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Abstract

In this paper, we propose a B-spline based approach to the shape from shading prob-
lern. Its basis lies in approximating a smooth surface by uniform bicubic B-spline basis
functions. Since the surface normal in a patch is uniquely determined by heights of its
sixteen neighbour vertices, the image brightness is directly related to the control vertices.
The control vertices are then determined by minimising a cost functional corresponding
to the squared brightness error, optimised by conjugate gradient method. The proposed
algorithm does not require any integrability constraint or knowledge of boundary condi-
tions. Using several experiments with synthetic images, we demonstrate the performance
of the algorithm.
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1 Introduction

The problem of shape from shading is that of recovering the 3-D surface shape from a sin-
gle 2-D shaded image data based on the reflectance map and in some cases, the boundary
orientation. Though shape from shading appears a simple task for the brain, it is quite a
difficult task for machines. Much of the early research into shape from shading, formulated
and pioneered by Horn [1], [2], [3], [4], [5], [6], was aimed at obtaining the surface orientation.
The variational approach [3], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], in which a surface
orientation field is characterised by its slopes p(z,y) = 82/8z and ¢(z,y) = 0z/0y has been
used to determine the orientation.

The variational approach results in a set of first-order partial differential equations. The
difficulty in solving these equations are two-fold. Firstly, appropriate boundary conditions
are required and secondly, the nonlinear equations are solved by iterative algorithms whose
convergence properties are not well understood [5], [12], [17). The algorithm suffers due to
the non-integrability of computed p(z,y) and g¢(z,y) and the ill-posedness of the problem
[11]. A different approach in which the height of the surface was extracted from the image
was proposed by Pentland [9], [10]. He related the height to image brightness in closed form,
with a linearised reflectance map in the Fourier Transform domain.

We propose a new B-spline based approach to shape from shading in this paper. It stems
from the idea of approximating a order-2 continuous surface by a linear combination of a set
of uniform bicubic B-spline basis functions. Since the surface normal is determined by its
sixteen neighbour control vertices, we can relate the image brightness directly to the height
of the control vertices via the reflectance map. A cost function is defined in terms of the
squared brightness error and a regularisation term that minimise the bending energy [18] to
make the problem well-posed.

Our approach is similar to that of Lee and Kuo [19], but major differences exist. Firstly,
they use triangular surface patches as basis functions which are not C? continuous and hence
computing the derivatives are difficult. This forces them to use linearised reflectance map
in relating image brightness to nodal heights. In our case, since bicubic B-splines are C?
continuous, the exact relationship between the height, brightness and the reflectance map can
be established, which is the second difference. Finally, we use conjugate gradient optimisation
which is computationally demanding than the multigrid technique used by Lee and Kuo [19)].
The computational complexity is justified on the grounds of seeking the true optimum set of
parameters for shape reconstruction. Note that Bolle and Cooper [20] use global quadratic
polynomials as basis functions to represent, not the shape, but the image itself and then
transform the estimated coefficients or parameters for comparison with those of known shapes.
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2 Image irradiance equation and image formation

We assume that the shaded image is formed by an orthographic projection of a Lambertian
surface with a distant single point light source, as in [21]. The surface shape is described
in the cartesian coordinates (z,y,z) and expressed by the equation z = z(z,y). With the
viewing direction aligned with the negative z-axis, under the orthographic projection of the
surface, the shaded image coordinates are also (z,y). The surface orientation is specified in
the gradient space (p, q), where the surface normal is [p, ¢, —1], given by,

_ 0z(z,y)

p(z,y) = q(z,9) = By (1)

0z(z,y)
oz

Image formation can be described by a single equation called the image irradiance equation

[6], [21], where image brightness is related to surface orientation through the reflectance map.

The reflectance map provides information on the reflection property of the surface and of the

light sources. With gradient space used to represent surface orientation, the image irradiance
equation is given by,

I(z,y) = R(p,q) (2)

where I(z,y)is the brightness at a given point (z,y) and R(p, ¢) is the reflectance map. Under

the assumption of orthographic projection (Lambertian surface and distant single point light
source), the form of the reflectance map is usually given as,

1+P;P+qu - k‘r + kpp+qu
VitpP+@Vitp+a Vi+pi+d

where 7 is the albedo of the surface, (p, g, —1) is the gradient of the surface at (z,y), (ps, g5y —1)

R(p,q)=n (3)

is the illumination direction and,

k, = L = sinT singo
? 1473+

k, = 7—3‘— = cosT sino 4
g 1+pi+e3 )

1
= CcosCO
;?1+pi+93

b
|
|

with 7, o being the tilt and slant angles made by illumination direction with the z—axis and

z—axis respectively.

Horn et al., [3], [4], [5] estimated the surface orientation n = (p,g) at each image point
directly, the underlying theme being the satisfaction of the image irradiance equation I(z,y)—
R(p,q) = 0 (2) or-at least the minimisation of the difference over the image domain 2.

. = argmin [ {I(2,4) - R(n(z,v)Y dz dy (5)
Q

This is an ill-posed problem which is made well-posed by including regularisation terms [22].

2
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We adopt an alternative, but similar, approach where the shape of the surface is described
in terms of a set of parameters, say a (fe., z = 2(z,y;a)), then the optimal set of parameters
a, are obtained by minimising a cost function as in (5) including a regularisation term in
which the parameter a appears through the p, ¢ terms in the reflectance map R(p, ¢) given
by (3). In the next section, we look at a particular surface shape description and the set of
parameters that need to be optimised.

3 Surface description with B-splines

A general surface can be described as a linear combination of a set of basis functions B;; as,

N N
2(z,9) = Y ) w8 (=, v) (6)

1=0 j=0

where v; ; are the coefficients known as control vertices.

To describe a 2-D surface, the control vertices are placed on a topologically rectangular
array (i,7), called the control mesh or control graph over the image plan, shown in Figure
1. For a given image of 2(N — 3) x 2(N — 3), the number of control vertices are N x N.
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Figure 1: Control vertices and Image pixels: x denotes the position of control vertices and o
indicates image pixels.

The surface being recovered from the shading image is formed by scaling the sum of basis
functions over the image domain Q. The scale factors are control vertices.

The two dimensional basis functions are formed from the one dimensional uniform bicubic
B-splines as tensor-product B-spline, given by [23],

B ;(z,y) = Bi(z)B;(y) (7)

3
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The basis B(z) is non-zero over only four successive intervals as shown in Figure 2. This

07 -r

uniform cubic B_spline

0.6

o5r

04F

0.3

o2t

0afF

Figure 2: The uniform cubic B-spline. The non-zero portion is composed of four polynomial

segments bs(z), ba(z), b1(z), bo(2).

non-zero portion of the cubic B-spline consists, from right to left, four basis segments bz(z),

bZ(I) sbl(m)’ bﬂ(x)! given by, [23]3

bo(z) =
bi(z) =
ba(z) =
bi(z) =

]
w

(1+ 3z + 3z% — 3z9)
(4 — 622 + 323)
(1-3z+ 322 - 2°)

(8)

D= D= Bl D=

They combine to form a piecewise cubic polynomial curve which has positional, first derivative

and second derivative continuity (C? continuity) at the joints between successive segments.

The 2-D basis function B; ;(z,y) is shown in Figure 3 and is non-zero over a 4 X 4 region in

the image plane.

Using the bicubic B-spline basis functions, any C? surface can be described by,

N N
z(a:,y)‘ = ZZU,-,,-B,-(z)BJ-(y)

1=0 j=0

N N 3 3
D20 |20 D vienaabe(z)ba(y) (9)

=0 j=0 Lr=0s=0

where z,y € [0,1]. The height at position (z,y) inside the square patch is uniquely determined

by its sixteen neighbour control vertices Vi; = [vi, Vij+1,- - -, Vita,j+3]7 , shown in Figure 4.

It is straight forward to see that the partial derivatives of the surface with respect to

(w.r.t) z and y at any point inside this square patch is also affected by its sixteen control

4
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bicubic B_spline

Figure 3: The non-zero portion of a single uniform bicubic B-spline Bgo(z,y), formed by,
uniform cubic B-splines By(z), Bo(y).

vertices as follows:

3 3

Po(@8) = 00 vitnsns L bu(y) = ea(e, UV (10)
r=0s=0
3 3

w5(20) = LD vansrabe(@) AL = ¢z, )W (1)
r=0s=0

where ¢z(z,y), ¢y(z,y) are (16 x 1)vectors which depend only on the image point (z,y). Note
that cz(z,y) is given by,

ex(z,y) = [CE¥(0,0); . .., CZ¥(r, 8),. ..-C¥(3, ) (12)
and i
csx(r,0) = 22 ) (13)

For notational convenience, let us define the matrix CZ¥ as a 4 X 4 matrix with components
from c.(z,y) using (r,s) as the matrix elements, fe.,

Czv(0,0) C2¥(0,1) C2¥(0,2) CZ¥(0,3)
_ | ez@,0) cz,1) C2v(1,2) €2v(1,3)
= | Cv(2,0) C2v(2,1) CF¥(2,2) C2¥(2,3)

C2v(3,0) C2¥(3,1) C2¥(3,2) C2¥(3,3)

(14)

The terms cy(z,y) and C¥ can be similarly expressed. For a given image point (z,y) inside
the (37, 7) square patch, the surface orientation p;;(z,y) and g;;(z,y) are scaled combination
of sixteen neighbour vertices.
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Figure 4: Control vertices, Image pixels for the (1, j) Square Patch.

The second order derivatives of the surface are given by,

82 iz, =
—?ésﬂl = 2 ):'Ut+r.:+aﬁgﬂb (¥)

r‘* .l_

LG ; ):v,+,,,+,b ()22 (15)

r= s—
2z:4(x 3 (::l o(¥)
- Zt5::5( y|y) = Z= E= Vigr,i+ s = y‘y

These second order derivatives are used in obtaining the regularisation term.

The B-spline representation of the surface can be viewed as a parametrised representation
with the control vertices representing the set of unknown parameters for the given shape. In
the next section, we will formulate the B-spline based algorithm as an optimisation task in
which the optimal set of control vertices that satisfy the irradiance equation is sought.

4 The B-spline based algorithm

The given image of 2(IN — 3) x 2(N — 3) has pixel brightness values I,,, and the corresponding
reflectance map R(pmn,@mn) given by (3) where,

P, = pism ) gmn = (2, Y) (16)

and (m,n) is a point inside the (4, j) square patch as shown in Figure 4. The indices (m,n)
are given by,
m=2 (z=023) m=2i+1 (2 = 0.75)
n=2j (y=025) n=2j+1 (y=0.75)
Inside the square patches formed by four control vertices, there are four image pixels. Their
positions inside the square are given by (z,y) = (0.25,0.25), (z,y) = (0.25,0.75), (z,¥) =

(17)

6
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(0.75,0.25), (z,y) = (0.75,0.75). Hence, the surface orientation of these four positions are,

pi;(0.25,0.25) = VI pi;(0.25,0.75) = V! (18)
:;(0.75,0.25) = VIl p:;(0.75,0.75) = Vel

where ¢ = c.(0.25,0.25), c?! = ¢,(0.25,0.75), cl° = ¢.(0.75,0.25), cl! = ¢.(0.75,0.75), as
given in (12). Similar expressions for ¢, can be given. See Appendix for the numerical values
of these vectors.

Using the image irradiance equation (2), we can now relate the brightness values at each
pixel I, with the height of the control vertices v;; appearing through substitution for R(p, q)
using (3), (10) and (11) with ppn, gmn for myn =0,...,2(N - 3).

The optimal set of control vertices are those that minimise the brightness error and the
problem is posed as an optimisation task where, the following cost function is minimised:

2(N-3)2(N-3)

2
Eo= ), 3 [kppmn + koQmn + kr = Imny/14 P2, + q,ﬁm] (19)

m=0 n=0
However, this is an ill-posed problem and we need to add a regularisation term in order to
make the problem well-posed [22].

The regularisation term added to the brightness error cost term is the bending energy
evaluated over the entire image plane €2, given by [18],

92\ 82z \* (8%’

Since the surface is formed by patches of uniform bicubic splines with C? continuity, (20) can
be easily integrated over the image plane. For example, consider the first term in (20):

62 2 N N L o 2
j (%;) drdy=3 % / 22 ) dody (21)
0

=0 J=0(ij) square

where the integration is carried out within each square patch. Substituting (15) above, we

822\ >
f&ﬁ)“@
Y]

get,

N N 2
| {ZZv=+r,J+.“(z)b()} do dy

=0 j=otqua.fe (45) =0s=0

N N
2> Vi HeeVi; (22)

1=0 7=0

where H.. is a 16 X 16 matrix. Similarly,

APy N N ’
f 3 ) edv = LY ViH,V; (23)

0 1=0 7=0
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5%z \? N N
f 2(6z3y) dedy = 3 VIHV; (24)
7]

3=0 j=0

giving the regularisation term as,

N N
=Y Y vIny; (25)
1=0 5=0

where H = H.. + H,y + H,,, whose values are given in the Appendix.

The optimal set of control vertices v;; for i,j = 1,..., N are estimated by minimising the
total cost function E given by,

E

Eo+ AR (26)

2(N-3)2(N-3)

2 N N
= Z E {kppmﬂ + kq‘]'mn + k. — Imﬂ.‘\/ 1+ p?,m + Q,z,-m} + A Z E V,?HV;J

m=0 n=0 1=0 j=0

where A > 0 is the regularisation parameter which provides a trade-off between smoothing
and satisfying irradiance equation.

The regulariser A is chosen to have some initial value which is reduced gradually to near
zero values, as in [12], [13], [19], [24]. The minimisation of (27) is carried out using the
conjugate gradient descent method. Since changing A will change the conjugate direction, A
is changed after every ten conjugate iterations and the negative gradient is then used as the
optimum search direction following the change.

Applying conjugate gradient method to the cost function E, the control vertices can be
iterated using,

Vg1 = Vi + 7AW (27)

where 7 is the optimum step length and AV is the conjugate gradient search direction. The
search direction at the (¢ + 1) iteration is a linear combination of the negative gradient and
the last step search direction, given by,

AVig = AV, — VEy (28)

where VEy is the gradient of the cost function with respect to the control vertices,

VEy =

T
0F 0FE ] (29)

5”11"”’31)1\'1\!

A control vertex affects only its sixteen neighbour square patches. With four pixels in each
square patch, there are 64 nonzero elements in the summation required in the term Eq for

8
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each control vertex. If we rewrite equation (19) as Eg = 3 T €2, then, 8(e?,,)/0v; is
nonzero only when,
i—3<mf2<i (modd) i-3<(m-1)/2<1% (m even) (30)
j—3<n/2<j (nodd) j-3<(n-1)/2<j (neven)

On the boundaries and corners, there are less nonzero terms in the summation for VEy.

The optimum step length v is found by solving a nonlinear equation. Since the surface
orientation Pmn, gmn are linear functions of the control vertices V,

Pmn(V + 7AV) = pmn(V) + 7Pma(AV) = pmn + 7
Apmngma(V +7AV) = gmn(V) + 79ma(AV) = gmn + 7AGmn
Substituting these in equation (19) gives a function dependent on the single variable «,

2(N-3)2(N-3)
Eo(7) = kav? + kyy + ko — 2 z Z [\/Co + 17 + ¢27? (bolmn + b1Imn7)] (32)

m=0 n=0

(31)

where,

2(N-3)2(N-3)
ko = Z“:O Z-:O [bg + COIrznn]’ co=1+ p?-nn + qi?n.ﬂ.? bo = kppmn + kq?'m-n + k-
AN-3)2(N=3)
ki= 2 2 [2bﬂb1 a 3 ClIgm]a €1 = 2PmnAPmn Gmnlgmn, b= kpApmn+ kquImn
BN ~3) 3(N-3)
k2= X 3 [b% + szfm]a ¢z = (Apmn)*(Agmn)?

m=0 n=0

(33)
The optimum + is found using Newton-Raphson method to solve the equation
dE(y) _
ek 0 (34)
resulting in

where E' and E" are first and second derivatives of E(7) with respect to 5 evaluated at y*,

The B-spline based algorithm is as follows:

1. Initialisation: Set all control vertices to zero (ie., set all p, ¢ to 0). Then calculate
gradient of the cost function w.r.t control vertices. Let the negative gradient be the
conjugate direction.

2. Iterations:

(a) Calculate the optimum step length in the conjugate direction.
(b) Update control vertices using the step length and direction.
(c) Calculate new conjugate direction.

(d) If cost function is below a threshold then stop, else go to (a).
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5 Experimental Results

In the first experiment, an example is chosen where the shape of the surface changes peri-
odically in both z and y directions. The underlying shape is generated from the equation
z(z,y) = sin(0.22)+ cos(0.4y). The shaded image for this surface is synthesised with the light
source at a tilt angle of o = 15° and a slant angle of 7 = 10°. Figure 5 shows the shaded im-
age, original shape of the surface, the recovered shape and the cost function decrease against
number of observations. The reconstructed and the original shapes are shown in the same
scale.

image of the surface in experimen 1

original shape in experiment 1

#nor ve Smes of iterati recovered shape in experiment 1

experment 1

L i 1 L n
50 100 150 200 250 300

Figure 5: Experiment 1: (a) Shaded image (b) Original shape of image (c) Cost function Vs
iteration (d) Recovered shape.

The reconstructed shape captures the essential variation, represented by the sinusoids.
Comparing the shape near the edges indicate the presence of errors in the height of the
shape, more than in the shape itself. The accuracy in the centre of the surface is sufficiently

10
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image of the suface in experiment 3 under given light source original surface in experiment 3

2

1o 20 30 40 50 60

recovered surface by the algorithm in experimert 3

oTor decrease Vs iteration &

10 e ST T

e

i i

l

@”

Figure 7: Experiment 3: (a) Shaded image (b) Original shape of image (c) Cost function Vs
iteration (d) Recovered shape.

The results for the third experments, where a much wider bandwidth of the surface shape
is used, show the errors appearing near the boundaries and in regions where the information in
the original image is compressed. The essential features of the shape however, were recovered.
Some of the results have been presented in [25].

The results in the three difficult problems demonstrate that the B-spline based algorithm
achieved a good degree of approximation, given that no additional information other than
the shaded image and the direction of light source was used. It should be borne in mind
that the problem of recovering the shape is an ill-posed problem, more so without using
additional constraints. The degradation of the shape near the boundaries is due to the small
amount of information available to reliably estimate the control vertices. This accuracy can
be significantly increased if additional constraints or information is used, such as surface
orientation near the boundaries.

12
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The application of the B-spline based algorithm is not without its limitations. The use of
piece-wise continuous surface patches to represent the shape assumes that the object being
recovered is smooth and devoid of sharp edges. Furthermore, the control vertices are placed
on a regular grid and would therefore require the region of the image in which the object
lies to be rectangular. Hence, the algorithm is not suitable for the application of object
identification in a real scene. It is more suited to recovering the shape of terrains as required
in tasks involving vehicle navigation and aerial photograph reconstruction.

6 Conclusions

We have a presented a new and efficient algorithm for the shape from shading problem. This
algorithm differs from the traditional variational approach and adopts the surface interpola-
tion idea by using B-splines to represent the shape of a surface. It is similar in spirit to the
approach of Lee and Kuo [19] but does not require the linearisation approximation used in
their work.

In our method, the surface is approximated by a linear combination of 2-D uniform bicubic
spline basis functions with the control vertices placed on a regular grid in the image plane.
The control vertices are estimated by minimising the total squared brightness error subject
to the irradiance equation. Regularisation is used to make the problem well-posed in which
the bending energy is used to constrain the shape to be smooth. The experimental results on
three difficult shapes demonstrate the effectiveness of the algorithm to recover shape from a
single shaded image.

Appendix

The values for the coefficients in equations (12), (14) and (18) are:

—-1.98%x 1072 -1.72x10"! -8.86x10"? -7.32x 104
—-2.86x 1072 —-249x10"! -1.28x10"! —1.06 x 10~2

co _ 36
z 461%x10°2 4.02x10°! 2.07x10°! 1.71x10°% (36)

2.19x 10~ 1.91x10"? 9.85x10~°® 8.14x10°5
cp=ce” (37)
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-7.32x107% -8.86x10"% -1.72x 107! -1.98 x 1072
-1.06x 10~® —-1.28x 10! -2.49x 10! -2.86 x 102
1.71x 1073  2.07x 107! 4.02x 10! 4.61x 1072

-
C; =

8.14x 1075 9.85x10~®* 1.91x10"? 2.19x10°3

10 _ 01 10 _ 01
c¥=-c® ci°=-c}
11 _ 00 11 _ 00
cll=-c¥® cl'=-C}

The value of the symmetric H matrix in equation (25):

H;; Hjp;
H;; Hy;

H-=

where Hy1, Hz; are symmetric and
Hyn =H{, H;=HY}
with [.]° representing a 180° rotation of an » X n matrix such that

Hy:(i,j)=Hu(n+1-i,n+1-j)
The matrix Hi; is as follows:

3.82 x 102 619 x 10~ —3.02 x10™% —g.20 x107F €.19 x 10~° —p.39 x10™3
8.1% x 1073 B.E6 x 1072 1.78 x 102  —3.02 x10™% —0.38 x 10~ —26 x10~32
=302 x10™% 178 x107%  pEax107%  eas x107% a1 x107d —ses x1073
—520 x10~% —3.02 x10™? 6.15 x 10~ 322 x 10~ 1.80 x 10—  —s.81 x 1073
€19 x10™° -39 x10™% —s.81 x10™3 1.60 x10™%  E.B4 x1072 —298 x10™2
-9.38 x 103 —2.06 x 1072 —g.68 x10~7 —8.81 x10"% _2.9e x 1073 318 x 101
—8.81 x10~3  —6.88 x10—2 298 x10™2 —p.36 x30”% —2.24 x10™2 —3.48 x 1072

1.60 x10~3  —881 x10™° —5.39 x10™3 6.19 x 1073 1.74 x 1072 224 x 1072
and matrix Hi; is as follows:
[ —3.02x10~3 —s.81x10"% 1.00 x 10~2 1.83 x10=%  —p.20 x 105 1.60 x 102
—8.81 x 10~  —224 x107? -2.12x1072 1.00 x 10—2 1.80 x 1073 1.74 x 1072
1.00 x10—2  —2.12 x10™? —2.24 x 102 —s.81 x 10”3 1.83 x 10™3 1.7¢ x 1072
1.83 x10™3 1.00 x10—2  —8.81 x10=% —3.02 x 1073 1.03 x 104 1.87 x 10—
178 x10=2 —s.e8 x 1072 2.12 x 10~2 1.74 x 1072 —3.02 x10™% —s.81 x107?

—6.88 x10—2 —3.48 x10™2 —3.42 x1072 212 x 1072 —p.81 x 10~  —2.24 x 102
212 x10™2  —3.42 x10~2 348 x1072 —g.68 x 1072 1.00 x 102 2.12 x 10™3
1.74 x 102 2.12 x10~2  —s.88 x 1072 1.78 x 10—2 1.83 x 1072 1.00 x 10—2

Acknowledgements

-8.81
—8.88
-2.98
-9.39
-2.24
—3.48

318
-2.98

1.87
1.74
1.74
1.60
1.00
2.12
-2.24
—8.81

x 10
x 10
x 10
x 10
x 10
x 10
x 10
X 10

x 10
x 10
x 10
x 10
x 10
x 10
x 10
x 10

-3
-2
-2
-3
-2
-2
-1
-2

-2
-2
-2
-3
-2
-3
-2
-3

1.60
-8.81
—-9.3%

8.1%

1.74
—-2.24
—-2.96

5.4

1.02
1.83
1.60
-5.29
1.83
1.00
—-8.81
-3.02

(38)

(39)
(40)

(41)

(42)

(43)

x 103
x 103
x10=3
x 103
x 1072
x 10~2
x 10—2
x10™2

(44)

x 10—
x 10—3
x 10—
x 108
x 10=3
x 10—2
x 103
x103
(45)
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