

This is a repository copy of *Quantum wells*, wires and dots (*QWWAD*): development of an open-source simulation suite for semiconductor nanostructures.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/79811/</u>

Proceedings Paper:

Valavanis, A, Cooper, JD, Grier, A et al. (1 more author) Quantum wells, wires and dots (QWWAD): development of an open-source simulation suite for semiconductor nanostructures. In: UNSPECIFIED UK Semiconductors 2014, 09-10 Jul 2014, Sheffield, UK. . (Unpublished)

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Quantum Wells, Wires and Dots (QWWAD): **Development of an open-source simulation suite for** semiconductor nanostructures

A. Valavanis¹, J. D. Cooper¹, A. Grier¹ and P. Harrison²

¹Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.

²Materials and Engineering Research Institute, Sheffield Hallam University, S1 1WB, UK.

majority of available software is supplied under a proprietary license, meaning that its source code cannot be studied, modified or redistributed freely by its users. As such, there is currently a lack of free software for students wishing to learn the mathematical and computational techniques that underpin modern nanoscale semiconductor physics.

We present a non-commercial, free-and-opensource project, Quantum Wells, Wires and Dots (QWWAD) [3], which is released under the GNU General Public License 3.0 [4] and is currently open for beta testing.

PAUL HARRISON

This free software accompanies the 4th edition of "Quantum Wells, Wires and Dots" by P. Harrison & A. Valavanis, which will be published in 2015 by J. Wiley and Sons, Chichester.

Example scripts: Simple "one-line" commands generate data for hundreds of example simulations. No knowledge of programming or scripting techniques is needed to gain useful results instantly.

\$ finite-well-wavefunctions.sh

UNIVERSITY OF LEEDS

effield

Core programs: A set of flexible C++ programs provide the "building blocks" for customised simulation scripts. This example computes the ground state of a 10-Å-wide GaAs infinitely deep quantum well:

\$ efiw --width 10 --mass 0.067 --states 1

Application programmers interface (API): The underlying functionality of QWWAD is available for use in custom C_{++} programs. To solve the above infinite-well example:

SchroedingerSolverInfWell solver(mass, length, n spatial points); solutions = solver.get solutions();

Reliability: Automated builds and tests run on *Launchpad* after any change to code

2. Functionality	4. Example: Electric-field induced anticrossings
QWWAD currently provides code to solve a wide range of physical models, namely:	This example demonstrates excerpts of a QWWAD script for computing the anticrossing between conduction band states in a double quantum well as a function of the external electric field:
AnalyticalSchrödinger solvers(e.g., quantum wells, superlattices)	<pre># Tabulate double well: width [angstrom], alloy, doping echo 200 0.2 0.0 > s.r echo 60 0.0 0.0 >> s.r echo 60 0.2 0.0 >> s.r anti-crossing</pre>
Numerical Schrödinger and Poisson solvers	echo 50 0.0 0.0 >> s.r echo 200 0.2 0.0 >> s.r left
Carrier distributions Tunnelling systems (single barriers, RTDs)	find_heterostructure # Generate sample mesh efxv # Generate table of potential data
Pseudopotential calculations	<pre># Loop over field [0 - 40 kV/cm] for F in `seq 0 40`; do</pre>
Scattering models (carrier–phonon, carrier–carrier) Semi-analytical models of quantum wires & dots	<pre>find_poisson_potentialunchargedfield \$F</pre>

5. Example: Self-consistent solution for a HEMT

This example demonstrates excerpts of a QWWAD script for computing a self-consistent Poisson–Schrödinger solution for a high-electron mobility transistor (HEMT).

6. Conclusions

We have presented the motivation, architecture and user examples of the free-and-open-source QWWAD simulation suite. This software is freely available, and aims to serve as both a useful educational resource and a reliable set of research tools.

Tabulate heterostructure: width [angstrom], alloy, doping echo 200 0.2 2e17 > s.r echo 200 0.0 0.0 >> s.r

find heterostructure # Generate sample mesh # Generate table of potential data efxv

Perform 8 iterations of Poisson-Schrödinger solution for I in `seq 0 8`; do efss # Solve Schroedinger equation • • •

find poisson potential

done

Acknowledgements

We thank our publishers, J. Wiley and Sons, Chichester, and acknowledge the generous time commitment of the QWWAD beta testers team.

References

[1] Nextnano, <u>http://www.nextnano.de</u> [2] COMSOL Multiphysics, <u>http://www.uk.comsol.com</u> [3] Quantum wells, wires & dots, <u>http://launchpad.net/qwwad</u> [4] GNU General Public License 3.0, Free Software Foundation (2007) <u>https://www.gnu.org/copyleft/gpl.html</u>