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Abstract 

 

Background:  As  a  critical  technique  in  a  digital  pathology  
laboratory,  automatic  nuclear   detection  has  been  investigated  for more  
than one decade. Conventional methods work on the raw images directly 
whose colour/intensity homogeneity within tissue/cell areas  are 
undermined due to artefacts such as uneven  staining, making  the 
subsequent binarization process prone  to error. This paper concerns 
detecting cell nuclei automatically from digital pathology images by 
enhancing the colour  homogeneity as a preprocessing step. 
 
Methods: Unlike  previous  watershed  based  algorithms  relying  on post-
processing of the watershed,  we present  a new  method  which  
incorporates the staining information of pathological slides in the 
analysis.  This preprocessing step  strengthens  the colour  homogeneity  
within  the nuclear  areas  as  well as  the background areas,  while  
keeping  the nuclear edges sharp. Proof of convergence for the proposed 
algorithm is also provided. After preprocessing, Otsu’s threshold is 
applied to binarize the image, which is further segmented via watershed. 
To keep a proper compromise between removing overlapping and avoiding  
over-segmentation, a naive  Bayes  classifier  is designed  to refine the 
spli ts  suggested  by the watershed segmentation. 
 
Results: The method is validated with 10 sets of 1000 × 1000 pathology 
images of lymphoma from one digital slide. The mean precision and recall 
rates are 87% and 91%, corresponding to a mean  F-score  equal  to 89%. 
Standard deviations for these performance indicators are 5.1%, 1.6% and 
3.2% respectively. 
 
Conclusions: The precision/recall performance obtained indicates that 
the proposed method outperforms several other alternatives. In particular, 
for nuclear detection, stain guided mean-shift turns out to be more 
effective than the direct appli cation of mean-shift in preprocessing. Our 
experiments  also  show  that preprocessing the digital  pathology  images 
with  stain guided  mean-shift  gives better results than conventional 
watershed  algorithms.  Nevertheless, as only one type of tissue is tested 
in this paper, a further study is planned to enhance the robustness of 
the algorithm so that other types of tissues/stains can also be processed 
reliably. 

 
Keywords:  digital pathology; mean shift; k-means;  watershed 
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1    Background 
 

In digital pathology, a stained tissue section is fi rst placed under a microscope 
for scanning. Then digital imaging data can be collected, archived and shown to 
users such as pathologists. Overall,  digital pathology offers unprecedented 
flexibility to pathologists’ clinical work, including a modern platform for carrying 
pathological inspection over the Internet. 

As an important problem in digital pathology which has miscellaneous 
biological and medical applications, detecting nuclei automatically has been 
investigated for more than ten years [1]. There are numerous publications using 
algorithms such as: Hough transform [2], mean-shif t [3], quick-shif t [4], 
normalized cut [5], graph cut [6], watershed [7], colour-texture [8] and 
cumulative distribution function [9]. In addition, segmentation algorithms for 3D 
cellular data collected with laser scanning microscopy [10] and confocal 
microscopy [11] are also emerging. 

Although there are a variety of methods in the li terature, for analyzing colour 
pathology images generated by devices such as Aperio’s ScanScope series, there 
is still  room for further improvement in terms of accuracy and efficiency, 
especially when compared with cell images from fluorescent microscopy [7]. One 
main reason behind this is that the colour pathology images have richer texture 
details than the fluorescence microscopy images. Although the affluence of 
texture is desirable for better human based diagnosis, it makes the computer 
based nuclear detection problem rather challenging. 

This paper offers a fully automatic algorithm for detecting nuclei from colour 
pathology images. Instead of resorting to the post-processing of a watershed 
algorithm such as merging only, this paper incorporates a pre-processing step in 
the loop as well. Section 2 presents the details of this algorithm. The 
experimental results are presented in Section 3. Section 4 concludes this paper. 

 
 

2    Methods 
 

Fig. 1 presents an overview of our method. The first key step is pre-processing 
of the image which uses stain guided mean-shif t (SGMS) filtering. The 
morphological watershed algorithm is then applied to generate the segmentation 
result. Finall y, the watershed segmentation result is refined, leading to the final 
output. 

 
 

2.1   Stain Guided Mean-Shift Fil tering 
 

Fig. 2 shows virtual pathology images of lymphoma.  The tissue shown in Fig. 2 
was counterstained with haematoxylin and eosin. Haematoxylin has a purple 
colour and eosin exhibits a pink colour. Due to the non-uniformity of tissue 
structure and staining, the intensities of the stains vary across Fig. 2, even within 
the same nucleus. This is one of the issues causing problems for the segmentation 
algorithm’s performance.  Here the hypothesis we wish to test is: if  the colour



Stain Guided  Mean-Shift in nuclear  detection 3  
uniformity within  the image area can be enhanced  while the edge of the nucleus is 
preserved,  the segmentation performance  will be improved. 

As a non-parametric clustering algorithm, mean-shif t has attracted wide 
attention [14]. Comaniciu  and  Meer [3] applied  mean-shif t  filtering  in 
analyzing cell images which incorporates a sub-sampling  procedure  and is 
largely used as a reference method in nuclear  detection [8]. 

For every pixel in the image, a colour vector can be constructed. Within the 
RGB  colour  space,  every  pixel  has  a colour  vector  x = (r, g, b).  For a colour 
vector x0 , the standard mean-shif t  algorithm  updates  this  colour  vector  with 
the following equation:
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where  k(xi , x0 ) is the kernel  function  and  N (x0)  is the set  of neighbourhood 
pixels of x0 . 

Unlike classic mean-shif t algorithm which processes the input image within 
its neighbourhood area only, here we incorporate prior knowledge of pathology 
dyes into the filtering process to enhance the pre-processing.  As shown in Fig. 1, 
k-means is applied to extract the three main colour vectors, which represents the 
three main/ dominant colours within one image: two stains and the background 
colour induced by the white lighting. 

For instance, in Fig. 2, apart from the purple colour and pink colour, there 
are white areas in Fig.  2 as well, showing no tissue in the field of view. This 
white colour is the colour of the light source which also affects the image in a 
global manner. 

Therefore, by introducing the stain colour vectors into the filtering process, 
the update algorithm for the colour vector in (1) is modified as follows: 
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    . In the numerator of (2), the fi rst 

summation represents the effect of local neighbourhood colours and the second 
summation represents the effect of stain colour vectors. The denominator is the 
normalization coeffi cient. S denotes the set of colour vectors for the two stains 
plus the light source. Compared with (1), (2) is governed by the stain and 
lighting colour vectors, therefore it is named as stain guided mean-shift  (SGMS). 

In the appendix, we will prove that SGMS in (2) is convergent by converting 
(2) into a matrix format.  This proof assures the user that at some point the 
iteration can be stopped without missing important information. However, due to 
the inherent nonlinearity of the problem, an explicit expression of the convergent 
solution is yet unknown,  i.e., we still  need to let the computer running  iterations 
before it reaches a stable result. 
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2.2   Watershed Segmentation 
 

After applying the SGMS filtering, the colour within the image is agglomerated, 
including the cytoplasm areas as well as the background areas. As shown in the 
Appendix, each pixel tends to converge to its closest global colour model. Thus 
by applying Otsu’s threshold, the nuclei areas, which are of darker colour, can be 
segmented with the watershed algorithm [7]. Fig. 3 shows an example in which 
Fig. 3(a) is the original image; Fig. 3(b) is the result of SGMS filtering; Fig. 3(c) 
shows the inverse distance transform result after applying a threshold to Fig. 3(b). 

 
2.3     Detecting Isolated Nuclei 

 
As shown in Fig. 3(c), after watershed processing, lots of catchment basins can be 
identifi ed. A stand-alone catchment basin corresponds to one single nucleus area. 
In Fig. 3(d), these units represent the nuclei which are stained with haematoxylin 
and are not touching other cells. 

With the avail ability of these stand-alone nuclei, statistics of the size, shape 
and colour can be extracted.  Here the area of the nucleus region is employed to 
represent the size; aspect ratio to characterize the shape and the original colour 
vectors are utilized to extract the colour statistics.  Therefore, there are 5 
features to evaluate altogether. Statistics of these 5 features can be used to refine 
the over-segmented areas in the watershed which usually correspond to touching 
nuclei. The blue areas in Fig. 3(e) are examples of touching nucleus units. 

 
2.4   Separating Touching Nuclei 

 
To refine the watershed segmentation result, a naive Bayes mechanism is 
employed. 

Firstly, for every touching nucleus unit in the initial segmentation, a 
hypothesis is made which is based on combinations of the catchment basins. 
Since there might be multiple catchment basins within one connected component, 
as shown in Fig. 3(e), dif ferent hypotheses, i.e., combinations of these 
catchment basins, are tested. 

Secondly, the size, shape and colour statistics of the areas in the hypothesis 
are extracted and forwarded to the naive Bayes classifier whose output is defined 
as follows: 

5
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( )
i
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  ,     (3)  

where f (i) is  the binarized output obtained  by  testing  one  feature’s  fi tness 
against the obtained nuclei statistics. If  the classifier output in (3) has a positive 
output, the hypothesis is accepted. Otherwise, the null hypothesis, which means 
the combination is invalid, will not be rejected. 

The above hypothesis-test is applied to every possible combination of merging 
certain catchment basins. In addition, since one area can only have one nucleus, 
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if  one catchment basin passes more than one test, the hypothesis with the best 
fi t to the nuclei statistics obtained in Section 2.3 will be accepted. 

Fig. 3(f ) shows the final result  of applying  the proposed  refinement scheme. 
As can be seen, the touching nuclei are split effectively and the spurious tiny 
noise is eliminated. 

 

 
3    Results 

 
3.1   Lymphoma Data 

 

Fig. 4 shows an overview of the images selected for evaluating the nuclei detection 
algorithm in this paper.  The original size of the images in Fig. 4 is 1000 × 1000. 
These images correspond to 10 randomly selected regions of one lymphoma tissue 
from a patient, which was formalin fi xed and paraffin embedded initially and then 
cut into slices with 5 microns in thickness. After staining the tissue section with 
haematoxylin and eosin, the digital slide was collected with Aperio AT scanner 
(Aperio, Vista, CA, USA) with a spatial resolution of 0.23 microns per pixel. To 
evaluate the performance of the proposed algorithm, the ground truth of nuclei 
centres was generated by manually clicking on the raw data. 

 

 
3.2   Detection Methods for Comparison 

 

Here several nuclear detection methods are employed as references. These 
methods include: k-means of intensity, Canny operator, Laplacian of Gaussian  
(LoG), quick-shift [4], watershed, anisotropic diffusion (A-Diff  ) [12, 13] and 
mean-shif t [3]. 

For SGMS, a standard Gaussian kernel is used (ı = 1).  If  the update of the 
image is smaller than a given threshold, or it has repeated more than 100 times, 
the algorithm will exit the loop. In the naive Bayesian classifier, we choose p=0.05. 

 

 
3.3   Evaluation of Results 

 

For  nuclear  segmentation/detection,  there  are  four  dif ferent  types  of results: 
correct  detection,  under  segmentation  - type  A, under  segmentation  - type  B 
and over-segmentation. Here the type A under segmentation is a false negative 
while type B under segmentation means that one unit covers more than one 
nucleus centre. Fig. 5 gives a schematic diagram illustrating the meaning of these 
four types of nuclear detection results. 

We denote the number of nuclei in the ground truth as 
g

n , the number  of detected 

nuclei as 
d

n , the four types of results as , , ,
I I I I I I IV

n n n n respectively. The type B 

under-segmentation can be counted in two ways. One way is to count the corresponding 

number of ground truth 
I I I

g
n  while the other way is to count the number of detected 

nucleus units
I I I

d
n . The relationship between these numbers can be summarized as 

follows: 

I I I

g

g I I I
n n n n   ,     (4) 

I I I

d

d I IV
n n n n   .     (5) 

To compare the performance of dif ferent algorithms, we use precision/recall  and F-
number to measure the results. 

Apart from using precision/recall,  we can also evaluate the performance of 
algorithms based on the four types of detection results.  Since the true/false 
positive/negative based method can not reveal the dif ferent under-segmentations 
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shown in Fig. 5, here 4 performance indicators are proposed as follows: 
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where the denominator D is the maximum  of ng  and nd . 
 

3.4   Results 
 

For the ten images, the mean value plus the standard deviation of performance 
indicators are extracted to characterize the performance of eight algorithms. 
Table 1 and 2 summarize the results of experiments in which eight dif ferent 
algorithms are tested with respect to the ten lymphoma images. 

Table 1 shows the nuclear detection results in precision/recall  and F-measure. 
According to Table 1, SGMS gives the best mean F-measure  as well as the best 
consistency of F-measure. For both the precision and recall  rates, SGMS gives 
the best results with good consistency levels. 

Table 2 summarizes the four types of detection results as defined in (6-9). It 
can be seen from Table 2 that the correct detection ratio for SGMS is the best 
when compared with other alternatives. In addition, according to the pI I in Table 
2, SGMS has the minimum level of type A under-segmentation which is even 
less than the standard watershed. For type B under-segmentation (pI I I ) and 
over-segmentation (pI V ), SGMS also gives good results. 

Fig. 6 presents the computational costs in applying SGMS to analyze those 
images in Fig. 4. This is based on a personal computer with a dual core processor 
(3.40GHz) plus 16GB installed memory. As shown in Fig. 6, the processing time 
typically  takes 90 seconds if  the iteration number is set to 50 times. In practice, 
we set the number of iterations as 10 and it gives good results in general. 

 
4    Conclusion 

 
This study investigates automatic detection of tissue nuclei from pathological 
images. Instead of using watershed directly, we propose an algorithm to smooth 
the input image while preserving the edges of nuclei. Unlike the standard mean- 
shif t algorithm which is based on local colours only, here by introducing the stain 
colour vectors, global stain information is incorporated into the filtering process. 
We tested the algorithm and compared the results with several alternative 
algorithms.  Based on the results shown in Table 1 and 2, one can conclude that 
by processing the input image with SGMS filtering, the accuracy of watershed 
based nuclear detection is improved. 

This study was exploratory on a small  set of images. When compared with 
more complicated pathology images, the image set tested in this study is 
relatively simple since many nuclear borders are well separated and overlapping 
nuclei are a minority. Therefore, for the next step research, enhancing the 
algorithm on other types of human tissue constitutes a good direction. 
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Proof of Convergence for (2)  
Suppose the input image is m × n. Firstly, the update equation in (2) can be 
rewritten in vector-matrix format as follows: 

 

1
  

k k k k
X A X B S


  , (10) 

 
where Xk   is the vector  representing  the current  image in k-th  iteration  and  S 
represents the stain vectors. Ak  is an mn × mn square matrix and Bk  is an mn × 

3 matrix. Both Ak  and Bk  are determined by the selected kernel function and 

they are normalized to satisfy
3

1 1

( , ) ( , ) 1
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j j
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   . If the kernel function 

in (2) is Gaussian, we have ( , ) 0
k

A i j   and ( , ) 0
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B i j  . Therefore, 
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 ,      (11) 

i.e., 1
k

A

 . Since for every  eigenvalue  ȡ of Ak , ( ) 1

k k
A A


  , it 

yields 

( ) 1
k

A  . (12) 

According  to modern  control theory [15], (12) means  Xk   in (10) is convergent, 
i.e., (2) is convergent. 
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Figure legend 
 

Fig. 1  Flowchart of nuclear  detection process. 
Fig. 2  (a)  Digital  pathology image of lymphoma;  (b)  selected  area  of interest 

in (a). 
Fig. 3  Watershed segmentation of stain guided mean-shif t images. (a) raw picture; (b) 
stain guided mean-shif t; (c) inverted distance transform; (d) stand- alone catchment basins; 
(e) touching nuclei and (f ) final result. 
Fig. 4  Ten sets of lymphoma  images for evaluating the nuclear  detection 

algorithm. 
Fig. 5  4-types of detection results.  ’+’s are manually  assigned nucleus centres. 

(2)(3)(4) - correct detections;  (5)  type A under-segmentation;  (1)  type  B under-
segmentation and (6) over-segmentation. 

Fig. 6  Computational time vs number  of iterations in applying  SGMS. 
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Table 1. Results of experiments (mean  value  and  standard deviation). 
 

measure Precision (%) Recall  (%) F-measure (%) 
 

K-means    74(6.0) 57(13) 64(9.6) 
Canny edge 79(5.5) 52(11) 63(9.1) 

LoG  73(4.1) 64(18) 67(13) 
Quick-shift  72(8.1) 30(17) 41(18) 
Watershed  72(7.6) 90(6.5) 80(6.1) 

A-Diff  76(6.3) 57(13) 64(9.7) 
Mean-shift  79(8.2) 85(22) 81(17) 

SGMS  87(5.1) 91(1.6) 89(3.2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Records  of four types of detections (mean  value  and  standard deviation). 
 

Detection pI (%)  pI I (%)  pI I I (%)  pI V (%) 
K-means    56.9(12.0)  29.2(7.45)   13.7(6.0)   14.3(3.7) 

Canny edge 52.4(11.0)   25.3(5.4)    22.3(6.9)   44.6(2.4) 
LoG 62.7(16.9)  34.7(18.8)    0.6(0.5)    22.7(8.1) 

Quick-shift  30.4(16.7)  42.9(17.4)  26.8(11.9)   4.0(2.6) 
Watershed   72.7(7.4)     9.0(6.6)   0.1(0.1)    27.3(7.3) 

A-Diff  56.4(12.3)   29.5(7.2)   14.0(6.23)  12.4(3.9) 
Mean-shift  75.1(18.9)  12.3(22.7)    1.5(0.8)    18.1(3.7) 

SGMS   86.3(4.6)   6.6(1.2)  1.4(1.4)   12.6(4.7) 


