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Abstract

Background: As a critical tedhnigue in a digita pathology
laboratory, automatic nuclear detedtion has been mvedigated for more
than one @ade.Conventional methods wak on the raw images diredly
whos colair/intensity homogeneity within tissue/cdl areas are
undermired due to artefacts such asuneven s$aining, makirg the
subsequent binarization process proe to error. Ths paper conems
detecting cdl nuclei automaticaly from digital pathology images by
enhancingthe colour homogeneity as apreprocessing step.

Methods: Unlike previous watershed based algorithms relying on post-
processhng of the watershed, we preseit a new method which
incorporates the staining information of pathological slides in the
amalysis This preprocessing step strengthens the colouwr homogeneity
within the nuclear aeas a well as the backgrand areas while
keging the nuclear edges sharp.Prod of convergerce for the propo®d
agorithm is also provided After preprocessing, Otsu’s thredhold is
applied to binarize the image, which isfurther segnented via watershed.
To keep a proper comprormise between removing overlapping and awiding
over-segnentation, a raive Bayes classifier is designedo refine the
splits suggeded by the watershed segnentation.

Results: The method is validated with 10 sés of 1000x 1000 pathology
imagesof lymphoma from onedigital slide. The mean precision andecal
ratesare 87% ard 91%, correspondingto a mean F-score qua to 8%%.
Standard deviations for theseperformanceindicators ae 5.1%, 1.6% and
3.2% regedively.

Conclusions: Thepredsion/recl performance obtained indicatesthat
the propo®d method outperforms seerd other alternatives In particular,
for nuclear detection, stain guided mean-shift turns outto be more
effedive than thedired application of mean-shift in preprocessing. Our
experiments al® shav that preprocessing the digital pathology images
with stain guided mean-shift gives better reaults than conventional
watershed algorithms. Nevertheless as only onetype of tissue is tested
in this paper,a further study is planned to enhance the robustness of
the algorithm so that other types oftissues/stains can also b@rocesed
reliably.

Keywords: digital pathology; mean ift; k-means watershed
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1 Background

In digital pathology, a dained tissue sedion is first placed under amicroscope
for scanning. Then digitalmagng data can be collected, archived axd shown to
users such agathologists. Oveall, digital pathology offers unprecedented
flexibility to pathologists’ clinical work, including a mdern platform for carrying
pathological inspecion over the Internet.

As an importart problem in digital pathology which has miscellaneous
biological and medical applications, detecting nuclei automatically has bkeen
investigated for more than tn years [1]. Thereare numeous pulications using
algorithms such as Hough transform [2], meanshift [3], quick-shift [4],
normalized cut [5], graph cut [6], watershed [7], colour-texture [8] and
cumulative distribution function [9]. In addition, segmentation algorithms for 3D
cdlular data colleded with laser scanning microscopy[10] and confocal
microscopy[11] are alsoemerging.

Although there are avariety of methods in the literature, for analyzingcolour
pathology images generated by devices such as Aperio SanScope s&s, there
is still room for further improvement in terms o accuacy and efficiency,
especially when conpared with cellimages from fluorescent microscopy [J. One
man reason behindhis is that the colour pathology imageshawe richer texture
details than the fluorescence microscopymages. Althoughthe affluence of
texture is desirable for better human kasd diaghoss, it makes the computer
based nucleardetection problemrather chdlenging.

This pager offers a fullyautomatic algorithm for detecting nuclei fom colour
pathology images. Instead of resorting to the post-processng of a watershed
algorithm such asmerging only, this pager incorporates a pre-proessng step in
the loop as well. Sedion 2 presents the details of this algorithm. The
experimental reaults are presented in Sedion 3. Sedion 4 concludesthis pager.

2 Methods

Fig. 1 presents anoverview of aur method. Thefirst key step is pre{processng
of the image which ugs stain guided meanshift (SGMS) filteing. The
morphological watershed algorithm is then appliedto generate the segmentation
result. Findly, the watershed segmentation result is refined, leading to the final
output.

21 Stain Guided MeanShift Filtering

Fig. 2 shevs virtud pathology imagesof lymphoma The tissue shavn in Fig. 2
was counterstained with haematoxylin and eosn. Haematoxylin has apurple
colour and esn exhibits a pink colour. De to the non-uniformity of tisae
structure and staining, the intensities ofthe stains \ary acrossFig. 2, eenwithin
the same nucleus. Thids one of the isaues causing eblems forthe segmentation
algoritim’s periormance. Herghe hypothesis wewish to testis: if the colour
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uniformity within theimage areacan be enhanced while thege of the nucleus is
preseved, the segmentation performance will be improved.

As a non-parametric clustering algorithm, meanshift has attracted wide
attention [14]. Comaniciu and Meer [3] applied meanshift filtering in
andyzing cell images which incorporates a sib-sanpling procedw and is
largely ugd as a referencenethod in nuclea detection [8].

For everypixel in the image, a colarr vedor can beconstructed. Within the
RGB colour space, ewerpixel ha a colour vedor x = (r, g,b). For acolour
vedor xq, the standard meanshift algorithm updaes this colour vecor with
the following equation:

Z K(X; ) Xy) X,
X €N (xq)

X(l) = ’ (1)
Z K(x,,x,)
x €N (xy)
where k(xj,Xg) is the kernel function and N (xg) is the set of neighbourhood
pixels ofxg.

Unlike classc meanshift algorithm which pracesses the input image within
its neighbourleod areaonly, here we incorporate prior knowledge ofpathology
dyesinto the filtering processto enhancethe pre-pracessng. As shavn in Fig. 1,
k-means is appliedto exract the three man colour veaors, which represents the
three man/ dominart colourswithin one image: two stains and the background
colour induced bythe white lighting.

For instarce, in Fig. 2, apart from the purple colair and pink colour, there
are white areas inFig. 2 as well, showingno tissue in the field of view. This
white colair is the colour of the light saurce which alsoaffeds the image in a
global manner.

Therebre, by introducing the stain colour vecaors into the filtering process
the updae algorithm for the colour vector in (1) is modified as fdows:

ool )
X, == > k(x.,x,)x + > k(s,x)s |, 2)
AKX‘EN(XD) ses )

wherea = 3 k(x;,x,)+ > k(s,,x,). In the numerator of (2), the first

x;e N (xq) sleS

summation represents the effed of local neighbourhood colours ad the semnd
summation represents the effed of stain colour vedors. The denominator is the
normalization codficient. S denotes the set of colour vedors for the two stains
plus the light saurce. Compared with (1), (2) is @verned bythe stain and
lighting colour vectors, therefore it is named astain guided mean-shift (SGMS).

In the appendix we will prove that SGMSin (2) is convergent by converting
(2) into a matrix format. This proof ass@s the user that atsome point the
iteration can be topped without missng important information. However, dueto
the inherent nonlinaarity of the problem, an explicit expsson of the convergent
solution is yet unknown, i.e., we 8ll needto let the computer running iterations
before it reaches atale result.
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2.2 \Watershed Segmentation

After agpplying the SGMS filteling, the colour within the image is agglomerated,
including the cytoplasm areas as well ashe backgraind areas As shavn in the
Appendix, eachpixel tends to convage to its closest global colar model. Thus
by gpplying Otsu’s threshold, the nuclei areas which are of darker colour, canbe
segmented with the watershed algorithm [7]. Fig. 3 shavs an &ample in which
Fig. 3(a)is the original image; Fig. 3() is the result of SGMS filteing; Fig. 3(c)
shaws the inverse distance transform result after gpplying a threshold to Fig. 3(b).

2.3 Detectinglsolated Nuclei

As shavn in Fig. 3(c), after watershed processng, lots of catchment basns canbe
identified. A stand-alone catchment basn correspond€o one single nucleusarea.
In Fig. 3(d), these units represent the nuclei whichare gained with haematoxylin
and are not touching other cells.

With the avdl ability of these stand-alone nuclei, datistics of the size, hape
and colour can beextracted. Here the areaof the nucleus regionis employed to
represent the size; aspec ratio to characterize the shag andthe original colour
vedors are utilized to extract the colour statistics. Therebre, there are 5
featuresto evaluate altogether. Statistics of these 5 features can be wedto refine
the over-segmented areasin the watershed which usually correspa to touching
nuclei. The bluareasin Fig. 3(e) are examples oftouching nucleus units.

24 Separating Touching Nuclei

To refine the watershed segmentation reault, a naive Biyes mechanism is
employed.

Firstly, for every touching nucleus unitin the initial segmentation, a
hypotheds is made which is based on combinations of the catchment basns.
Sincethere might be nultiple catchment basns within one connected component,
as $own in Fig. 3(e), different hypotheses, i.e., combinations of these
catchment basins, are tested.

Secondly,the size, shape ral colour statistics of the areasin the hypothesis
are extracted and forwarded to the naive Bayes classifierwhose output is defined
as fdlows:

y=T1 @), (3)

wheref (i) is the binarized output obtained by testing one feature’s fitness
against the obtained nuclei gatistics. If the classifieroutput in (3) has gpositive
output, the hypothesis is accepted. Otherwise, the null hypothesis, which means
the combination is invalid, will not be rejected.

The alwve hypothesis-test is appliedto every possible&eombination of merging
certain catchment badns. In addition, since me areacan only lavwe e nucleus,
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if one catchment badn pasgs more than one test, he hypothesis with the best
fit to the nuclei gatistics obtained in Sedion 2.3 will be accepted.

Fig. 3(f) shawvs the final result of pplying the proposed refinement scheme.
As can be seenthe touching nuclei are split effectively and the spurious tiny
noiseis eliminated.

3 Results

3.1 Lymphoma Data

Fig. 4 shavs anoverview of the images seleded for evaluating the nuclei detection
algorithm in this paper The original size ofthe imagesin Fig. 4is 1000 x 100Q
Theseimages correspad to 10 randomly sleded regians of one lymphama tisaue
from a patent, which was érmdin fixed and paraffin embedded initially redl then
cut into sliceswith 5 migons in thickness After staining the tissue sedtion with
haematoxylin and eosn, the digital slide wascollected with Apetio AT scanner
(Aperio, Vidga, CA, USA) with a atial resolution of 0.23 migons per pixel. To
evaluate the performance ofthe proposed algorithm, the groundtruth of nuclei
centres wasgenerated by manually clicking orthe raw data.

3.2 Detection Methodsfor Comparison

Here sevel nuclear detection methods are empbyed as references. These
methods include: kimeans of intensity, Canny operator, Laplacian of Gasgsan
(LoG), quick-shift [4], watershed, anisotropic diffusion (A-Diff ) [12, 13] and
mean-shift [3].

For SGMS, astandard Gawssan kernelis used ¢ = 1). If the updae of the
image is smallerthana given threshold, or it has repeated more than 100 times,
the algorithm will ext theloop. In the naive Bayesian classifier, wechoose p=0.05.

3.3 Evauation of Reaults

For nuclea segmentation/detection, there are four different types of results:
corredt detediion, under sgmentation - type A, under sgmentation - type B
and over-segmentation. Here the type A under ggmentation is a falsenegative
while type B under sgmentation meansthat one unit mvers nore than one
nucleuscentre. Fig. 5 gives a shematic diagramillu strating the meaning d these
four types of nucleadetedtion reaults.

We denote the nunebof nuclei in the ground truth as_, the number of detected

nuclei asn , the four types of results ag , n, , n, , n, respectively. The type B
under-segmentation can be ctaghin two ways. One way is to count the correspogdin
number of ground trutm® while the other way is to count the number of dete

nucleus unite* . The relationship between these numbers can be atized as
n
follows:

ng:n|+n”+nj’, (4)
n=n +n,+n . (5)

To campare the performance ofdifferent algorithms, we usepredsion/recall and F-
numberto measirethe reaults.

Apart from using predsion/recall, we can alsoevaluate the performance 6
algorithms lasd on the four types o detection reallts. Since the true/false
positive/negative based method cannot revealthe different under-segmentations
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showvn in Fig. 5, here 4 perbrmanceindicators are proposedas fdlows:

p, = _Ir (6)
D

p, = o, (7)
D
max(n’® ,nlfl

RS ®)

D

Py = i ’ (9)

D

where the denominator D is the maximum ofng and ny.
3.4 Reallts

For the ten images, the mean value plughe standard deviation of performarce
indicators are extracted to characterize the performance of eight agorithms.
Table 1 ad 2 summarize the realts o experiments in which eight different
algorithmsare tested with resped to the ten lymphomaimages.

Table 1 shws the nucleardetedion reaults in predsion/recall and F-measure.
Acoording to Table 1, SGMS giesthe best mean Fmeasure as well asthe best
consistency of F-meaaure. For both the precision and recl rates, SGMS gives
the best reaults with good consistency levels.

Table 2 summarizes the four types of detection resllts as definedn (6-9). It
can be eenfrom Table 2that the corred detection ratio for SGMS is the best
when caonpared with other alternatives. In addition, accordingto the p;, in Table
2, SGMS hasthe minimum level of type A under-segmentation which is ewven
less than he standard watershed. For type B under-segmentation (py ;) and
over-segmentation (pyv), SGMS also giesgood reaults.

Fig. 6 presents the computationd costs in applying SGMSto analyzethose
imagesin Fig. 4. Thisis basedon a personatomputer with adual core procesor
(3.40GHz) plus 16GB installed menory. As shavn in Fig. 6,the processng time
typically takes 90 goondsif theiteration number is et to 50 times. In practice,
we st the number of iterations as 10 ad it givesgood resiltsin general.

4 Conclusion

This dqudy investigates auomatic detection of tissue nuclei fom pathological
images. Instead of using watershed directly, we popose an algorithnto smooth
the inputimage while presering the edges of nuclei. Unlikethe standard mean
shift algorithm which is basedon local colours wly, here byintroducing the stain
colour vedors, global ¢ain information is incorporated into the filtering process
We tested the algorithm and compared the reailts with sevea alternative
algoithms. Basd on the reallts shavn in Table 1 ad 2, cne can concluddhat
by pracessng the input image with SGMS filteing, the accuacy of watershed
based nucleardetedtion is improved.

This dudy was exploratory on a smk set of images. When cmpared with
more complicated pathology images, the image st tested in this study is
relatively simple since many nucleaoiies are well parated and overlapping
nuclei are a mimrity. Therebre, for the next step resarch, enhancingthe
algorithm on other types of human tissue constitutes a god diredtion.

Acknowledgments. This work was fundedthrough WELMEC, a Centre of
Excellencein Medical Engineering funded bthe Wellcome Trust and EPSRC,
undergrantnumker WT 088909Z2/09/Z.
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Proof of Convergence for (2)
Suppse the input image is m x n. Firstly, the updae equation in (2) can be
rewritten in veaor-matrix format as fdlows:

X.,=AX_+BS, (10

where X is the vedtor representing the current image in k-th iteration and S

represents the stain vedors. A is anmn x mn square matrix and By is anmn x

3 matrix. Both A and By are determined by the seleded kernel function and
mn 3

they are normalized to satisz A, j)+Y B, (.j)=1. If the kernel function
j=1 j=1

in (2) is Gaussian, we have, (i, j) > 0 andB, (i, j) > 0. Therefore,

mn

> AG.)) <1, (11)

j=1
ie., ||Ak ||w < 1. Since for evey eigenvaluep of Ax, p (A ) < ||Ak |L <1,it
yields

p(A)<1. (12)

According to modern control theary [15], (12) means X in (10) is convergent,
i.e., (2)is convergent.

References

1. Gurcan, M.N., Boucheron, L.E., Can, A, Madabhushi A., Rajpoot, N.M. and
Yener, B.: Histopathological Image Analysis A Review IEEE Reviews inBiomedical
Engineering2, 147-171 (2009

2. Magee, D., Chomphuwiset, P., Treanor, D., QuirkeCBntext Aware Colour Classification
in Digital Microscopy. In: Proceedingsf dedcal Image Understanding and Alysis,
London (2011)

3. Comaniciu, D. and Meer, P.: Cell lage Segnentation for Diagnostic Pathology. In:
Sui, JS., Searehdan, S. am Singh S. (eds) Advancesin Computer Vision and
Patern Remgnition 2002. pp. 541-558, Springer, London (2002

4. Vedaldi, A. and Fulkerson, B.: Vlfeat: an open ad portable library of computer
vision agorithms. Procealings of the International Conference orMultimedia 2010
pp. 14691472 (2010

5. Bemards, E. and Yu, S.X. P@ out mary small structures fran a very large
microscopic image. Medical inage amalysis 15(5), 690-707 (2011)

6. Al-Kofahi, Y., Lassoued W., Lee, W. ard Roysan, B.. Improved Automatic
Detection ard Segnentation of Cell Nuclei in Histopathology Images IEEE
Transactionson Biomedicd Engineering57(4), 841-852 (2010

7. Chen, X., Zhou, X. and Wong, S.T.C.. Autted segmentation, classification, and
tracking of cancer dehuclei in time-lapse microscopyeEE Transactions on Biomedical
Engineering53(4), 762-766 (2006)

8. Kong, H., Gurcan, M. and BelkacemBoussaid, K,: Patitioning histopathological
images: An ntegrated framework for supervised color-texture segnentation and cdl
splitting. IEEE Transactions on Medica Imaging 30(9), 16611677 (2011

9. Hagwood, C. Berral, J., Halter, M. and Elliott, J.: Evaluation of segtagon
algorithms on cell populations sing CDF curves. HEE Transactions on Medical
Imaging, 31(2), pp. 380890 (2012)

10. Kriv, Z., Mikula, K., Peyrims N., Rizz, B., Sati, A., Staov, O.. 3D early
embryogenais image filtering by norinear patial differentia equations. Medicd
Image Analysis, 14 (4), pp. 510526 (2010

11. Ram, S., Rodrguez, J. and Bosd®, Segmentation and detection of fluorescdént 3



8 Zhou etal. 201z
spots. Cytometry Part 81(3), pp. 198212 (2012)

12. Perona, P. and Malik, J.:&&Space and Edge Detectiorsidg Anisotropic Dif- fusion.
IEEE Trans. Pattern Aal. Mach. Intell.12(7), 629639 (1990)

13. Mendez-Rial, R., Martin-Herrero, J.: Efficiency eémi-implicit schemes for
anisotropic dfusion in the hypercubeEEE Transactions ro Image Processing?1(5):
23892338 (2012)

14. Comaniciu, D. and Meer, P.: Mean Shift: A Rstbépproach Toward FeatuBpace
Analysis. EEE Trans. Pattern gk Mach. Intell.24(5), 603619 (2002)

15. Astrom, K. and Murray, R.: Feedback Systems: An IntroduétioBcientists and Engineers.
Princeton University fess Princeton, NJ, USA. (2008)



Stain Guided Mean-Shift in nuclea detection 9

Figure legend

Fig. 1 Flowchart of nuclea detedtiion process

Fig. 2 (a) Digital pathology image of lymphoma (b) <leded area of interest
in (a).

Fig. 3 Watershed segmentation of stain guided meanshift images. (a) rawpicture; (b)

stain guided meanshift; (c) inverted distarce trarsform; (d) stand- alone catchment basns;

(e) touching nuclei and (f) final result.

Fig. 4 Ten sets of lymphomaimages for evaluating the nuclea detection
algorithm.

Fig. 5 4-types ofdetedtion reailts. ’+’s are manually assigned nuclegsntres.
(2)(3)(4) - correct detedtions; (5) typeA under-segmentation; (1) type B under-
segmentation and (6) over-segmentation.

Fig. 6 Computationd time vs number ofterations in applying SGMS.
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Table 1. Reaults of experiments (mea value ard standard deviation).

measure Precision(%) Recal (%) F-measure (%)

K-means 74(6.0) 57(13) 64(9.6)
Canny edge 79(5.5) 52(11 63(9.1)
LoG 73(4.1) 64(18) 67(13)
Quick-shift 72(8.1) 30(17) 41(18)
Watershed 72(7.6) 90(6.5) 80(6.1)
A-Diff  76(6.3) 57(13) 64(9.7)
Mean-shift 79(8.2) 85(22) 81(17)
SGMS  87(5.1) 91(1.6)  89(3.2)

Table 2. Remrds of four types ofdetections (mea value ard standard deviation).

Detection  pi1(%) pi1(%)  pii(%) piv (%)
" K-means 56.9(12.0 29.2(7.45) 13.7(6.0)14.3(3.7)
Canny edge 52.4(11.0) 25.3(5.4) 22.3(6.9%4.6(2.4)

LoG  62.7(16.9 34.7(18.8) 0.6(0.5) 22.7(8.1)

Quick-shift 30.4(16.7 42.9(17.3 26.8(11.9) £(2.6)
Watershed 72.7(7.4) 9.0(6.6) 0.1(0.1)27.3(7.3)

A-Diff  56.4(12.3) 29.5(7.2) 14.0(6)2312.4(3.9)
Mean-shift 75.1(18.9 12.3(22.7) 1.5(0.8) 18.1(3.7)

SGMS  86.3(4.6) 6.6(1.2) 1.4(1.4) 12.6(4.7)




