applying the theorem of mean value again to (3.19) but with

f=lo wie e, )

-0,)]do,,

g =|H,[jo,, jo}©) j©-0, -

gives

x Yl (@)= 7 le o], joj @), j@-o] -aj@])]

(wy)

(3.17)
(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

B L}. J-w Iw)) Jm])”U(sz)”UU(m -, —(02)]|d601d0)2

where ©} <@/ <o} . Denoting
# # #
®, =05, 0; (@®)=03,, ando-0;-0; (®])=0;,

in (3.23) yields

Y (@)=—— T IH Lo}, jol,.jok]

I“" Jm( G uGe ulie -, -o,)do,do,
"~ n n)*

(2 ) ‘H @3, jo3,, jo 3]||Ul UI* [U(jo)

where

U uGe) =" [~ uGeuGe Ui -e, -o,)]de,do,

—|H ol oLl [ UGeuGe e -, -e,)lde,do,

(3.24)




It is worth noting that for clarity of derivation only simple situations are considered above,
For more complicated cases, such as the case

{|U(jco)| #0 whenO<a<g|o|<b,

3.
U(jo)|=0 otherwise L
for example, (3.14) and (3.24) can also be proved using similar ideas.
Extending (3.5), (3.14) and (3.24) to arbitrary order nonlinearities yields
1 . : . .
Y ()= e H,[j®@ 3,0 yse-. jo 0, JUI (U U ()

(3.26)

where {0 ,0f,,...,0! }denotes the co-ordinates of a point on the n-dimensional
hyperplane®,+,...,4®, =® and

grany

Ul U AuGe) = [2. [ uGe)h...[uGe,.)
" (3.27)
Uljio-o,,...~0,,)]do, do,,...do,_,

Therefore the expression for the bound on the output frequency response magnitude
characteristics of nonlinear systems can be obtained theoretically by combining (3.26), (3.27)
and (3.3) to yield

. N N
Yo ()=),

n=1

H,[jog,. jor,.... jo;,]

[o )7 o). .ute,.)

Ulj©-a,,..~, )]do, do,,...do,

-
(zn)n—é

(3.28)

Although the derivation of (3.28) is based on continuous time nonlinear systems, the
conclusion for discrete time nonlinear systems is exactly the same as in the continuous time
case except that in the discrete time case U(jw) is the discrete time Fourier transformation of
the system input sequence and Y’(w) represents the bound for the magnitude frequency
domain characteristic of the system output sequence.

4. ANALYSIS OF THE BOUND IN THE FREQUENCY DOMAIN
CHARACTERISATION OF NONLINEAR SYSTEMS

Equation (3.28) indicates that the proposed bound for the output frequency response
magnitude characteristics of nonlinear systems possesses a formation similar to the linear
relationship |Y(jo)| = |H(jw)|U(jo)| because the influences of the GFRFs and the frequency

characteristics of the input on this bound are decomposed in each term of the expression.
This is an important feature of the new bound because it may simplify a study of the analysis
and synthesis of nonlinear systems if these problems can be formulated in an analogous
manner to the linear case.

In addition, this new concept also has the following properties concerning the relationship
with |[Y(jo)|:

() Y#(0) 2[|Y(jo)




(i) Y?(@)=|Y(jo) forN=1

(iii) Y®(@)=|Y(jo)|=0 ifwel JR,UR,

n=]
where R, is the nonnegative frequency range produced by the nth order nonlinear output,
R_, is the negative frequency range produced by this output and the relationship between
R,andR_, is
—-{R,\{0}} =R, (4.1)
with —{.} denoting a set which possesses elements of opposite signs to those in the set {.}.

For these properties, (i) is straightforward due to the definition of Y?(w); (ii) follows
from equation (3.5) and the explanation for (iii) is given below.

It is well known that for linear systems the frequency range of the system output is the
same as that of the corresponding input. Lang and Billings (1994) have shown that under the
assumption that the input frequency spectrum is of the form

U(jw) oelab]l b>a2=20

(4.2)
0 for otherw 20

U(J'CD)={

the nonnegative frequency range R, of the nth order nonlinear output is determined from
W=0,+..,+0, withw, e[-b,—a]or[a,b], [=1,...,n (4.3)

For simplicity of explanation assume a=0 in (4.3) to yield R, that is the nonnegative part of
mo=0,+..,+0,, ®,€[-bb], I=12,...,n} (4.4)

Considering (4.2) and a=0, (3.27) can be written as

b opb ) .
Uk, uGo) = [+ UG- uGe,)Ulie -o,-,...~e,.)jdo,,....do,.,
(4.5)
The definition for R, given by (4.4) means that if |w|e R, ie @weR UR_, then
®0-0,-,..,—0,, €[-bb] in the integration process of (4.5). This implies
IU L0 =0 ==, )]l = 0 in the process and therefore
Ul*,....*|U(jw)| =0 (4.6)
——————
and
1 ; . "
Y2 (@) = ——=|H, (o n,.... o U,.... U(jw)| =0 4.7)
(2»]1) . ﬁ”r J
Thus, it is quite clear that if
N
we) R,UR, (4.8)

n=1




then
Y¥(w)=0 forn=1,2,.N (4.9)
and
N

YB(co)=§Y,f(m)=o (4.10)
Furthermore combining (4.10) and

Y% (@) 2|Y(jw) =0 (4.11)
gives

Y* (@) =[¥(jo)|=0 (4.12)

that is (iii) holds. For the case a # 0, this can also be proved in a similar way.

These properties especially properties (ii) and (iii) indicate that Y?(®) isnot a
conservative bound for [Y(jo)|. In fact as shown in the following simulation examples, this
bound can sometimes even be applied to evaluate the trend in the variation of [Y( Jjo)|.

3. PRACTICAL COMPUTATION OF THE BOUND

5.1 The evaluation of |H,(jo!,,..., jo!,)

nlres

Clearly the expression (3.28) is only of theoretical significance. To calculate Y?(w)
and |UJ*,....4U(jw)| still need to be

n

practically methods for evaluating ‘H,, (jol,....jol)

#

developed. Generally [Hn(jmh,,...,jm:n)

is hard to determine precisely because the exact

position of the point {®},,...,0, }on the n-dimensional hyperplane ® =®,+,...,+®, is

n

unknown. However in practice
B
w

Hn(jm:l"”’jw:n)

in (3.28) can be replaced by

H i 0 Jou_)

, a bound for |Hn(jcnl,...,ju)n)

with ®,,...,, satisfying the

n

constraint ® =, +,...,+4®, to evaluate

n

T

n

U(jo) (5.1)

N
= 1
Yi(w)=) ——|H, (jo,,...,jo,)
(@) Z (W,,_,)I (o -
giving an approximate value of the theoretical result Y?(w). Obviously Y?(0) = Y?(®)

and this also possesses the properties analysed in the last section. Based on this idea and the
algorithm proposed in the next section for the computation of |UJ*,...,¥U(jw)|, procedures

n

for the practical computation of the bound for nonlinear systems which can be described by
the polynomial NARX model have been developed and will be presented in Part II of this
paper.

10




5.2 Algorithm for the computation of U

*,... Ujo)

n

In the following, an algorithm for the computation of the n-dimensional convolution
integral for |U(jw)| given by (3.27) is proposed which can be easily applied in practice.

Denote

U, (0)= LU|*,...,*|U(jco)J| (5.2)

n

and examine the Fourier transformation of U, (w)to give

FIU (0)]= F [0

n

U(jo)]= F"[[U(jo)] (5.3)

Let U,(j®) be the discrete time Fourier transformation of a sampling sequence of u(t) with

the sampling period T, then according to the relationship between the frequency characteristics
of a continuous signal and the corresponding sampling sequence (Glenn and Fred 1994) for an
appropriate sampling period T

U, (jB) = U,(jTo) = JpU(jo) (5.4)
Substituting (5.4) into (5.3) yields
FIU, (@)= F'[T|U,(jTo)]=T" F"[

U,(iTo)] (5.5)

Assume that |U, (joT)| has been obtained in the form of

L==Mf - 1)~(Mf -2),...,~10,,.... M4 (5.6)

from the M (an even number) sampled values of u(t) by using the FFT and denote the result
of the Fourier transformation of the discrete data in (5.6) as F [|U d(l)|]. According to Glenn

and Fred (1994) it is known that for a sufficiently large M

2n
U.(j—I
d(J Y, )

FIU, (@)]=T" F"|U,(joD1=T" %) F'|

0 . (5.7)
wd‘ﬁmc
In (5.7), o, and ©, represent the frequencies in the Fourier transformation results
FI|U, (D[] as well as F[|U,(jT)| and FIU, ()] respectively.
Because for a time series x(n),
Flx(n—n,)] = Flx(n)le ™

F[[U, (D)1 in (5.7) can be written as

F7

Ud(l)l] o {F‘[’U‘I[l.— (Mé_ 1)]1]81'004(%‘1)};1 - Fn[Ud [l_(MA _ 1)]l]ejnmd(M/2—l)

(5.8)

From the definition of the Fourier transformation for discrete time series,

11



2n M e
FIlU, - (M4 - D1 = . A A
2n M
+HU o I jea(M-T)
JlJ W 2 ]‘
~ -~ ” i, ~ R
=U0)+U(l)e ™™ +,...+UHE-1)e "+, ... +UM 1) /HM™D
(5.9)
where
[ n M
U(0) = U[“J—(——l)]‘
o =U,l- J—(——2)]l
) : (5.10)
U(——l)' U [1_0]‘
UM-1)=U ;——]!
Therefore
= = ) = -j(ﬂ-nmd - ) jnm,(ﬂ-l)
FU, M1 =[00)+UL)e ™ +,...40% -De ~ 2+ +T(M = 1)e oMD"
-y
g0 o
~ ~ ~ ~ % jnw 4 (—-1
= Conv{[0(0),.... OM=D),...[00),...0m-vy & "7
Le—;wd;l(M-l)-
= = — = —jo (M=) jnog (X1
={U(0) + U)e ™™ +,.. +Uln(M - 1)]e ¥} "2
= ji E— = jwg4(n —"1— - = —'mﬂi'lﬂ
=0T 1T T A0 M =) (5.11)

‘,—_-/\.ﬁ . . .
where Conv{x,...x} denotes the n-dimensional convolution for a vector x, and

{L:i(O),...,(:][n(M-I)]}=Conv{[U(O),...,f}(M—1)],...,[[7(0),...,[7(M—1)1} (5.12)

=4

Combining (5.7) and (5.11) yields
— 2n Y
F[U =T"|—| F"
W, @)]=T [MT] F

Udmll‘m
d‘ﬁw:

27 o jnmd(ﬂ-n o jwdEn(ﬂ—l)—!] = —jmdn—’g
=T"— | {U(0)e : +Ue 2 +,..,+U[n(M -1)]e 2} 2
MT =i
(5.13

12




Denote {U,(])}as a sampling sequence of U () with the sampling interval 2n/MT so
that according to Glenn and Fred (1994)

fm,,[n(i‘:——n—n

FIU, (D=

FIU,()]

l'

ot jnw, M pies
wr, =TCY O™ +Tne

in

2/MT

Tin(Mfy -1l 4. + DM~ "2 )

(5.14)
which implies that

- M 21 = (2rn\"
T3 -1 =005
- M 21 = 2\
) :
= (M 2
cu 8 T Lo
[0 MT] Uln ( 2 lj]( MJ

— (Moo = (om\"
| Tin{ 5 )= oo
(5.15)

Thus combining (5.10), (5.12), (5.15), and (5.2) gives the algorithm for calculating the n-
dimensional convolution integral for [U(jw)| at the points

2n .M M
m_l-ﬁ i=-n( > D,....0,...,n 2 (5.16)
as follows
' on 2n M M
* e UL (—i —]=T —- === =100, 00, n—
[ﬂ U[J(MTl)] U, [1 ] U[ +( l)n](M) i n(2 [ PR ¢ ¥
4 ... Otn(M - 1)1} = Conv{[ﬁ(O),...,i}(M—1)],...,[[7(0),...,(7(M— )

J'l

U(z)—U[;—(a——+1)]‘ i=01,. -1

(5.17)

It should be noted that the above algorithm has been obtained on the assumption that no
aliasing phenomena appear in either the input or output of the system because of sampling.
This implies that the sampling period T for u(t) must be chosen appropriately to satisfy this
requirement. In addition (5.7) and (5.14) require a sufficiently large M and hence an
appropriate length M of the sampled data must be wused to compute

21 M M
Uu,j—0n, l=—(—-1),...,0,...,—.
e Y ) (2 ) 2
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If the system is a discrete time system then U,(jo)=U(j®) and the algorithm is exactly
the same as (5.17) except that T in (5.17) is taken as 1.
Clearly the algorithm (5.17) can easily be evaluated up to arbitrary order nonlinearities.
This indicates that the algorithm together with the method for evaluating
|H,1 (jo!,...,jo! )| discussed in Section 5.1 can be applied to carry out the analysis of

nonlinear systems with finite but arbitrary order nonlinearities to evaluate the new concept
Yé(w) or Y?(w).

6. EXAMPLES

In this section two simple examples are given to illustrate the new bound . The emphasis is
upon illustrating the properties analysed in Section 4 and the effectiveness of the algorithm
proposed in Section 5.2.

Example 1

Consider a nonlinear system
¥(t) = H(D)ot 1’ (1)
(6.1)
where D is the differential operator, o, =1, and

w2

H(D)= s 6.2
D) D2+2§wHD+w5 6.2)

with w, = 10’% and £ =0.2. The frequency characteristic of the input is shown in Fig.3
and this implies

u(t) = —1—_[“ U(jo) ejwdm — —l-j_lU( W) ejwdco +LJ'5U( ) ema’m
om 4= om s o i

1 -] Jjoot 22 1 Jot -1 Joxr 51 Jot 1] Jor 21 Jor
=—1[| = -— — — - — d
2n[-[—52 e dco+_[_3 -~ dm+'[.'22 e da)+L = de)+L g # dm+j] 7 e ®
_ 2(sin2t —sin3¢) +sin S5t —sint (6.3)
2t
with
4cos2t—6¢cos3t+ Scos5t—cost 1
u(0) = o ==
2n T
; U(jo)
- 0.3..
-5 -1 0 1 5 W
Fig.3 (a)
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Fig.3 (b)
Fig.3 The frequency characteristic of u(t) in Example 1
The GFRFs of the system can easily be obtained as
(H,(jo,, jo,, jo,)=0,Hj0, +0, +0,)]
_ o, w?
@, 0, +0,)F + 26w, [0, +©, +@,)]+w? (6.4)

H, (jo,,...,jo,)=0, forn=12,andnz=4

From (3.28) and (6.4) the bound for the magnitude frequency domain characteristic of
the system output can be written as

; 1 . . W }
Yo (@)= Z——Imﬂ-i H,(jol,..., jo! U AU o)
e L m it i et W (e = : NI, N
= Gy s U0 05 oV U1 U G = 2 B G )ul* U+ U Go)

1| (A0my?
T @2n)? |(jm)2 +2x02x10m/ jo + (10my

: Iﬁa(m) (6.5)

By using the algorithm proposed in Section 5.2 with M=2000 and T=0.2, first obtain

2

Ud[jﬂn(i-%-i-l)]‘ for i=0,,...,M~1,
the discrete Fourier transformation of M sampled values of u(t) with the sampling period
T=0.2 as shown in Fig. 4. Then calculate U,(®) = |U|*|U| *|U(jw)| from (5.17) giving

Tii— y for i==3(a_p,...0,... 32000

2000x 0.2 o2 2

as shown in Fig.5. From (6.5) Y®(®) for the system under the excitation of u(t) is then
obtained and shown in Fig.6.

U, (joT)|
2.5
1 02 10 02 1 T

Fig.4 The magnitude characteristic of the discrete time Fourier

transformation for the sampled values of u(t) with T=0.2
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To illustrate the relationship between Y®(w) and |Y(jo) in this particular case,
Y(KT,)| 7,204 k= 0,£1,%2,... are determined from the system output y(r) which was obtained

by continuous simulation of the system equation (6.1) with u(t) given by (6.3) . The discrete
time Fourier transformation was then computed using an FFT algorithm for the

. 1 2000 ; e
frequencies -—-é—g—g%ft,...,O,..., 2000n . The transformation results were then multiplied by
. " 1999 2000
T, =0., and |[Y(jo) was determined for ® __ZOOOT, n|n=o_1,..., ,...,mnh:m .
Fig.6 shows a comparison of |Y(jw)| with the computed bound Y?(®).
The results in Fig.6 indicate that
Y?(w)=|Y(jo)=0  when |o|215 (6.6)

which verifies the third property of Y®(w) analysed in Section 4 because in this case
applying the algorithm for computing R, in Lang and Billings (1994) yields

\UR,UR,, =R,UR, =[0, 15]U-15, 0)=[-15, +15]
n=1

The results also illustrate the practicability of the new concept since it can be seen from
Fig.6 ( especially Fig. 6 (b)) that the overall trend in the variation of |Y( jm)[ is

basically reflected by the result obtained Y* ().

Example 2
Consider a discrete time nonlinear system
-r.’B -1
y(k) = 2—-(_%'——)[0:1u(k) +ou,u’ (k)] (6.7)
Alg™)

where g~ is the backward shift operator and
A(g)=1-0.69""+0.08¢7*
B(g7)=1-05g¢"", d=1, a,=1, o,=-1.5
The input sequence u(k) is
1 sin(5kT,) — sin(kT,)
2n kT,

5

u(k) =

T,=0.27 k=0%1,%£2,... (6.8)
with
i
u(0)=—1-(5 cos 5t — cos t)| g =
2n i

The magnitude frequency domain characteristic of u(k) is of the form shown in Fig.7.

The GFRFs of the system can easily be obtained as

16




—i—

H](jm;)=alH(€-jm‘ )= H(e‘fm:)
H,(jo,,jo,)=a,H(e ")) = ] 5H(e @)

H (jo,,..,jo,)=0 forn=3
(6.9)
where
iy BB
He " )y=———=
)=

From (3.28) and (6.9), the bound for the magnitude frequency domain characteristic of
the output of the system (6.7) can be written as

2
Yﬂ(w>=2ﬁﬂcjm:p---,jm:n)

n=1

IUI*"'*|U(j(D )|
\—--—.-’:_J
Ly o s .
= lHl (Jo )||U(j(1))| + Ele(jm 21:JW 2 )||U| * |U(J(D)|
= | fute) + 32 e U UG = [He fiute) + Lo ugo)

(6.10)

b

» |Ujo)|
2.5

v

-1 -0.2 0 02 1 w

Fig.7. The magnitude frequency characteristic of u(k) in Example 2
By using the algorithm proposed in Section 5.2 with M=2000, T =1 and lUd (jm)| =|U(jo)|

( because a discrete time system .is considered in this example), |U|*|U(jw)| for
999 1000

=-2X—-rn,...,0,...,2X——n 1s computed and shown in Fig.8 for the frequency
1000 1000
range ® €[-n,m]. Combining UI*UGo)|, |[UGw) and |H(e7®) for
999 1000 e . . . .
=———7,...,0,...,——n as indicated in (6.10) yields Y"(w) at these frequencies as
1000 1000

shown in Fig.9.

To make a  comparison between Y?() and |Y(j®) in this case,

y(k),k =0,x£1,12,...were computed from (6.7) and the output frequency characteristic

999 1000
Y(jo) for « =-———m,...,0,...,——n was obtained b lying the FFT to y(k
e 1000 1000 e R gt
for k =-999,...,0,...,1000 giving the corresponding |Y(j0))1 at these frequencies. This is
shown in Fig.9 for comparison.

The results in Fig 9 indicate that

17




YZ(@)=|Y(jo)=0 when =222

which is also consistent with the property of Y®(w) analysed in Section 4 since in this
example

N 2
UR.UR, =R, UR,, =[-1, -021U[02, JU[-2, 2]=[-2, 2]

n=1 n=1

Fig 9 also shows that the trend in the variation of |Y(jw)| is reflected by Y* ().

7. CONCLUSIONS

A new bound has been derived for the output magnitude frequency domain characteristics
of a wide class of nonlinear systems. Most of the analysis and synthesis methods which have
been developed in the frequency domain for linear systems are based on the magnitude
characteristics of the system output and the new bound provides a basis for extending these
results to the nonlinear case. Interpretation of the new bound in terms of the generalised
frequency response functions and characteristics of the input has been included and general
methods for the practical computation of the bound have also been developed.

Part II of this paper will consider the practical computation of the bound for the class of
nonlinear systems which can be described by the polynomial NARX model.
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Fig.6 . The comparision between the magnitude characteristic of the output frequency
response and the bound Y?(w) in Example 1.
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Example 2.
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Fig. 9 The comparision between the magnitude characteristic of the output frequency_

response and the bound Y?(w) in Example 2.




