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Abstract

This papempresentsan investigation into the chemical since of blended alkali activated
aluminosilicate materialsspecifically under exposuréo two solvents usk in post
combustion carbon captymnonoethanolamine (MEA) and potassium carbgnasewell as
during immersion in distilled wateGeopolymers ra@ formulated based ometakaolinand
on fly ashasaluminosilicateprecursorsyith the addition of ground granulated blast furnace
slag (GGBFS) as a source of Coihe samples are subjected taneralogicaland chemical
charcterisationin this paper with data obtained throughleaching analysisand X+ay
diffraction, supported by compressive strength data. Exposiseltentsgenerallyresults in
significant alteation of the geopolymemicrostructure.The =zolitic phases formed in
undamagedmetakaolinbasedbinders arereduced toundetectablelevels after28 days of
solvent exposurealthoughthe hydrasodalite formed in the fly ash bindersloespersist
Leachinganalysisindicates thatesistance tastructural damage iMEA is quite high, due to
the low solubility of Na and hydroxides upon immersion,GQO; solutions are aggressive
towards geopolymerwia alteration of the binderstructureand dissolution of network
forming species (Si and Allgading to thdoss of binder strength. This most marked in the
fly ashGGBFS formulationsDespite the lowto intermediate level of Ca preseint these

geopolymer binders, significant formation G&containing carbonatphasesoccurs upon
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exposure to KCOs. The limited curing duration of the specimens tested here is certainly
contributing to the degradation taking place undgC®; exposure, whereas the low water
activity in the MEA solutions used means that bond hydrolysis in the aluminosilicate
geopolymer framework is restricted, and the materials perform much betteinthamore

waterrich environment.

Keywords. Construction materialsprocess equipmentgconcrete; geopolymersolvent

processes

1. Introduction

Traditional cementing binders are formet the hydration reactions of calcium silicate
phases whereas geopolymer concretes are synthesised thy alkali activation of
aluminosilicatesto form the binder.There is currently widespread research into the
development of geopolymers and alkali activated syst@Pnsvis 2014 Provis and van
Deventer 2014 motivated not only by the beneficisgchnicalpropertiesof the material,
such aghermaland chemical resistanckeutalsoby the greatly reduced carbon emissions
geopolymerproduction relative to traditional cementing bind@vicLellan et al. B12).1t is
estimated that-8% of global anthropogenic carbon emissions are due to cement production
(Olivier et al. 2012, driving research towards forming alternative low emissions binders as a
viable commercial optiovan Deventer et al. 2010uenger et al. 201Yan Deventer et al.

2012).
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As a means of reducing the g@missions profiles of the global energy and cement
industrieswhich arelarge point sources @0O,, carbon capture and stora@&CS)processes
and facilities are currently being trialgdenkins et al. 2032 with viability depending
strongly on the costs involved. Post-combustion carbon capture solvent colurgasexaly
constructed from stainlesstee] as good mechanical performance and a high degree of
chemicalresistance are required from a column construction mat&&polymerconcrets

are proposed to provide a durable, cost saving ‘green cement’ alternatotaratrmaterial

for the construction ofarge CCS facilities with the aluminosilicategeopolyme chemistry
suggested to provide the possibility of withstanding the harsh chemical envirerimemd
within these system&ordon et al. 200)1as the chemical resistance of geopolymers has long
been promoted as a benefit of these matefizdsidovits 199), andhas been highlighted in
laboratory teshg over a number of year®avidovits 1991 Bakharev 2005 Fernandez
Jiménez et al. 200@uxson et al. 2007&5indhunata et al. 200&ernandezliménez and

Palomo 2009Temuuijin et al. 2011).

There are many appealiragpets of geopolymer concretes which may make them suitable
for use as a construction material in carbon capture facilities. Relativeaddiomal
concreting systems based on ordinary Portland cement (QfGpolymerscan offer as
much asB0% reduction in C@emissiongDuxson et al. 2007brhese materialglso utilise
industrial wastes such as fly asis an integral binder component; flghais currently
landfilled at a rate of several million tonnes p.a. in Australia alone, andddsdf millions

of tonnes p.a. worldwidebringng appealing synergies if the material was to be used

carbon capture applicatioassociated with codired electricity generatian



77  Fly ash is a byroduct from the combustion of coal in thermal power plamseres

78  metakaolin is an industrial mineral product formed by the calcination of kaottsie

79  However, the use ometakaah as the aluminosilicate sourde geopolymer synthesis

80 provides a relatively simpt model system for the study of geopolymers when compared to
81 the multiphasandhighly variable nature of industrial aluminosilicate wastes such asfiy

82 In particular, metakaolinbased systemprovide a morestraightforwardsystemto aid in

83 understanding the mechanisms of reaction leading to binder formasiomell as resistance

84 to chemical attack andconseqeniy durability in service. This study builds new

85 understandingf these properties gnalysing theeffects of exposure to the solvents used in
86  post combustion carbon captuom both fly ash and metakaolin basgEbpolymersystems

87 Itis unlikely that metakaolivased geopolymer concretes would be seriously considered for
88 largescale use in this type of application due to their generally high porosity, butrthey a
89 valuable as a means of understanding the influence of the solvents on the alumieaglic

90 structure.

91

92  The chemical durability problems tfaditional ordinary Portland cement based systaras

93 generally caused bthe degralative changes that occum the calcium containing phases
94  (Taylor 1997). Previous work in the analysis of the potential use of different typesaréte

95 in CCS applications considered the exposure of OPC andiaB€ll composite systems to
96 the same carbon pture solventshat areanalysed her@Gordon et al. 2011 Decalcification

97 occurredupon exposure to MEAand sgnificant carbonation occurredpon exposure to
98 K,COs. However, he mechaniss controlling chemical resistance in an aluminosilicate
99  geopolymeric gel will be@xpected to bdifferent based on the very different degree of cross-

100 linking in the silicate binder ge[®uxson et al. 2007a&bora et al. 2014).
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This paper willdescribethe chemical characterisatiafi geopolymer pasteamples during
exposure tdean carbon captuolvents, througlelemental analysis of theachingsolutions
and Xray diffractometry XRD) of the pristine and leached materidlean solvents have
been selected for analysis, rather than,{@@ded solvents, because it is more likely that
concrete construction would be considered initially for use in the less d@llgraiggressive
parts of a carbon capture process, rather than in the more challengingnervit of
exposure to a rich s@nt. Compressive strength dadse presentedo provide some insight

into the influence of the leaching process on mechanical performance

2. Materialsand Methods

2.1. Sample formulations

The metakaolin used was sold untex brand name Metastar 462 Imerys Mnerals, UK.

It has a BET surface area of 1217/g and a mean particle sizg@f 1.58um (Duxson et al.
2006). The fly ashwas from the Gladstone powestation, Queensland, Australia and the
ground granulated blast furnaskag (GGBFS) wasobtained from Independente@ent&

Lime, Australia Table 1 presestthe component oxide ratios for thenaterials

A series of 33yeopolymerformulatiors were examine@Table 2).0f these 15 were based on
a mixture of metakaolin and ground granulated blastategrslag (MK:@&@BFS mass ratio
3:1) and 1%based on fly asimixed with ground graunlated blast furnace slag (FAGBFS
mass ratia2:1), alongwith a pure netakaolinbasedbinder and a pure fly adtasedbinder.
All mixes were activated withliquid sodium silicate activators, made by combiniag

commercialsodium silicate solutiorfGrade N® PQ Australia composition (mass basis)
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Si0O, 28.7%, NaO 8.9% H,O 62.4%)with NaOH andMilli -Q water,to give the oxide ratios
shown in Table 2Table 3 summarises the parameters which were varied in each sample set

in Table 2.

2.2 Analytical methodology

Leaching analysis was carried aiding cylindrical sections opastesampls, which were
curedundersealedconditionsfor 48 hours at 40°C and a further 5 days at room temperature
(23+2°C) prior to exposure to aggressive conditions. A solid seaifonl5 g weight was
submerged in 20@nL of solvent:either98% monoethanolamine (MEA), 2M K,CQO;, or

Milli -Q grade purified waterAn aliquot of 1 mL of solution was removefiea 1, 3, 7, 14, 28

and 90 days. The volume of leachate removed was replenished with fresh solvent and a pH
measurement taken at each sampling. The leachate sampledilatexk 10x with 10wnt.%

HCI solution foranalyss by inductively coupled plasmaptical emission spectroscopCP-

OES to determinghe concentrationsf Al, Si, Naand Ca present.

For compressive strength testingomar specimens ofagh formulation vere made with the
addition of sand a 3:1 volumeratio of sand to aluminosilicate solids. These wssaledn

50 mm cubic mouldsat 40°C for 48 hours, then held at room temperature and maintained
sealedto match the curing regime used for the paste sampiies 7 and 28 dayshey were
analysed for compressive strength. Thredicafe specimens were testém each sample,

andthe mean res\dtarereported
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Mortar aube samples weralso submerged in the solvents (98% MEA, 2.5MK; and
Milli -Q water) for 28 dayswithout replenishment of the solvebgfore being analysed for
compressive strength; again there were thrpkceges for each sample and the mean result

reported

X-ray diffraction analysiswas carried out on crushed pastamplesafter 90 days of
exposure,on a Bruker D8 Advance usinGu Ko radiation, A = 1.5405 A. Traces were

measuredt a scan speed 6$/stepand a step size of 0.02fom 5to 55° B.

3. Resultsand discussion
3.1. Leaching and mechanical strength

Figures 1and 2show themeasured extent ¢daching of both SiFigurel) and Al (Figure 3
from all of themetakaolinbasedandfly ash-basedgeopolymer formulationg each of the
three solvents. Téseplots do not show sampispecific databut insteadyive an overall view
of theleaching resistancef each binder as a function tife solvent usedlhere washigh
resistance to MEAwith generally <1% Si and Al leaching in this solvehitring the test
duration. However, there was notaligreased leachingf matrix components induced by
alkali attack o the matrixin both K,CO; and HO. The pH value exceeded® dter oneday
of exposure in all solvents, due to release of alkalis from the pore solution of {hlesamnd
remained at this level throughout the duration of the stddhe leachingof matrix
components wagpid, with the majority of the leaching taking place within the fitay of
exposureto all solvents There was thema further very gradual release of Si and Al with
increagd solvent ingress into the bindenger time,and this effect wasmore markedn the

fly ash formulationsthan the metakaolin binders probably due to the lower w/b ratios
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achievable in a mix design using spherical fly ash particles rather thansipéged

metakaolin particles as the aluminosilicate so(irzevis et al. 2010).

Themain reason for the high degree of leaching observed here was thastbg werguite
immatureat the point in time when they were firshmersed in the solventsi(e., 7days of

curing under sealed conditiorsgd nearambient temperatuyeThis was designed to enable a
comparative analysis between the dissolution of binder components within stiaeali
laboratory test timérame, as more mature geopolymer binders have been shown to display a
much lower degree of leaching of binder components during extended exposure to alkaline
solutions Sindhunata et al. 200&emuujin et al. 2011 This is necessary in order to develop

a scientific understanding of the influence of synthesis parameters on bindempede
under these conditions, as more maturaldig would be expected to show relatively less
variation in nanostructure and microstructure after leaching due to the reducedcmfaie

the solvent environment, and would thus be less instructive than thedése specimens

investigated here.

An intermediate level of Ca content was providedh®® bindersstudied herdoy the addition
of granulated blast furnace slagGBFS). Thisis known to enhance theampermeability
properties of the binder by the formation of a void filling, 1&a&, Alsubstitutel calcium
silicate hydrate (€A)-S-H) gel in coexistence with the alkali aluminosilicael resulting
from geopolymesation (Kumar et al. 2010Provis et al. 2012 The relatively low content
and accessibility of calcium in the geopolymer binders is predicted to prevent thdateg
effects ofsolvent-inducectarbonation. Carbonation by gaseous,@ch environmentdas

been shown to be reasonably rapid in someliadictivated binder system®uertas et al.
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2006 Bernal et al. 2010Q but the mechanism of carbonation in the fully saturated
environments studied herandits influence on the binder structyrare expected tdiffer

significantly.

Previous studies of acid and alkali resistance in geopolymers finatdnassand strength
loss occurred through leachingorrelating withthe increasingporosity of the biders
through Temuujin et al. 202;1Lloyd et al. 2012McLellan et al. 201Por alkali (Sindhunata
et al. 2008 Temuujin et al. 201)1attack. The leaching of Fe, Al and Nevashigh in acidc

solutions, and Si leaching dominaiadalkaline conditions.

Thetrends displayedh Figure 1 showthat the leaching of Sh K,CQO;s in the fly ashbased
systems occued more readily relative to the metakaebasedsystemswhile Al leaching
(Figure 2)is significantly greater invater thann either of the carbon capture solvensed
Perera et al(2006)showed that the release of alkali metal cations from both fly ash and
metakaolin based geopolymers was high in distilled watesnaccompanied by hydroxide
leaching andthe pH, both in that study and in our experiments, fmasd to be greater than

12 throughout the test period. It is possiltkat the presence of carbonate at this pH is
suppressing the solubility of AI(Oll) most likely by increasing the ionic strength of the

solution.

Figure 3 showsthe total Sj Al, Na and Cdeached expresseds a percentagef the total

inventory of each element in the sampbdter 90 days of exposure.
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If each oxide ratio series idewed separately(Table 3) Si leaching increasethroughthe
series with increasing Si@AI,O3 ratio (2Na4Na for MK/GGBFS and 1&2Na for
FA/GGBFYS) in all solvents This is also accompanied by a loss gompressivestrength
(Figure 4. The dgrength loss is attributed to the reduced availabdftyl for reaction which

is known to control the strength properties of geopolyniédfeng et al. 2005Fernandez
Jiménez et al. 200®uxson et al. 2007aAly et al. (2008) proposethat a lower degree of
polymerisation occurs at higher Si/Al ratj@nd supported this proposaing 2°Si ard 2’Al
magic angle spinning nuclear magnetic resonait@S( NMR) spectroscopya reduced
influenceof Al on the average Si coordination sphess observed, andRD andinfrared
spectroscopidata also indicated structuralshift towards amorphous silica with increasing
Si/Al ratio. This indicates thathe correlation between reduced strength and increased
leaching of Siis due to the reduced extent of geopolymerisation reactiotisn these

immature bindersas the extent of ingporation of Si into the binder itself is not yet high.

However, he correlation between more marksttength loss and increased leaching does not
follow for all of the bindersFor examplethe leachingextents observed isample 7Naand

23Na arethe lowest in thie respectiveseries(Figure 3) butunexposed strength was low
7Na(~13MPq) after 28 days of agingnd exposure to MEA resulted in catastrophic strength
loss(Figure 4) The samdrend is observeth sample23Na (strengths of <B1Pa no residual
strength in water K;CGOs). This may be related to the low extent of reaction of the
aluminosilicate precursors, asth of these specimens are forateld specifically to test the
effect of a reduction in the Ma/SIO, ratio; i.e., a reduction in activator alkalinity, and thus
reduced extent of interaction with the aluminosilicate particles during thelgemrisation
reaction. It is therefore necessary to consider this process to bring understanding of the

formation, and subsequent degradation by leaching, of geopolymer binders.

10
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Previous studies have considered the rate and extent of dissolution of fly ash mealkali
medig which is central to this discussion et al. (2011)showed thathe extent ofly ash
dissolution in NaOH solutions waslatively low, evenat high NaOH concentrations (6.0-
13.4 M). In that study, the dissolution of Al occurred more readily tharst&wn by the
variation of Si/Al ratio over timégLi et al. 201) but in an earlier studyPietersen et al.
1989) congruent dissolution was observed. It appears that the details of thissptepesd

on the specific chemistry of the fly ash under analysis, and also thenigaahiironment
usal; Phair and van Deventé2001)tested the leaching of Si and Al from a fly ash sourced
from the same power station as the material used here, and found that the degree of
incongruency of dissolution (favouring more rapid Al release) generally assztewith
increasing NaOH concentratioHere, at the lows alkali concentrations tested (sample 7Na
in the fly ash system), it appears that the binder after 7 days of curifjagestly immature

that the concentration of gel (which is the part of the material susceptible ¢ntselacimg)

is low enough to give an apparently low extent of overall leaching, in parallel with poor
strength performance. For the case of thdaka®lin samples (particularly3Na), the
situation is broadly similar.Additionally, previous leaching studiebave observed
reprecipitation of aluminosilate gelsduring leaching of geopolymers in alkaline solutions
(Sindhunataet al. 2008, and this mayalso partiallyexplain the low leaching rate foumere

when high strength loss and structural damage becurred.

Where the NgO/SiG; ratio is increased (samples A8ba forMK/GGBFS and 23N&7Na
for FA/IGGBFS), variation inwater content was requiréd holdH,O/NaO constant with the

increase in alkalinityAs noted above Sindhunateet al. (2008)observed reprecipitation of

11
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aluminosilicate species whegeopolymers werexposed to highly alkaline solutigrizut this
effect was reducedharked atvery highalkalinity. There is increased leaching af vi#hen
increasingthe Na,O/SIO; ratio inthe fly ash sample seri¢23Na27Na Figure 3¢, which is
assigned in part to the increased formation of geopolymeatdpgher alkalinity, and in part
to the higher waterconient, whichwould be expected tmcrease porosity and perntday

and thus increase alkali attack

Correspondingly, the samples where the water content was the sole paramete(13Na
16Na and 28N&2Na) do showa trend towardsreductionin strengthat increased water
content (Figure 4)The generdy increased leaching &i follows in the fly ash formations
(28Na-32Na), Figure 3e. However, leaching remains low and follows no particapgdrent
trend with respect to water contenin the metakaolin bindersreprecipitation of
aluminosilcategels islikely to provide an explanation for this observatidhe leaching of
Al is significantly higher in water than in,KOs;. The samples with very low leaching of Al

(28Na-31Na, Figure 3f) are those that have both high unexposed and residual strengths.

The amount ofNa leacled is higher than all the other ions for every formulation, whgch
related to theéhigh mobility rate of those ionsompared to the othemes studiedas Na is
presentlargely in the pore solution of the materials, and in weaklypaasted charge
balancing siteglLloyd et al. 2010 Further the leaching of Na is significantly lower in MEA
compared to KD and KCOs;, as MEA is a less effectiv@lventthan aqueous environments
for alkali hydroxides For the fly ash formulationsio cleartrends can be observed in the
MEA solution. However in water and KCO; there is decreased leaching of Na with

increasedNaO/SIO; ratio in the fiy ash sample series (2312@Na) which is contrary to the

12



290 behaviour of Si and Al (Figuregp where increased leachingatiributedto the higher water

291  content and assumed higher porosity through this series. The higher alkalinity ef thes
292  systems resudtin greater production of geopolymer gel and so possibly the Na is chemically
293  bound within the pore structure through the electtimsiateractions with the geopolymer
294 matrix. Na is increasingly leached when theQfSiO; ratio increaseg28Na32Na),due to

295 the higher water content.

296 The significant observedextent of Ca leaching (Figure B) shows that a significant
297  proportion of the Ca present is available for leaching by the solvent sollRi@vious work

298  hasshownthat significant decalcification occurs in OPGPC/G5BFS and OP@FA binders

299 on exposure to MEAGordon et al. 2011 so these data show that the-c@ataining gels

300 formed in these geofpymer systems seem to release Ca in a similar manfieay

301 diffraction data, presented beloghow that in addition to the Ca present as dissolved species
302 in the leaching solution, addition@la isremoved from the gel binder and precipitatedhe

303 formation ofcalcite (CaC@) on exposure to ¥CO;s, and also due tatmospheric carbonation

304 in afew samples where the seal on the leaching vdssglbeen breached durisgmpling

305 throughout the testing period.

306
307
308 3.2. X-ray diffraction
309

310 Figures 56, and theSupporting Informationshow XRD traces for the metakaolin@BFS

311 based bindersvith separate figures focusing on eaehies of oxide ratioand their exposure

312 under differentconditions(Table 2), and compared to the binders of the same formulation
313  whichwere aged at room temperature under sealed conditions for durations corresponding to

314 the solvent exposure tests.
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Figure 5 presents data for samples 2M&@. The muscovite KAI »(Si,Al)4010(OH),,
PDF#8-2035)was present as an impurity in the metakaolin used, and reacts onlyyslightl
during geopolymer formatiofYip et al. 200§. The mixed carbonate bicarbonate phase
trona Ng(C0zs)(HCO;)-2H,0 formed on the surface of the pure metakaolin sample 1Na and
also on the surfaces of samplddat4Nathrough atmospheric exposupossibly in the initial
curing stage when the samples were held at°@0for 48 hoursas this phaseis
thermodynamically more stable at temperatures slightly higher than room &tunper
(Bernal et al. 2012 Pirssonite CaN#C0Os)-2(H.0), formed by atmospheric carbonation, was
also detected in samgl8Na(and thus is shown in the corresponding plots as 9Na and 14Na)
and also irsample 12Nabut was notdetected in these samples following solvent exposure
However, it has formed in sample 15Na following exposure to MdApugh this may also

have been due to some atmospheric carbonation prior to or during XRD analysis.

A zeolite phasgfaujasite &pproximatelyNaAl ;Si; 30,0 7H,0, PDF#12-0228) has formed in
all samples. At the highest SiAl,0; ratio aNa-chabazitezeolite phase (approximately
NaAlSi,Os3H,0, PDF#19-1178) has also formedery little zeolite was detected in all
samples following solvent exposueith only small faujasite peaks detected in sample 3Na
following exposure to bD. This appeardo be related tdhelimited extentof zeolite
formationobservedafter 7 days of curingwhere the residual activator in the pores was
washed out during immersion in water, effectively stopping the geopolytnanizaolite
growth reaction)rather than vidheremoval ofzeolitic phasesluring immersionA study of
accelerated agingf geopolymergLloyd 2009) showdthat at 23°C there was no zeolite

crystalisation in a metakaolin geopolymer for up to 3 months of agingtstudy also

14



339  considered the relationship between zeolite formation and strength retergeopolymeric
340 systemsconcluding that the strongest correlation is between pore network stability and
341  strength retention, rather than observing a direct link between zeolite excntl

342  geopolymer strengtiPalomoet al.(1999)also exposednmaturealkali activated metakaolin
343 geopolymer to aggressive solutiondere the binderbad been subjeatito accelerated

344  culing (85 °C) for just 2 days prior to exposure, and also found faujasrtessa wide range
345  of pH conditions, but not until at least 3 months of exposure in the sammphessed ahigh

346  pH.

347

348  Zeolite formationwithin geopolymer binderss a complex proces®rovis et al. 2006and
349  not yet fully understoadHowever, thdormation of Nachabazitealong with faujasiten only
350 sample 4NgFigure @) is attributedto the increased il ratio of this sample The high
351  Si/Al ratio, reducedextent ofgeopolymerisation andlkali-rich pore solution conditions lead
352  to thecoexistencef thesezeolitic phase¢faujasite and chabazitewhich is not observed in
353  the formulations with less Si.

354

355  Solvent exposure in generahibits the formation of zeolitesompared to the unexposed
356 samples, most likely due to the removal or dilution of the alkaline pore fluids required for
357 ongoing reaction within the geopolymer gekposure to MEAFigure ®) left muscovite as
358 the onlycrystalline phasebserved in the samples, whilee amorphous ‘hump’ characteristic
359  of thedisorderedaluminosilicategeopolymerframework (Provis et al. 2006remains intact.
360 This isin good agreement witthe low level of leachingf both Si and Al found on exposure
361 to MEA inall samples.

362
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Exposure to wateffFigure &) has also hindered the development of zeolitic phdasesigh
the dilution of the pore solutignand some carbonatiprevidert via the formation of
crystalline calcitgCaCQ, PDF #050586)occurredin sampls 2Na and 3Na after exposure
to water and KCOs;, showing thatalcium is availabléor reaction with the atmospher€his
is in good agreement witihe high leachabily of Caas observeth all solvents (Figur&d).
No zeolitic phases forrduringexposure to KCOs (Figure l), apart from a small amounf
faujasite detected in samples 2Na &hth, which alsdorms in theseformulatiors following

exposure tavater(Figure ).

Figure 6 which showsXRD data forthe sampleseries with increasing NzO/SiO; ratio,
demonstratethe formation of faujasite in samples 8Na and 9Na.zBaolitic phases have
formed in sample 7N@igure &), which hasthe lowestNaO content; thdower extent of
readion of the alumnosilicateprecursorphasesn this systenwill affect theavailability of
species for zeolite crystallisatioAdditionally, in this sampletherewas also a redtion in
water content in order to achieve thep®/SiO, ratio required and thistoo may be
significant in inhibiting the formation of zeolitess steric restrictions may reduce the growth
of germ nuclewhich leadto the fomation of crystalline zeoliteBarrer 1981 Provis et al.
2005).Sample7Na also showsa small degree adtmospheric carbonation, seen throtigh

formation of aragonite, a metastable polymorpaCQ.

Following exposure to solventa significantquantity offaujasite develps only in 8Naafter
exposure to MEAFigure ) and watel(Figure &). A smaller quantity of faujasite is seien
the 9Naformulationexposed to wateandslight traces in 9Na following exposure teGO;

(Figure @l). Sgnificant calcite formation is again observedring K;CO; exposure (Figure

16



387  6d) through decalcificationand kalcinite KHCO3, PDF # 120297) has also formed in all
388 K,CO; exposed samples througfine reaction oK,CO; with CO, and HO. Corresponding

389 data and additional discussion related to thetakaolin sample series withincreasng

390 HO/SIO; ratios are presented as Supporting Informat{gigure S1 and associated text)
391 These datashow the formation okeolitesin each samplealthough their prevalence is
392 reduced by KCOs; exposure, which appears to hinder the structural evolution and

393  crystallisation of the zeolites.

394

395 The XRD data for thefly ashbasedformulationsare presenteth FHgures7-8 and in the

396  Supporting Informationagain divided by oxide ratio series as outlined in Table 2. kethe
397 samplesabasicNa-sodalite phasépproximately,1.08NaO-Al,031.68SiQ-1.8H,0, PDF#

398 31-1271)was formedlthis is a feldspathoid structure, closely related to zeolitesappears

399 to be present in all samples regardlessafent exposure. Sample 17Nhe pure fly ash

400 binder, also contains tron&Nag(COs)(HCO;)-2H,0) as aproduct of slight atmospheric
401 carbonationAlso present irall of the fly ash based formulations were the unreactive phases

402  supplied by the fly ash, beimartz and mullite.

403

404  Figure7 shows thelata for the samplgeries with increasing SYAI,0; ratio. The formation
405  of basicsodalite appears to reduce as the Si content incrdésbg due to the reduction in
406 Al availablefor crystallisation asthis phase forms with SAI O3 = 2 and so requires high
407 Al availability for crystallisation The sodalite appears to be largely unaffecteexdppsure to
408 MEA (Figure7b). Si and Al leaching was also low for the fly ash formulatiomsiersed in
409 MEA (Figures 1 and)? and residual strength on exposure to solvents was(Rigbre 4. It

410 thereforeseems that for the fly ash formulatior48 days of exposure to MEA has not
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significantly altered the expected path of microstradtdevelopment, witlihe slight losses

in strength attributed to alkali attack on the framework

The basic gdalite phasealso develops inalmostall samples following exposure t@ater
(Figure 7c), but in concentrations agantecreasg though thesampleseries. However,
sample 18Nahowed instead the formation ofaujasite phasas the main zeolitic product,
similar to the fly askonly sample 17NaSample 18Nahad he lowest Si/Al ratio of the
samples in this serieglowever, faujasitavas not formed in the 18Na samslebjectedo
otherimmersionconditions, sats formation heremay be due to theffectively increased
water content ommmersion and the effect of the subsequent diffusion of the contents of the
pore solution out into the leaching solutidExposure to \ater is also accompanied by a
significant amount of carbonatipwith the formation of calcite in all samples of the fly ash

slagseries.

A small amount of sodaliterasalsoformed on exposure to,KO; (Figure7d). Carbonation
alsooccurred in all samplesxposed to KCO; with the formation ofcalcite CaCQ (PDF#
47-1743)through decalcification anklalcinite, KHCO; (PDF# 120292)through reaction of
K2CGO;, CO, and HO. Some crystalline ¥CO; (PDF# 70-0292) also precipitated in all
samplesThe highleachability of Na and Si in ¥CO; (Figure 3 resulted in total strength loss
after 28 days of solvent exposuregiiie 4, and this is consistent with the notable reduction
in the amorphous ‘hump’ corresponding to the geopolymer gel in this leachimgrenent

in particular (Figurerd). The microstructural development has been significantly affected

following 28 days of exposute K,CO;, butdespite this the mechanism of zeolite formation
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found in the unexposed sampkill persists althoughto a lesser extertue to the leaching

processes taking place

The XRD data for the series with increasing N&IO, ratio are given inFigure 8. In the
unexposed samplé€Bigure8a), basicsodaliteis more prominemith increasing Na content
with the exception cfample27Na. Inthis formulationthe hydroxideand water contents are
highest,andthere is no trace of sodaliteut faujasite has formedstead In sample 23Na
where hydroxieé and water contents are lomo zeolitic phase has formed. Agathere is
very little effect on the microstructuieduced byexposure to MEA(Figure 8b) or water
(Figure 8c). The same zeolites as in the unexposed samples, faujasRéNa) andbasic
sodalite(in 24Na26Na),have agairdeveloped (buto a lesser égntthan in the unexposed

sampleshpfterexposure to KCO; (Figure8d).

The XRD data for the series with increasing@4SiO, ratio are shown in the Supporting
Information Basic sodalite wakrmed in all of the unexposed samplasd here appearto
be very little difference in the crystalline phases forpmtler than calcite formation in all
samples, and slight suppression of crystallisation g immersion This series had the
highest unexposed armdsoresidual strenghupon exposure after 28 days of immersiamd
it appears that these five samples have the leasttateincrystallographic structure among

those studied.

3.3 Implications
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The specimens tested here show notable degradation under exposure to carbon capture
solvents, and as such would not be directly useful in applications where they atg brtmg
immediate contact with these solvents in service. However, this was a plaet aésign of

this study, which is in effect an accelerated test to simulate a-vawstleaching scenario.

The resistance of geopolymers to alkali attack and carbonation would lgelihigher if

more mature binders were tested, but the aim of this study has been to elucidate the
degradation mechanisms through induction of artificially rapid degradation pesceghe

key to geopolymer concrete durability in carbon capture applications whieb@gevelopment

of low porosity and high tortuosity of the pore structure, in order to reduce theibiitgsé

the key binder phases. A forthcoming study will directly address the pore networktgeom

of these binder systems, and provide further insight into this important issue. lasanyhe

results ofthis study show that the resistance of geopolymers to attack by aqugdOsiK

not as high as was predicted based upon nanostructural arguments, and this solvent does

cause significant damage to the aluminosilicate geopolymer framework.

4. Conclusions

Alkali activated geopolymer concresemay provide a cost saving alternative construction
materialfor use in place of larggtainless stealesselsn carbon capture facilities. This study

was based around the study iofmatureand relativelyporous bindes, in order to best
understand the mechanism of chemical attack on geopolymers during exposure to carbon
capture solvents. Leaching occurred rapidlighin one day of immersigrdue tothe release

of alkalis from the pore solution and attack on loosely bound Si and Al spatigs these
immature binders. Resistance to MEA is highastong the solvents tested, witbw

solubility of Na in this solvent.
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The microstructural development of theetakaolin/slag geopolyméormulations wasnore
significantly affected by solvent immersiathan was the structure of the fly ash/slag
geopolymers.Solvent immersionseems to suppress the formation of faujasite in the
metakaolin/slag binders, and the residual strength of these binders is Ixelatiwélowever,
theformation of basic sodalite, which is the predominant crystalline phase obgethedy
ashislagformulations,is much less influenced lgolventimmersion particularly in the case

of immersion inMEA or water, where the28 day residual strength is high. The reduced
extent of binder development observed on exposure@@K(evidenced by the lower degree

of zeolite formation and also the dissolution of much of the amorphous geopolymer gel
phase) along with the effects of significanarbonatiordoes in the majority of cases, caused

catastrophic strength failure of the matrix on exposure,@k.
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616 Table 1. Compositions of aluminosilicate sourcet.% as oxides, determined by-rdy
617  fluorescencel Ol is loss on ignition at 1000 °C.

Metakaolin Fly ash GGBFS

SiO, 52.8 45.5 32.9
Al>,O3 39.2 27.8 13.2
CaO 0.1 5.6 40.1
Na,O 0.0 0.3 0.3
K20 2.7 0.5 0.3
FeOs 0.8 11.2 0.3
MgO 0.2 1.4 6.0
P.Os 0.1 0.5 0.0
SG; 0.0 0.2 3.5
TiO; 0.0 14 0.7
MnO 0.0 0.2 0.0
LOI 1.2 2.7 1.2

618
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620 Table 2. Componentnolar oxide ratis, NaOH concentratiaand watetbinder ratie (w/b;
621 ‘binder’ is defined as the solid aluminosilicate precursirihe geopolymer formulations
622 tested

Solid aluminosilicate ID  SIO /Al,03 NaO/SIO, H,O/Na,O NaOH (M) w/b

MK 1INa 3.0 0.5 13.0 6.9 0.44
MK:GGBFS 3:1 2Na 3.0 0.5 13.0 7.2 0.44
MK:GGBFS 3:1 3Na 3.3 0.5 130 6.9 0.44
MK:GGBFS 3:1 4Na 3.6 0.5 13.0 6.6 0.45
MK:GGBFS 3:1 7Na 3.3 0.33 130 6.0 0.37
MK:GGBFS 3:1 8Na 3.3 0.4 13.0 6.5 0.40
MK:GGBFS 3:1 9Na 3.3 0.5 130 6.9 0.44
MK:GGBFS 3:1 12Na 3.3 0.5 110 8.2 0.40
MK:GGBFS 3:1 13Na 3.3 0.5 12.0 7.5 0.42
MK:GGBFS 3:1 14Na 3.3 0.5 13.0 6.9 0.44
MK:GGBFS 3:1 15Na 3.3 0.5 14.0 6.4 0.46
MK:GGBFS 3:1 16Na 3.3 0.5 15.0 6.0 0.48

FA 17Na 3.33 0.45 8.0 10.6 0.32
FA:GGBFS 2:1 18Na 3.1 0.45 8.0 12.2 0.32
FA:GGBFS 2:1 19Na 3.2 0.45 8.0 12.0 0.32
FA:GGBFS 2:1 20Na 3.33 0.45 8.0 11.7 0.33
FA:GGBFS 2:1 21Na 3.4 0.45 8.0 11.6 0.33
FA:GGBFS 2:1 22Na 3.5 0.45 8.0 11.4 0.33
FA:GGBFS 2:1 23Na 3.33 0.30 8.0 10.3 0.24
FA:GGBFS 2:1 24Na 3.33 0.36 8.0 10.9 0.27
FA:GGBFS 2:1 25Na 3.33 0.45 8.0 117 0.33
FA:GGBFS 2:1 26Na 3.33 0.6 8.0 12.1 0.36
FA:GGBFS 2:1 27Na 3.33 0.9 8.0 12.7 0.42
FA:GGBFS 2:1 28Na 3.33 0.45 7.0 13.4 0.27
FA:GGBFS 2:1 29Na 3.33 0.45 8.0 11.7 0.33
FA:GGBFS 2:1 30Na 3.33 0.45 9.0 10.4 0.33
FA:GGBFS 2:1 31Na 3.33 0.45 10.0 9.4 0.35
FA:GGBFS 2:1 32Na 3.33 0.45 110 8.5 0.37

623 a Samples shaded in grey are the same mix (one in the metalkaséid sample set and one in the fly-based
624  sample set), replicated and renumbered eachitirttee sample listing to place this composition in the correct
625 positionin the series in which eh®f the synthesis parameters was varied.
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628

629 Table 3. Summary of sample series and the parameters varied in each.

Series Aluminosilicate source Parameter
2Na4Na Metakaolinslag Increasing SiQ/Al,O3
7Na9Na Metakaolinslag Increasing NgO/SIO, (and w/b)
12Na-16Na Metakaolinslag Increasing w/b
18Na-22Na Fly ashslag Increasing SiQAl,O3
23Na-27Na Fly ashslag Increasing NgO/SIO, (and w/b)
28Na-32Na Fly ashslag Increasing w/b
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(2) MK/GGBFS samples immersed in H,O
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(b) MK/GGBFS samples immersed in MEA
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~ (c) MK/GGBFS samples immersed in K,CO;
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(d) FA/GGBFS samples immersed in H,O
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(e) FA/GGBFS samples immersed in MEA

=,

(8]

Si leached (%)

e

BbP BP>
BB
ot >

=) g

0 20 40 60 80 100
Time (days)
6
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641  Fgure 1.Leaching ofSi from (a, b, cthe MK/GGBFS binders and (d, e, f) H&GBFS
642  binders during 90 days of solvent exposure, (a,A0),Kb, €) MEA, (c, f) KCO;
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(¢) MK/GGBFS samples immersed in K,CO;
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(d) FA/GGBFS samples immersed in H,O
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(f) FA/gGBF samples immersed in K,CO,
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Figure 2. Leaching ofAl from (a, b, c)the MK/GGBFS binders, and (d, e, f) the FBGBFS
binders during 90 days of solvent exposure, (a,A0),Kb, €) MEA, (c, f) KCO;
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665 Figure 3. Leaching of (a) Si (b) Al (c) Na and)(€a from each of the MK/GBFS
666  geopolymer formulationsand of (e) Si, (f) Al, (9 Na and (h) Ca from each of the
667 FA/GGBFS geopolymeformulations, following 90 days of solvent exposure.
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672  Figure 4 Compressive strengths of the (a) MBGBFS and (b) FA/GBFS formulations after

673  28days of unexposed aging and 28 days of solvent exposure. The formulation trends in each
674  series are markedith arrows, and ¢ denotes the control sample (without GGBFS) in each
675  set.
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Figure 5 XRD traces of MK/@BFS samples 1NdNa after(a) 7 days ofcuring and 90 days
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