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Abstract

Reactivities of four biomass samples were investigated in four combustion at-

mospheres using non-isothermal thermogravimetric analysis (TGA) under two

heating rates. The chosen combustion atmospheres reflect carbon capture and

storage (CCS) applications and include O2 and CO2-enrichment. Application

of the Coats-Redfern method assessed changes in reactivity. Reactivity varied

due to heating rate: the reactivity of char oxidation was lower at higher heating

rates while devolatilisation reactions were less affected. In general, and particu-

larly at the higher heating rate, increasing [O2] increased combustion reactivity.

A lesser effect was observed when substituting N2 for CO2 as the comburent;

in unenriched conditions this tended to reduce char oxidation reactivity while

in O2-enriched conditions the reactivity marginally increased. Combustion in a

typical, dry oxyfuel environment (30% O2, 70% CO2) was more reactive than

in air in TGA experiments. These biomass results should interest researchers

seeking to understand phenomena occurring in larger scale CCS-relevant exper-

iments.
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1. Introduction

Combatting anthropogenic climate change and satisfying the forecast growth

in global energy demand requires novel solutions for many established indus-

tries. Increasing pressure to limit and reduce greenhouse gas (GHG) emissions

- particularly CO2 - from power generation are widely understood to present

a need to move away from unabated fossil fuel use. Reducing the emissions of

CO2 while maintaining a fleet of flexible thermal plant - required to balance

and mitigate the variability of renewables generation against the inflexibility of

nuclear generation - is seen as important by many nations. Two leading options

to achieve this goal are to replace some or all of the fossil fuels with sustainably

sourced carbonaceous fuels such as biomass or to capture and permanently store

the CO2 resulting from the combustion process. While neither biomass cofiring

nor carbon capture and storage (CCS) are truly sustainable in the long-term

(only dedicated biomass firing without CCS could be envisioned as such) they

represent one of the strongest options developed nations possess to reduce their

GHG emissions while largely maintaining the quality of life of their citizens in

the coming decades. Indeed, “[w]ithout CCS, overall costs to halve CO2 emis-

sion levels by 2050 increase by 70%” [1]. Separately these processes could ideally

offer substantial reductions in the emissions of CO2 from electricity generation,

but combined Bio-CCS projects could represent a net removal of CO2 from the

atmosphere. A net reduction of atmospheric CO2 during Bio-CCS occurs as the

CO2 absorbed by plants during their photosynthetic growth stage is ultimately

prevented from returning to the atmosphere being stored instead in deep geo-

logical formations. This is important since Bio-CCS is claimed to be “the only

large-scale technology that can remove CO2 from the atmosphere” [2] and with

sustainably sourced fuels is able to produce power with lower GHG emissions

than all other low-carbon generation technologies [3].

In the UK, early decarbonisation of the electricity system is seen as a priority

in meeting the 2050 80% reduction targets since other sectors (e.g. transport

and domestic heating) will require low-carbon electricity in order to reduce
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their sector’s carbon intensity [4]. Many technology roadmaps for the UK and

globally strengthen the view that Bio-CCS is a necessary technology option for

combatting climate change in the UK and around the world [1, 2, 5, 6].

1.1. Knowledge to Date

Conventional combustion of 100% biomass and cofiring with fossil fuels is

widely practised on an industrial scale. However, CCS is still a developing tech-

nology which contains a wide range of configurational options and areas requir-

ing further research [7]. A leading CCS technology option is oxyfuel combustion

where, instead of selectively extracting CO2 from a relatively dilute flue gas, the

fuel is burnt in an environment that largely comprises of oxygen diluted by re-

cycled flue gas (predominantly CO2) which acts as a thermal diluent to match

adiabatic flame temperatures to those seen in air-firing [8]. Through remov-

ing the largely inert nitrogen from the combustion process oxyfuel combustion

is able to produce a flue gas far richer in CO2 than conventional combustion

processes requiring more conventional and economic gas clean up systems than

envisioned for other CCS systems [9, 10].

As well as new power stations, the current fleet will continue to emit CO2

unless mitigating options are taken. While some plant will be suitable for total

retrofitting of technologies such as oxyfuel, in other situations alternative CCS

options such as post-combustion capture (PCC) may be preferred. PCC typi-

cally uses a chemical or physical agent to selectively remove CO2 from the flue

gas. However, one drawback to this method is the magnitude of the cost and

size of a CO2-scrubbing plant that is necessarily large due to the relatively dilute

CO2 in conventional flue gas (typically ∼ 10% ). One possibility for development

in this area is to enrich the combustion air with oxygen, reducing the nitrogen

content of the flue gas and hence concentrating CO2 which could reduce the

size and cost of PCC components, albeit at the extra cost of supplying oxygen.

However, in addition to the potential logistical benefits, this technology option

has been demonstrated to enhance combustion efficiency while simultaneously

reduce nitrous oxide emissions when oxidant staging with over-fired air is used
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[11, 12].

1.2. Experimental Background

While bench-scale combustion techniques differ from full-scale plant in a

number of ways, thermogravimetric analysis is a useful analogue for full-scale

combustion that has been widely adopted to assess trends in fuel reactivity in

both air and oxyfuel combustion scenarios, for example [13–15]. As standalone

technologies biomass combustion and CCS have received much attention. How-

ever, a knowledge gap exists where little technical data has been published that

concentrates on biomass combustion in situations applicable to CCS. In this

work the behaviour of four biomass fuels in four combustion atmospheres which

are useful to the the development of CCS technologies are investigated to pro-

vide preliminary indications of their behaviour in novel combinations of fuel

and combustion atmospheres. This work forms a part of a suite in which the

fuels and combustion environments investigated at bench-scale are then used to

inform the results of similar combustion tests carried out at pilot-scale [16].

Addressing climate change is a global challenge and the fuels tested in this

study, while typical in the UK energy mix, are common outside of the UK so it

is hoped the findings will be of wider interest.

2. Materials and Methods

Three biomass resources - short rotation coppiced willow (SRC), miscanthus

(MC) and reed canary grass (RCG) - were grown in the North of England by

the BioReGen project [17]. Shea Meal (SM) supplied by RWE NPower was

also included to compare with previous work [18]. Proximate analysis of the

fuels was carried out by TGA analysis of mass loss in a nitrogen atmosphere

with a temperature ramp rate of 20Kmin−1. Analysis of the lignocellulosic

contents of biomass was conducted by several wet chemistry stages, as detailed

in [19]. Results of analysis of the fuels are shown in table 1. The negative value

for lignin derived using the acid detergent lignin (ADL) method arises as the
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ADL measured value is less than the ash content of the fuel which suggests

some of the ash components are solubilised by acid solutions. While this is less

apparent for the samples containing lower amounts of ash, the negative value

for RCG is thought to be due to the relatively high ash content (8.1%) acid

solubility of particularly Ca and Na [20]. While the Klason and ADL methods

for measuring lignin appear similar, differences of the magnitude observed in

table 1 are common, see for example [19].

2.1. Sample Preparation

All of the UK-grown biomasses were harvested, dried and milled to pass

through a sieve of 0.5 mm. In an attempt to separate experimental physical

characteristics from those of a chemical nature and to ensure homogeneity in

small sample sizes, it was necessary to further reduce the size of the particles.

Mass transfer effects during thermal treatment have been shown to be largely

mitigated once particle size is reduced to approximately 200 µm [21]. To avoid

the escape of volatile species and/ or waxy deposits, the biomass samples were

milled using a SPEX 6770 Freezer Mill which uses liquid nitrogen to ensure

samples remain solid during milling [22, 23]. All samples were milled until they

passed easily through a 212 µm sieve.

2.2. Experimental Procedure

The data analysed in this work was first generated according collection meth-

ods similar to those detailed in ASTM standards E1641 and E2550. For each

experiment 5 ± 0.5mg of each biomass sample was accurately measured into

an open alumina crucible and the sample was introduced to a Mettler-Toledo

TGA/DSC1 device. In this equipment, the thermobalance is coupled to a dif-

ferential scanning calorimeter. While not used in analysing reactivity, the latter

function was used alongside the TGA data to highlight the various reaction

stages that occur during combustion. Once air was purged by the test atmo-

sphere the sample was then heated to 383K and held for a 30min period to

drive off moisture. The sample was then heated at the test heating rate (β) to a
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temperature of 1023K while the test atmosphere was fed into the chamber at a

rate of 50mlmin−1. The sample was held at the final temperature for a further

30min period to ensure combustion was complete.

The combustion of each biomass sample was studied in four oxidising atmo-

spheres. Air (21% O2, 79 % N2) was the reference case. Consistent with similar

work in this field [14], the composition of the oxyfuel atmosphere was chosen to

be similar to that reported in the literature and consists of an enriched O2 level

compared to air and thus was labelled En-Oxy (30 % O2, 70 % CO2). In order

to investigate the effect of increasing oxygen concentration and substituting N2

for CO2 separately, an oxygen-enriched air (En-Air: 30 % O2, 70 % N2) and an

unenriched oxyfuel condition (Oxy: 21 % O2, 79 % CO2) were also included in

the experimental design. Although the Coats-Redfern method only requires a

single heating rate to generate reactivity parameters [24], each of the TGA tests

was repeated at heating rates of 10 and 40Kmin−1 to increase the robustness

of the results.

2.3. Analysis of Experimental Data

Previous work presents a detailed methodology which reports that an ex-

tension of the Coats-Redfern technique may be used to compare reactivities for

complex decompositions in a robust, reliable fashion suitable for fuel screening

[16]. Thus, the procedure for identifying reactions, selecting a data range for

curve fitting and estimation of rate parameters outlined therein was followed in

the current work. An outline of this methodology is presented below.

First, a formalised procedure in which the derivative thermogram (DTG)

graph is analysed graphically was used to identify constituent reactions and

select a data range for curve fitting. From the analysis of the DTG of each of

the samples, the decomposition of each of the biomasses was assumed to occur

due to three independent, parallel, first-order pseudo-reactions. No smoothing

of the TGA data was employed during the analysis procedure. The standard

Coats-Redfern procedure for first-order reactions was then used to estimate the

reactivity parameters - apparent activation energy (EA) and pre-exponential
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constant (A) - for each of these reactions separately. This involves plotting

− ln
(

ln (1− α) /T 2
)

against 1/T where α represents the extent of reaction at a

given temperature (T ) and is defined by the mass (m) at initial (i) and final (f)

points as α = (mi −mT ) / (mi −mf ). The slope of the line of best fit to the

data is equal to −EA/R and the intercept with the y-axis equals ln (AR/βEA)

where R is the universal gas constant and β is the heating rate.

To understand how well these parameters characterise the overall decompo-

sition profiles the estimated values are then substituted into an Arrhenius-based

reaction model reflecting the assumption of three independent, first-order, paral-

lel reactions. Iterating this model across the TGA temperature range attempted

to recreate the decomposition profile of the TGA curve. The correlation between

the recreated profile and its derivative and the original mass and DTG profiles

is then quantified by the square of the Pearson Correllation Coefficient (r2).

The compensation effect between kinetic parameters is widely documented

in the literature, for example see [24–26]. In this work the purpose is to analyse

trend changes between combustion atmospheres rather than provide numeri-

cal values for kinetic parameters, as has been shown to be possible in previous

work[16]. Thus, in an attempt to mitigate the compensation effect, trends in

reactivity between different combustion scenarios comparisons are assessed by

normalising the reactivity of a given scenario to a reference case value for ap-

parent activation energy (EA,0) and pre-exponential function (A0) using eq. (1).

For traceability of results the estimated parameters are provided in supplemen-

tary material.

Si = 1−

EA,i

EA,0

lnAi

lnA0

(1)

where if

• Si < 0 then the decomposition is less reactive than the reference case

• Si = 0 then the decomposition and the reference case are equally reactive

• Si > 0 then the decomposition is more reactive than the reference case
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3. Results and Discussion

The four biomass resources were processed in the TGA device for the four

combustion atmospheres at two heating rates. The changes in mass and DTG

against temperature for each of these experiments are shown in Figures 1 and 2

for β = 10 and 40 Kmin−1 respectively. The temperature ranges of each of

the reactions was found to change between experiments; Figure 3 illustrates the

effect of heating rate and combustion atmosphere on these ranges. The tem-

peratures quoted in the following discussion relate to the identified temperature

ranges found by following the procedure and not directly to changes observed

on the DTG.

The three energy crops - SRC, RCG and MC - display similar decomposi-

tion DTG profiles and temperature ranges for the three reactions. Considered

alongside the similarities in proximate and ultimate analyses shown in table 1,

this may indicate the substructures of each of these samples may also be com-

parable. In air these decompositions can be broadly described by the onset of

an initial endothermic reaction at approximately 490K for β = 10Kmin−1 and

≈ 515Kmin−1 for β = 40Kmin−1. Comparison of the temperature range of

this reaction with literature suggests this reaction may be due to the release of

volatiles during the breakdown of hemi-cellulose materials [27–29]. The decline

of this initial reaction then overlaps slightly with an increase of the rate of an

exothermic reaction forming a shoulder in the DTG curve in the region of 575

and 595K for the energy crops decomposing at the respective heating rates in

air which may be due to the oxidation of volatiles released due to the decompo-

sition of cellulose materials. At temperatures of approximately 650 and 675K

the final reaction - which is also exothermic - is found to take control of the

decomposition continuing until ≈ 765 and 820K. Reactions in this tempera-

ture range are often attributed to the oxidation of char and from comparison

with the proximate analysis here it is assumed to be due to the more stable

lignin-derived volatlile components [28].

Dissimilar to the grasses and willow, SM tends to begin devolatilisation at a
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lower temperature (approximately 35K and 50K) than the other biomasses and

the transition between the endothermic and exothermic devolatilisation stages

also occurs at significantly lower temperature (535K for β = 10Kmin−1 and

555K for β = 40Kmin−1). A lower temperature devolatilisation may be due

to weaker macromolecular bonds [14], which may also be relevant here.

The DTG profile for the decomposition of SM has less defined reaction peaks

and, particularly in the temperature interval of 650K to 750K, a complex se-

ries of reactions that convolute the DTG seem to be occurring. Assuming the

complex decomposition for SM can be represented by 3 pseudo-reactions has

the effect of increasing the temperature range of the second and third reactions

in SM’s decomposition causing the reactions identified for the decomposition of

SM to span the widest temperature range.

The fastest mass-loss for each of the energy crops occurs during the second

pseudo-reaction in all oxidising atmospheres at temperatures ranging from 590K

to 610K and 615K to 640K for β = 10 and 40Kmin−1 respectively. The

SM DTG profile shows far more gradual changes in rate of mass-loss and as a

result the peak reaction rate is lower than the other samples with a mass-loss

sustained across a wider temperature range. Indeed, when SM was heated at

the slower heating rate the peak reaction rate is found for the char oxidation

stage rather than the volatile combustion reaction which displays the fastest

mass-loss in the other samples. This may be explained as the SM displays a

higher char:volatiles ratio than the grasses and willow and a significantly higher

ratio of lignin to holocellulose with lignin generally understood to decompose

across a wider temperature range.

3.1. Reaction Temperature Ranges

3.1.1. Effect of Heating Rate

For the three energy crops every reaction was retarded and elongated when

the heating rate (β) was increased from 10Kmin−1 to 40Kmin−1. For the

energy crops the averaged temperatures for the start of reaction one increased

from 495K to 512K and the temperature at which crossover between the first
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two reactions occurred increased from 572K to 591K. The span of tempera-

tures for the final, char oxidation reaction increased from an average of 649K

to 765K for β = 10Kmin−1 to 676K to 818K when β = 40Kmin−1. The

larger fixed carbon content of SM caused the final reaction in the overall de-

composition to be extended by approximately 50K further than for the energy

crops. The elongation of the final the reaction temperature range for each of

the samples suggests this reaction may not be kinetically controlled by the bulk

system temperature and instead dependent on other experimental factors that

contribute to mass and heat transfer within the particles. This is despite the

particle sizes being reduced to < 212 µm.

3.1.2. Effect of Reaction Atmosphere

Figure 3 suggests that changes to the combustion atmosphere have a neg-

ligible effect on the endothermic devolatilisation of the biomass samples (R1).

However, in atmospheres with an enriched level of oxygen reactions two and

three tended to span a reduced, narrower temperature range for a given heat-

ing rate than their unenriched counterparts, suggesting increased [O2] allows

both more intense combustion of volatiles and oxidation of chars. This is in

broad agreement with the literature - see [15] for example - though whether

the volatile combustion or char oxidation is more affected was observed to vary

between experiments. This does however suggest that in these experiments the

rate of delivery of oxygen to the particle surface affects the rate of release of the

volatile components as well as affecting char oxidation.

Substituting the base gas of N2 with CO2 seems to have a complex but con-

siderably smaller effect on the temperature range across which the reactions oc-

cur than increasing [O2]. The temperature range for the RCG reactions appears

to show almost no effect of changing from N2-based to CO2-based atmospheres

while the SM results suggest a slight elongation of the reaction temperature

range in CO2-based environments. In unenriched conditions substituting N2

with CO2 either had no effect or elongated slightly the total temperature range,

similar to that reported elsewhere [15, 30]. However, in O2-enriched atmo-
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spheres no clear trends can be extracted from the results, perhaps suggesting

uncertainty in identification of reactions reduces the accuracy of this technique

in robustly investigating subtle differences, requiring instead further analysis of

the data, such as that below.

3.2. Relative Reactivity (Si)

The apparent activation energy (Ea) and pre-exponential factor (A) for each

of the reactions in each decomposition and how well the estimated parameters

characterise the total decomposition (r2) were calculated according to the pro-

cedure detailed in [16]. For traceability of data these results are tabulated in the

supporting material. However, noting the compensation effect it is felt unde-

sirable to discuss the changes in kinetic parameters separately and instead this

work will only discuss the changes in total reactivity (incorporating both the

apparent activation energy and pre-exponential factor). It has already been re-

marked that little similar work exists in the literature and comparisons with that

which does is somewhat problematic. For example the work in [15] compares

characteristic temperatures between air and oxyfuel only but does not estimate

reactivity parameters, the work in [30] compares air and oxyfuel combustion

of coal chars by estimating the apparent activation energy of the char reaction

using multiple heating rates but only at at 10% [O2]. Additionally, while the

work in [14] evaluates biomasses decomposing in the same atmospheres the work

did not estimate reactivity parameters from the TGA analysis. Nevertheless,

where possible literature comparable with the findings are discussed below.

3.2.1. Effect of Heating Rate

One assumption regularly employed during the extraction of kinetic param-

eters from non-isothermal TGA work is that the parameters are independent

of the experimental heating rate so long as the magnitude of variation is small.

To investigate this a comparison between the results at different heating rates

is investigated in fig. 4 where β = 10Kmin−1 is used as the reference case for

the higher heating rate. This figure shows that the reactivities predicted for the
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grasses - RCG and MC - at the higher heating rate are typically within 5% of

those estimated at the lower heating rate. However, the results for SRC and

SM suggest in all cases the final reaction is substantially less reactive at the

higher heating rate. Taking all the results together this supports the claim that

no consensus has emerged whether increases in heating rate reduces the kinetic

rate of reactions [24]. Moreover, it is considered beyond the scope of this work

to investigate the effect of heating rate on reactivity parameters or the meth-

ods of estimating them, instead focusing on the trend changes due to changing

combustion atmospheres. Thus, rather than increasing the uncertainty by av-

eraging the results for Si the relative reactivities are calculated and presented

for each heating rate individually. Figures 5a and 5b show the results for 10

and 40Kmin−1 heating rates, respectively, and the results are discussed by fuel

before more general conclusions are drawn concerning the effects of changing

the combustion atmospheres.

3.2.2. SRC

The SRC samples are observed to behave in a similar fashion under both

heating rates. In atmospheres with enriched [O2] the final char reaction was

observed to be more reactive than the corresponding unenriched scenarios. In

the oxyfuel (CO2-based) atmospheres enriching the [O2] also caused an increase

in the reactivity of the second reaction though this was less readily observed in

N2-based environments. No trend can be elucidated concerning how reactivity

changes for the first reaction depending on the combustion environment, though

most changes observed are small corroborating the findings shown in fig. 3.

At the slower heating rate for unenriched atmospheres replacing N2 with CO2

tended to have a small effect on each of the reactivities while at the faster heating

rate a substantial reduction in reactivity of the char oxidation was witnessed,

perhaps suggesting slower diffusion of O2 in CO2 is to some extent limiting the

reaction. However, the fact that this reduction was not seen at higher [O2],

where small increases in Si were observed, may suggest the enrichment of O2

sufficiently counters the reduction in its mobility. The second reaction stage is
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responsible for approximately 50% of the total mass loss and in all atmospheres

this was observed to be more reactive than combustion in air. Substitution of

N2 with CO2 tended to slightly increase Si for this reaction in all conditions

tested.

3.2.3. MC

At the slower heating rate increasing [O2] was observed to very slightly in-

crease the reactivities of reactions 2 and 3, though at 40Kmin−1 these oxidative

reactions greatly benefitted from the increased oxygen concentration particu-

larly the char-oxidation. At unenriched conditions substituting N2 with CO2

for an oxyfuel environment caused the reactivity of the char-oxidation to fall at

both heating rates. Although more pronounced at the higher heating rate, an

increase in reactivity of reactions 2 and 3 when switching to oxyfuel is also seen

at enriched conditions for both heating rates.

At the slower heating rate increasing [O2] was observed to slightly increase

the reactivities of reactions 2 and 3. However, at 40Kmin−1 these oxidative re-

actions greatly benefitted from the increased oxygen concentration. The second

reaction was again the most important in terms of total mass representing ap-

proximately 45% of the total mass loss during the decomposition. In O2-enriched

conditions the apparent reactivity for this reaction increased. Particularly under

faster heating rates, the reactivity of the final reaction was also increased with

increasing [O2]. In the char oxidation stage substituting N2 with CO2 reduced

reactivity in unenriched conditions but slightly increased the value of Si when

[O2] was enriched.

3.2.4. RCG

RCG shows the same trend as MC above in the second reaction, which

is responsible for a similar amount of the total mass loss, with the value of

Si increasing in O2-enriched conditions at lower heating rates and in the char

oxidation stage at the higher heating rate. Comparison with the DTGs suggest

the reason for this shift in increased Si from R2 to R3 may be due to changes in
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the way the DTG is analysed rather than changes in Si between the reactions.

At low heating rates substituting N2 with CO2 was observed to have a relatively

minor effect on the reactivities. However, at 40Kmin−1 reactions 2 and 3 were

observed to increase in reactivity when switching to an oxyfuel environment of

comparable [O2].

3.2.5. SM

The relatively poor correlation between the reconstructed mass and DTG

curves for the SM samples indicate the method can less robustly analyse the

changes in relative reactivity for this sample and emphasise the need for care

when attempting to interpret the results. Comparing Si with the DTGs in

Figures 1 and 2 it can be observed that when increasing the oxygen concentration

compared to the unenriched state the reactivity of the final reaction increases

while the same reaction was reduced when the atmosphere was changed to be

CO2-based.

3.3. Overall Results

Although the results for the different fuels show some variation, some overall

conclusions may be drawn. The energy crops behaved in a similar fashion while

changes to the reactivity of SM were unique to that fuel. Overall, Si, reaction

temperature ranges and DTG results show that enriching the concentration of

oxygen in the combustion atmosphere is the most important factor affecting

reactivity and increases the reactivity of combustion occurring during either

one or both of reactions 2 or 3. This is in agreement with reported findings

for coal chars [30], though with only two oxygen concentrations here it is not

possible to predict dependence of the reaction on the O2-concentration as is

carried out in that work. The impact on reactivity was found to be greater at

the higher heating rate where it is suggested [O2] has a stronger rate-limiting

effect due to the diffusion of O2 to the char surface required for char oxidation.

Similar to the findings in the literature, no clear trends were observed when

substituting N2 with CO2, which appeared to be dependent on the experimental
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set up. At a heating rate of 10Kmin−1 in unenriched conditions replacing air

with a CO2-based atmosphere tends to reduce the reactivity relative to air of the

final char-oxidation reaction. However, this trend was not observed for all fuels

at the fastest heating rate. Conversely, in O2-enriched conditions the oxyfuel

environment appeared to be marginally more reactive than that with N2 as the

base gas. This result is unlikely to be observed in practical combustion because

the operation of the TGA instrument involves ensuring a given temperature

within the combustion chamber. Therefore, as noted in [30], unlike in a furnace

where the higher heat capacity of CO2 would reduce gas and particle tempera-

tures (hence depressing apparent reactivity), the temperature depression is not

witnessed in the TGA instrument, thus this depression of reactivity is not seen.

As for the slight increase in reactivity, although the CO2-gasification reaction

does not significantly affect decomposition until higher temperatures this could

also contribute a small amount to an increased reactivity. Additionally, the

increased heat capacity of CO2 could lead to marginally higher particle temper-

atures as more energy is contained in the system at any given temperature.

Comparing a typical dry oxyfuel combustion atmosphere of 30% O2 with

combustion in air finds that the latter is more reactive during both the com-

bustion of volatiles and char oxidation stages. However, the extent to which

this phenomenon exists at large-scale combustion with much more rapid heat-

ing rates is unclear. On the one hand the increased heat capacity of CO2 is

likely to reduce the gas and particle temperatures compared to a N2-based en-

vironment. However, in practice, oxyfuel combustion will likely be carried out

in oxygen-enriched conditions that elevate the furnace temperatures by reducing

the thermal diluent and intensifying the combustion process promoting higher

reaction rates.

4. Conclusions

Four biomass samples decomposing in CCS-relevant atmospheres were anal-

ysed by TGA at two heating rates. Application of the Coats-Redfern method
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assessed changes in reactivity between tests. Char oxidation was less reac-

tive at higher heating rates while the devolatilisation reactions were less af-

fected. In general, and particularly at the higher heating rate, increasing [O2]

increased combustion reactivity. A lesser effect was observed when substitut-

ing N2 with CO2 as the comburent; char oxidation reactivity tended to fall

in unenriched conditions while in O2-enriched conditions reactivity marginally

increased. These results should interest researchers seeking to understand phe-

nomena occurring in larger scale Bio-CCS-relevant experiments.
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Table 1: Combined results of fuel characterisation studies

Fuel SRC MC RCG SM

Proximate analysis (%), ar:

Moisture 6.0 5.5 5.8 7.5

Volatile matter (VM) 72.4 74 68.5 53.8

Fixed carbon (FC) 18.7 17.3 17.6 31.9

Ash 2.9 3.3 8.1 6.9

Ultimate analysis (%), ar:

C 47.7 46.4 42.2 48.6 a

H 6.0 5.8 5.4 5.9 a

N 0.4 0.3 1.4 2.9 a

S 0.0 0.0 0.0 0.2 a

Ob 43.0 44.3 42.8 37.5 a

C:H 8.0 8.0 7.8 8.3 a

C:O 1.1 1.0 1.0 1.3 a

Lignocellulosic content(%), ar:

Hemicellulose 11.7 22.4 27.5 10.9

Cellulose 48.0 47.6 31.2 2.9

Lignin (ADL) 14.0 6.0 -2.0 24.4

Lignin (Klason) 27.2 23.0 20.0 41.6

a Shea meal data from [11]; b By difference;
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Figure 1: Mass and DTG results for short rotation coppiced (SRC) willow, miscanthus (MC),

reed canary grass (RCG) and shea meal (SM) decomposing in different combustion atmo-

spheres at a heating rate of 10Kmin−1

22



Figure 2: Mass and DTG results for short rotation coppiced (SRC) willow, miscanthus (MC),

reed canary grass (RCG) and shea meal (SM) decomposing in different combustion atmo-

spheres at a heating rate of 40Kmin−1
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Figure 3: Variation in identified reaction zones for each of the biomass samples decomposing

in different combustion atmospheres under 10 and 40Kmin−1
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Figure 4: Si comparison between estimated reactivity of sample results from β = 40Kmin−1

compared to 10Kmin−1
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(a) β = 10Kmin−1

(b) β = 40Kmin−1

Figure 5: Changes in reactivity and temperature of maximum rate for short rotation coppiced

(SRC) willow, miscanthus (MC) reed canary grass (RCG) and shea meal (SM) decomposing

in different combustion atmospheres at a heating rates (β) of 10 and 40 40Kmin−1
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Table .3: Results for fuel decompositions in various combustion atmospheres

Identifier Rxn # Temperature Range (K) Mass CR Fit EA ln A Reconstruct (r2)

(Atmosphere β) (θ) Reaction Leading Edge Fraction r2 kJmol−1 Mass DTG

SRC

Air 10 1 488-572 524-554 0.24 0.9992 114.74 19.85

2 572-662 594-606 0.51 0.9994 188.25 32.48 0.9978 0.8194

3 662-759 716-732 0.24 0.9944 173.66 23.82

Air 40 1 510-594 546-576 0.23 0.9993 118.67 21.12

2 594-688 615-632 0.50 0.9998 175.10 29.74 0.9984 0.8698

3 687-808 755-774 0.27 0.9967 143.75 18.68

En-Air 10 1 496-570 530-552 0.24 0.9996 124.76 22.16

2 570-660 592-604 0.52 0.9992 196.67 34.39 0.9971 0.8055

3 660-750 714-724 0.24 0.9959 196.92 28.07

En-Air 40 1 514-594 548-576 0.24 0.9995 122.23 21.87

2 594-690 614-628 0.50 0.9999 177.50 30.26 0.9978 0.8515

3 689-794 746-766 0.26 0.9937 162.03 21.92

En-Oxy 10 1 494-574 524-552 0.27 0.9997 115.12 19.85

2 574-658 594-606 0.49 0.9998 230.74 41.36 0.9961 0.8221

3 658-754 720-740 0.24 0.9945 229.00 33.60

En-Oxy 40 1 513-590 551-576 0.23 0.9988 131.46 24.01

2 590-678 612-620 0.51 0.9999 194.40 33.95 0.9981 0.8410

3 678-788 726-748 0.27 0.9955 154.14 20.96

Oxy 10 1 494-572 526-556 0.24 0.9995 120.90 21.24

2 572-654 594-604 0.49 0.9995 193.74 33.67 0.9985 0.8293

3 654-750 716-738 0.27 0.9877 164.79 22.35

Oxy 40 1 516-595 551-572 0.24 0.9998 123.18 22.04

2 595-684 615-628 0.48 0.9999 183.28 31.38 0.9911 0.8920

3 683-814 755-778 0.28 0.9978 130.15 16.38

RCG

Air 10 1 494-570 520-556 0.28 0.9999 132.09 23.82

2 570-640 590-606 0.45 1.0000 171.61 29.43 0.9990 0.9360

3 640-768 672-710 0.27 0.9999 109.80 13.06

Air 40 1 510-594 538-576 0.30 0.9999 132.12 24.07

2 594-666 607-626 0.41 0.9981 190.60 33.17 0.9989 0.9641

3 666-826 700-754 0.29 0.9995 97.55 11.24

En-Air 10 1 492-570 524-556 0.29 0.9997 129.82 23.32

2 570-636 586-598 0.44 0.9997 188.19 32.99 0.9989 0.9370

3 636-762 670-710 0.28 0.9997 108.88 13.05

En-Air 40 1 514-590 539-574 0.28 0.9999 139.59 25.80

2 590-664 606-620 0.44 0.9991 184.95 32.26 0.9989 0.9509

3 664-806 703-742 0.28 0.9999 108.70 13.42

En-Oxy 10 1 494-570 524-554 0.29 0.9998 128.84 23.11

2 570-636 586-598 0.44 0.9997 190.39 33.46 0.9988 0.9335

3 636-760 668-712 0.27 0.9996 109.16 13.14

En-Oxy 40 1 512-590 539-576 0.29 0.9998 140.93 26.11

2 590-664 606-618 0.43 0.9995 197.71 34.87 0.9986 0.9402

3 664-800 700-740 0.28 0.9999 111.94 14.02

Oxy 10 1 494-568 526-554 0.26 0.9998 133.48 24.23

2 568-640 588-600 0.46 1.0000 166.23 28.39 0.9990 0.9280

3 640-768 678-716 0.28 0.9997 108.21 12.78

Oxy 40 1 509-590 539-570 0.28 0.9998 134.61 24.74

2 590-664 605-620 0.43 0.9993 186.94 32.67 0.9989 0.9571

3 664-824 700-746 0.29 0.9996 101.22 11.97
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Table .3: Results for fuel decompositions in various combustion atmospheres (cont.)

Identifier Rxn # Temperature Range (K) Mass CR Fit EA ln A Reconstruct (r2)

(Atmosphere β) (θ) Reaction Leading Edge Fraction r2 kJmol−1 Mass DTG

MC

Air 10 1 500-578 528-562 0.31 0.9999 136.16 24.31

2 578-648 596-608 0.44 0.9999 216.26 38.25 0.9988 0.9482

3 648-772 700-738 0.25 0.9953 121.07 14.72

Air 40 1 520-600 554-587 0.30 0.9997 140.52 25.47

2 600-674 614-630 0.44 0.9989 199.77 34.69 0.9988 0.9691

3 673-820 730-772 0.26 0.9986 104.61 12.18

En-Air 10 1 498-578 526-568 0.30 0.9997 123.43 21.61

2 578-640 592-606 0.43 0.9999 228.21 40.80 0.9992 0.9408

3 640-766 672-728 0.27 0.9986 116.52 14.19

En-Air 40 1 524-600 560-588 0.31 0.9996 148.68 27.21

2 600-672 612-626 0.44 0.9983 230.95 40.96 0.9984 0.9636

3 672-788 724-760 0.25 0.9973 122.32 15.48

En-Oxy 10 1 502-572 530-560 0.28 0.9997 141.72 25.80

2 572-644 590-604 0.46 0.9998 210.10 37.37 0.9985 0.9223

3 644-758 688-728 0.26 0.9970 120.77 14.87

En-Oxy 40 1 519-600 552-584 0.31 0.9998 140.28 25.40

2 600-674 612-624 0.43 0.9982 236.86 42.15 0.9982 0.9562

3 674-800 729-754 0.26 0.9978 133.41 17.35

Oxy 10 1 500-574 528-560 0.28 0.9999 138.09 24.90

2 574-646 592-604 0.46 0.9999 194.64 33.98 0.9990 0.9307

3 646-776 692-738 0.27 0.9964 113.70 13.39

Oxy 40 1 525-602 552-578 0.31 0.9998 145.30 26.43

2 602-676 618-628 0.42 0.9995 215.78 37.77 0.9981 0.9593

3 676-825 730-770 0.27 0.9991 100.20 11.33

SM

Air 10 1 455-534 494-524 0.12 0.9975 100.31 18.38

2 534-686 548-578 0.55 0.9911 116.18 18.25 0.9766 0.4936

3 686-784 738-752 0.33 0.9914 208.79 28.47

Air 40 1 461-554 504-540 0.14 0.9989 98.63 18.51

2 554-698 569-596 0.43 0.9932 119.43 19.56 0.9874 0.5912

3 698-868 760-788 0.44 0.9984 97.52 10.18

En-Air 10 1 445-532 504-518 0.12 0.9985 101.76 18.85

2 532-685 548-578 0.57 0.9936 111.44 17.25 0.9797 0.5298

3 685-776 734-748 0.31 0.9925 218.14 30.31

En-Air 40 1 460-554 500-540 0.14 0.9989 96.22 17.95

2 553-708 570-596 0.47 0.9936 117.95 19.19 0.9839 0.5829

3 708-842 757-776 0.39 0.9988 138.10 16.90

En-Oxy 10 1 472-536 494-518 0.13 0.9998 112.45 21.17

2 536-684 550-572 0.57 0.9935 131.65 21.67 0.9708 0.5002

3 684-808 742-756 0.30 0.9938 152.17 18.86

En-Oxy 40 1 460-554 498-540 0.14 0.9990 97.98 18.34

2 554-694 569-594 0.44 0.9936 130.38 21.97 0.9872 0.6559

3 693-858 748-768 0.42 0.9941 110.97 12.64

Oxy 10 1 454-538 486-524 0.14 0.9993 91.60 16.15

2 538-688 548-570 0.53 0.9881 147.06 24.97 0.9677 0.5134

3 688-826 750-766 0.33 0.9956 139.24 16.45

Oxy 40 1 460-556 502-540 0.14 0.9990 95.52 17.72

2 556-704 572-594 0.44 0.9941 125.92 20.86 0.9854 0.5861

3 703-890 767-792 0.42 0.9988 94.31 9.52
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