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Abstract

Atmospheric temperature is a key factor in determining the distribution of a plant 

species. Alongside this, plant populations growing at the margin of their range may 

exhibit traits that indicate genetic differentiation and adaptation to their local abiotic 

environment.  We investigated whether geographically separated marginal 

populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes 

associated with exposure to cold temperatures. Seeds of A. petraea were obtained

from populations along a latitudinal gradient, namely Wales, Sweden and Iceland and 

grown in a controlled cabinet environment.  Mannose, glucose, fructose, sucrose and 

raffinose concentrations were different between cold treatments and populations, 

especially in the Welsh population, but polyhydric alcohol concentrations were not.  

The free amino acid compositions were population specific, with fold differences in 

most amino acids, especially in the Icelandic populations, with gross changes in 

amino acids, particularly those associated with glutamine metabolism.  Metabolic 

fingerprints and profiles were obtained. Principal component analysis (PCA) of 

metabolite fingerprints revealed metabolic characteristic phenotypes for each 

population and temperature.  It is suggested that amino acids and carbohydrates were 

responsible for discriminating populations within the PCA. Metabolite fingerprinting 

and profiling has proved to be sufficiently sensitive to identify metabolic differences 

between plant populations at different atmospheric temperatures. These findings show 

that there is significant natural variation in cold metabolism among populations of A. l. 

petraea which may signify plant adaptation to local climates.

Key words:

Arabidopsis lyrata spp. petraea; Cold; Direct Injection Mass Spectrometry; 

Environmental Metabolomics; Metabolic Phenotypes; Metabolite Fingerprinting.
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1 Introduction

Temperature is a paramount factor in controlling ecosystems with regards to plant 

productivity, reproduction and ultimately distribution (Thomas et al., 2004; Walther et 

al., 2002, 2005). Plant growth has to be constantly controlled by a variety of 

molecular and metabolic networks allowing the protection and repair of plant cells in 

order to provide an appropriate response to ever changing environmental and resource 

conditions (Meyer et al., 2007; Vinocur and Altman, 2005). Such gross changes in 

growth will be preceded by alterations in the plant’s metabolism. Generally, changes 

in the metabolite content of a plant during cold temperatures may play an 

advantageous role in cell cryoprotection prior to freezing temperatures. This process 

is known as cold acclimation (Thomashow, 1999).  This metabolic phenotype is likely 

to differ according to a plant species’ inherent ability to adapt or acclimate to cold 

temperatures. Intraspecific variation in cold and freezing tolerances have been found 

in plant species with a broad geographical distribution and such variation has been 

attributed to specific environmental parameters, such as temperature, at each location 

(Alonso-Blanco et al., 2005; Hannah et al., 2006; Sackville Hamilton et al., 2002; 

Skøt et al., 2002; Zhen and Ungerer, 2008). Cook et al. (2004) reported significant 

natural variation for freezing tolerances and the preceding acclamatory processes 

within the metabolome of two contrasting ecotypes in Arabidopsis thaliana.  

Intraspecific genetic variation has also been found between populations of the arctic-

alpine species Arabidopsis lyrata ssp. petraea (hereafter A. petraea).  This species 

occurs in small geographically isolated populations across latitudinal and temperature 

gradients in Wales, Scotland, Germany, Norway, Sweden and Iceland, usually 

growing on rocky or stony cliffs and shores (Clauss and Koch, 2006; Clauss and 

Mitchell-Olds, 2006; Jonsell et al., 1995; http://www.petraea.shef.ac.uk).  
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Characterising phenotypes of such marginal populations where temperature regimes 

differ is of interest as they pose pertinent questions about evolutionary adaptations, 

along with the limits of such adaptations (Vergeer et al., 2008).  Alongside the genetic 

differences between populations, we have already discovered that populations of this 

species can be distinguished by their metabolic phenotypes when grown under the 

same controlled conditions (Davey et al., 2008).  Therefore, we hypothesised that 

populations growing at more northern latitudes where the minimum temperatures are 

different will exhibit metabolic phenotypes that are site and temperature specific.  

Assessing such spatial variation in metabolic responses to cold will provide 

information on cold acclimation and possible adaptive processes.  To this end, we 

examined in detail the global metabolic phenotypes of plant foliage from three 

populations at control and cold temperatures.  Metabolite fingerprints were obtained 

by direct injection mass spectrometry and metabolite profiling was targeted on the 

soluble, free carbohydrates, polyhydric alcohols and amino acids because of their 

known association with plant abiotic responses (Hannah et al., 2006; Smirnoff, 1998; 

Stitt and Hurry, 2002, Usadel et al., 2008).  

2 Methods

2.1 Growth

Seeds of Arabidopsis lyrata (L.) ssp. petraea were collected from populations in 

Iceland, Sweden and Wales as described in Davey et al. (2008).  Approximately 30 

seeds were sown in Levington M3 compost within individual seed trays covered with 

an incubator lid (16.5 x 9.5 x 4.5 cm).  Trays were placed inside one of two 

controlled-environment growth cabinets (Conviron Controlled Environments Limited, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Canada).  Cabinet conditions within a 1.5 m2 growth area were 16/8 hours day/night; 

20 °C day/night; 60% humidity; atmospheric CO2 ca. 400 ppm CO2; light 250 µmol 

m-2 sec-1.  Growth rates were similar and so after 7 days when the seeds had fully 

expanded cotyledons, up to 20 seedlings from each population were individually 

transferred to larger plant pots (7 x 7 x 8 cm) containing Levington M3 compost.  

Each growth cabinet had an equal number of plants per population.  Plants were 

watered from the base of the pot so the soil was moist, rather than sodden, when 

required with reverse osmosis (RO) water.  No additional nutrients were added to the 

soil or water.  After a further three weeks, ten of each A. petraea populations were 

randomly transferred in equal numbers to one of two growth cabinets set at a 

day/night temperature of 5 °C (all other conditions were as above, apart from relative 

humidity which increased to 80-90 %).  There were slight visual differences in leaf 

morphology between populations (Data not shown) (Davey et al., 2008, Vergeer et al., 

2008).  After another 7 days and after six hours into the daylight period the foliage 

was excised at soil level with a razor blade. Leaf tissue was chosen for this study, as 

this organ is regularly exposed to changes in air temperature in the wild.  The foliage 

was immediately immersed in liquid nitrogen and stored at -80 ºC.

2.2 Metabolite extraction and analyses

Metabolites were extracted and analysed as described in Davey et al. (2008).  Briefly, 

approximately 100 mg leaf tissue per plant was extracted using 2 ml 

MeOH/CHCL3/H2O (2.5:1:1) followed by 1 ml MeOH/CHCL3 (1:1).  The organic 

CHCl3 phase was separated from the aqueous MeOH:H2O phase by adding 500 l 

H2O.  The aqueous phase was analysed for free amino acids by HPLC and free 

carbohydrates and polyhydric alcohols by Gas Chromatography (GC).  Aqueous and 
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organic phases were directly injected into a LCT mass spectrometer (Waters Ltd. 

Manchester, UK) using a MassLynx V.4.0 data system in negative and positive 

ionisation modes (50-800 m/z).  

2.3 Metabolite fingerprinting – chemometrics

Raw centroid mass/charge (m/z) ratios from triplicate analytical runs were combined 

into 0.2 Da mass unit ‘bins’ for noise reduction and data alignment using in-house 

software.  m/z peaks were assigned to bins only if an ion count of similar intensity and 

m/z range is detected for a peak in each of the three analytical runs for each biological 

sample.  Binned m/z and percent total ion count (%TIC) values from the aqueous and 

organic phases, analysed in both negative and positive ion mode on the mass 

spectrometer, were explored by Principal Component Analysis (PCA) using Simca-P 

V.11.5 (Umetrics, Sweden) as described in Davey et al. (2008).  The statistical 

differences between the %TIC of each 0.2Da bin was carried out using ANOVA 

followed by Post-Hoc tests for multiple comparisons. Significant differences are given 

at P ≤ 0.05 and at a Bonferroni P value of 0.05/n where n = number of bins tested.  

Metabolites for each bin were putatively identified using KNApSAcK v1.2. 

http://kanaya.naist.jp/KNApSAcK/ using a search resolution of ±0.1Da. Only 

metabolites that have been reported in Arabidopsis thaliana were selected in 

KNApSAcK.  A Multivariate General Linear Model analysis of variance (ANOVA) 

followed by a Tukeys Post-Hoc test for multiple comparisons was used to test for 

significant differences in amino acid and carbohydrate composition between 

populations and temperatures using SPSS v12.0.1 (Chicago, Illinois, USA).

3 Results
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3.1 Targeted analysis

3.1.1 Free soluble carbohydrates

The concentration of soluble carbohydrates and polyhydric alcohols varied between 

populations and treatments (Fig. 1).  The concentration of the majority of 

carbohydrates was increased in all populations after the cold treatment.  The Welsh 

population had the largest number of mono-, di- and trisaccharides that significantly 

increased with the cold temperature (mannose, glucose, fructose, sucrose, raffinose). 

There were two carbohydrates that increased with cold in the Swedish population 

(sucrose, raffinose) and no carbohydrates were significantly affected in the Icelandic 

population.  The largest increase in response to cold was the mannose concentration in 

the Welsh population. Polyhydric alcohols were not significantly increased by cold 

treatment. 

There were significant temperature increases in the total monosaccharide pool after 

exposure to cold in the Welsh population (P > 0.001) and in the total di- and 

trisaccharide pools in the Swedish population (P > 0.001).  There were no significant 

differences in the total polyol or total carbohydrate or polyol pool for any population. 

There were significant site differences with the Swedish population having higher 

concentrations of monosaccharides, inositol and the total carbohydrate and polyol 

pool (Table 1) and the Welsh population having higher concentrations of maltose and 

mannitol.  There were no significant site*temperature interactions.

3.1.2 Free amino acids
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The concentration of soluble amino acids varied between populations and treatments, 

with the majority of amino acids increasing in concentration after the cold treatment 

(Fig. 2).  The Welsh population had the lowest number of amino acids that 

significantly increased with the cold temperature (serine, glycine, alanine, glutamine). 

There were five amino acids that increased with cold in the Swedish population 

(phenylalanine, alanine, glutamic acid, GABA, aspartic acid) and there were ten 

amino acids that were significantly affected in the Icelandic population (glycine, 

histidine, alanine, glutamic acid, glutamine, arginine, GABA, aspartic acid, 

asparagine, isoleucine).  In particular, amino acids derived from the citric acid cycle 

all were found at higher concentrations in cold-treated Icelandic plants.  The total 

amino acid pools for the Swedish and Icelandic populations were significantly 

increased by cold treatment (P > 0.01 total data not shown). There were significant 

site differences with the Welsh population having higher concentrations of histidine 

and threonine than the Swedish population (Table 1).  There were also significant 

site*temperature interactions for histidine, arginine, aspartic acid and isoleucine as the 

Icelandic populations had a different response to cold treatment than the other 

populations, whereas serine had a significantly different response to cold in the 

Swedish population than the Welsh population.

3.2 Metabolite fingerprinting

To check the overall variation between populations and cold treatment in other 

metabolites alongside those detected in the targeted analysis, a DIMS analysis was 

carried out.  There were between 155 and 240 bins (0.2 Da range Bins) that had a 

significantly different %TIC between control and cold-treated plants among all 

populations with a P value below 0.05 (Table 2). To reduce the risk of false positive 
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discoveries, a Bonferroni P value was calculated for each extraction phase and 

ionisation mode.  In terms of percent change, the metabolites that were detectable in 

the aqueous phase by negative ionisation showed the largest response to cold (Fig. 3).  

Across all extract phases and ionisation modes, the Icelandic population had the most

significantly changing bins in response to cold.  The Icelandic and Welsh populations 

shared the most significantly different bins from the aqueous phase between 

temperatures.

3.3 Principal component analysis (PCA)

Masses detected within the aqueous phase analysed in the negative and positive 

ionisation mode showed separate clusters of Welsh, Swedish and Icelandic samples 

along principal component (PC) 2 (Figs. 4a and 4b).  Samples that were exposed to 

cold were clustered separately from the control samples along PC1. In particular, the 

Welsh samples had distinct clusters away from Swedish and Icelandic plants.  

There was no distinct separation of populations and treatments of m/z values acquired 

in the organic fraction when analysed in the negative ion mode.  There was only some 

separation of cold treatment along PC1 (Fig. 4c). However, when analysed in the 

positive mode there were separate clusters of Swedish, Icelandic and in particular 

Welsh samples along principal component 1 (Fig. 4d).  Samples that were exposed to 

cold were very weakly separated from the control samples along PC3.

The scores contribution plots (Figs. 4e - h) indicate which bins differ the most 

between control (more positive) and cold-treated (more negative) plants along the 

selected principal components for each phase and ionisation mode.  There were few 

bins that differed in intensity in the aqueous phase analysed in the negative ionisation 
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mode. However, the score contribution values were very high for these bins, 

indicating a strong influence on separating control and cold-treated plants. There was 

a stronger and a more even distribution of bins that differed between control and 

treatment from the aqueous phase analysed in the positive mode (Fig. 4f).  The 

organic phase in negative ionisation mode showed a different distribution of bins that 

differed between control and cold samples as more low mass bins were related to 

control conditions but more mid-range (>140 m/z) and high-range (>500 m/z) mass 

bins were related to cold conditions (Fig. 4g). However, the organic phase analysed in 

the positive mode showed that most bins were related to control conditions with only 

a few bins in the low mass range (<200 m/z) that were increased under cold 

conditions (Fig. 4h). 

The putative metabolite identification for the top four most positive (control) and 

negative (cold) PCA contribution scores (Fig. 4e – h) for each extraction and 

ionisation mode are presented in table 3. As expected from the solvent extraction 

procedure used, the majority of the top bins that were responding to cold were 

assigned to low molecular weight amino acids, carbohydrates, organic acids, 

phenylpropanoids and phenolics. Most of the bins detected in the aqueous phase that 

were identified as significantly different in the ANOVA within the Bonferroni P-

value limit (Table 2) were also detected as major contributing bins in the PCA (Table 

3) implying that the correct principal components were used.  The complete lists of 

bins and respective putative compound identifications that were separating out 

populations and cold treatment of each such mass for each ion mode and fraction are 

presented as supplementary data.  

4 Discussion
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4.1 Targeted metabolite profiling 

Although only a snapshot of the metabolism was measured at one point in time the 

concentrations of carbohydrates and amino acids that were altered in cold treated 

plants were shown to be population specific.  The response to cold in carbohydrate 

metabolism, in the number of metabolites that were accumulated during the cold 

treatment, was population specific in that Wales > Sweden > Iceland.  However, this 

trend was reversed in the free amino acid pool where the response was Iceland > 

Sweden > Wales.  There were no significant site*temperature interactions for 

carbohydrates but there were five amino acids that had a statistically significant 

site*temperature interaction.

Carbohydrates and amino acids have been commonly reported to increase in 

concentration after cold treatments. Recent results by Usadel et al. (2008) show that 

sucrose, glucose and fructose concentrations increase with cold in A. thaliana. They 

also found that initially (6h) some organic and amino acids decreased in concentration 

with cold while others such as glutamine increased with cold.  After 78 hours cold in 

their study, most amino and organic acids and carbohydrates had increased in 

concentration.  In particular, Usadel et al. (2008) also reported increases in raffinose 

and proline, which we detected via HPLC or DIMS.  

There were significant increases in carbohydrates in response to cold in this 

study, namely glucose, fructose, sucrose, raffinose and mannose.  This is in agreement 

with Klotke et al. (2004) who also reported increases in glucose, sucrose, raffinose 

and fructose concentrations, together with an increase in freezing tolerance, in A. 

thaliana.  This increase in carbohydrates may be due to increased synthesis, or to 

reduced usage as growth and phloem transport is decreased.  Sucrose in particular is 

increased (Fig. 1) probably because it can be quickly mobilised and stored throughout 
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the plant and used for respiratory needs as more gross morphological and biochemical 

changes occurs during acclimation (Atkin et al., 2005; Guy et al., 1992; Strand et al., 

1999).

Amino acids have been shown to increase in concentration in a variety of 

perennial plant species during colder winter months (Sagisaka and Araki, 1983).  

Alterations in amino acid accumulation in response to cold were also measured in A. 

petraea.  Most alterations occurred in compounds derived from the citric acid cycle, 

especially in the Icelandic population.  This response in A. lyrata is comparable to 

cold responses in other species such as Arabidopsis thaliana as Kaplan et al. (2004) 

also found that amino acids derived from the citric acid cycle increased in 

concentration with cold treatments.  Glutamine, glutamate, aspartate and asparagine 

are important amino acids in nitrogen assimilation, storage and N transport in plants 

and all were shown in increase in concentration during cold treatment (Iceland > 

Sweden > Wales).  By far the most significant response to cold was the accumulation 

of glutamine (Fig. 2). Glutamine has also been reported to increase in concentration 

with cold in A. thaliana (Klotke et al., 2004) and asparagine is known to transport N 

around the plant.  

The enzymes glutamine synthetase (GS); glutamate synthase (GOGAT); 

aspartate aminotransferase (AAT) and asparagine synthetase (ASN) play an important 

role in accumulating these amino acids.  Increased aspartic acid may be beneficial to 

the plant during cold as mutants of AAT, that decreased aspartic production, showed 

reduced growth phenotypes (Coruzzi, 2003; Lam et al., 1995). With the Icelandic and 

Swedish populations having more aspartic acid in cold leaves over the Welsh 

population, this may prove to be advantageous during cold acclimation and growth.

Glutamine synthetase is encoded by multiple genes (GLN) (Peterman and 

Goodman, 1991) with the expression being increased by exposing plants to light and 
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interestingly, by carbohydrate accumulation such as sucrose (Oliveira and Coruzzi, 

1999; Suzuki and Knaff, 2005).  An increased expression of GLN1.1 to form 

glutamine would increase the N available for assimilation into maintained growth or 

increased translocation from senescing or damaged leaves to form newly acclimated 

leaves (Bleeckerl and Patterson, 1997; Lam et al., 1995; Li et al., 2006).  However, 

the gene family encoding ASN (ASN1-3) is mainly expressed, and asparagine 

accumulated, at night (Lam et al., 1998; Miesak and Coruzzi, 2002) as the daytime 

repression of ASN expression is also linked to light and carbohydrate accumulation 

(Coruzzi, 2003; Lam et al., 1994, 1995).  Therefore, if carbohydrate concentrations 

are increased during cold, then the gene expression for GS and ASN should be further 

increased and decreased respectively. We found this to be true in other populations of 

A. petraea (Norway and Ireland) that were cold shocked for 8 hours as GLN1.1

increased and ASN3 decreased its expression (Dr Catherine Lilley – paper in 

preparation).  Kilian et al. (2007) also reported a 45% decrease in ASN3 and a 2000% 

increase in GLN1.1 in expression in 24h cold-treated A. thaliana (eFP-brower 

http://bar.utoronto.ca/efp/cgi-bin/efpweb.cgi).  Alongside this, there was a reported 

increase of more than 3000% in sucrose synthetase (SUS1) (Kilian et al., 2007) in 

response to cold, which was also shown to increase in the other two populations of A. 

petraea (unpublished data).  The accumulation of glutamine may relieve some of the 

repression on ASN3 as studies have shown that addition of glutamine alleviates the 

repression made by sucrose abundance on ASN expression and may explain the 

increase in asparagine in response to cold in our study (Lam et al., 1994, 1995). It is 

still unclear whether this activation and repression of such gene expressions is 

continued into the night in cold treated plants that accumulate carbohydrates and 

whether an increase in carbohydrates is more important to the plant than an increase 

or mobilisation of N.
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Although the variation in relationships between gene expression and metabolite 

concentrations can be high in cold acclimating plants (Kaplan et al., 2007) an increase 

in SUS1 and GLN1.1 and a decrease in ASN3 gene expression infer tight signalling 

processes involved in the metabolic control of cold exposure and cold acclimation. 

This may explain the inverse relationship between the number of significantly higher 

concentrations of amino acids and carbohydrates in cold-treated Icelandic (10 amino

acids to 0 CHO) when compared to Swedish (5 to 2) and Welsh (4 to 5) populations.

4.2 Metabolite fingerprinting

This study has shown that there is intraspecific variation in the metabolic phenotype 

that plants have in response to cold temperature.  The metabolite fingerprinting 

approach shows that shifts in the metabolome of A. petraea that were exposed to cold 

is detectable, with Icelandic and Welsh populations sharing the most significantly 

different changing bins.  The control population phenotypes were similar to those 

reported in Davey et al. (2008).  

The initial screen of the 0.2Da bins showed significant differences between 

control and cold-treated plants for each population.  We detected approximately 3000 

masses (0.2 Da bins) across all extraction phases and ionisation modes. Gray and 

Heath (2005) found 1187 masses (DIMS-Fourier Transform-Ion Cyclotron 

Resonance) when masses were pooled and compared from all ion modes and 

extraction phases, therefore as one metabolite may produce more than one mass peak 

and may be detectable in more than one ionisation mode or extraction phase the 

number of masses detected are comparable with their findings. About 8% of the 

masses found by Gray and Heath (2005) significantly increased or decreased in 

intensity after seven days cold treatment.  This is in agreement with our findings that 
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on average across ion modes, extraction phases and populations 7.2% of the bins 

detected had significantly altered ion intensities with cold treatment (Fig. 3).  There 

were more bins detected in extracts that were analysed in the positive ionisation mode, 

which could either be the result of more metabolites being able to ionise in positive 

mode than negative, or more adducts being formed.  However, none of the most 

significant bins were found to match possible K or Na adducts of metabolites.

Metabolites that were associated with cold treatment were detected using both 

Bonferroni statistics and PCA loading scores, the majority of which were assigned to 

amino acids, carbohydrates, organic acids, phenylpropanoids and phenolics.  Many of 

the highly statistically significant metabolites putatively identified by DIMS (Table 3 

and supplementary data) are associated with the citric acid cycle and similar to the 

targeted analysis were also up regulated more so in the Icelandic population.  From 

the DIMS we also found that masses for malate and glutamine increased and fumarate 

and succinate decreased.  It is likely that the metabolite found at bin 145 (negative 

ion) and 147 (positive ion) is glutamine (Table 3). The raw unbinned mass spectrum 

for this bin was 145.099 m/z- and 147.029 m/z+. The difference between the 

monoisotopic mass of glutamine (146.069) and the unknown mass is 0.038Da in the 

negative ion and 0.047Da in the positive ion. The masses of α-Ketoglutaric acid and 

Ketopantoic acid were between 0.049 and 0.095Da away from the unknown peak.  

This confirms the result in the targeted analysis where glutamine concentrations 

increased in concentration with cold treatment.

The mass of metabolite 3-Hydroxypropyl glucosinolate (Bin 376 negative ion) 

was found to discriminate Welsh plants grown at 20ºC from all other populations at 

both control and cold temperatures.  This mass had a highly positive PCA loading 

score (see supplementary data) and was significantly different to the other populations 

and treatments above the Bonferroni P value.  This mass was also found to 
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discriminate Wales from other populations in our previous study (Davey et al., 2008).  

Therefore, although this metabolite can distinguish populations it may not be involved 

in cold tolerance mechanisms as it was not accumulated during the cold treatment in 

the Welsh, or any other population.

5 Conclusion

Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to detect 

unique cold-induced metabolic phenotypes between populations of A. petraea across a 

broad geographical and climate distribution.  A mixture of unique metabolic changes 

to cold and more general responses as described in other species was measured.  

Principal component analysis (PCA) of metabolite fingerprints revealed metabolic 

phenotypes for each population and temperature.  Mannose, glucose, fructose, sucrose 

and raffinose concentrations were different between cold treatments and populations, 

especially in the Welsh population but polyhydric alcohol concentrations were not.  

The free amino acid compositions were population specific, with fold differences in 

most amino acids, especially in the Icelandic populations with gross changes in amino 

acids associated with the citric acid cycle, in particular glutamine metabolism.  Such 

intraspecific variation in the metabolome of cold-treated plants may ultimately affect 

the plants ability to acclimate and adapt to new environments.  This will be 

particularly important for plant populations living at the margin of their range and 

threatened by rapid climate change.
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Figure 1: Concentrations of free carbohydrates and polyhydric alcohols in the leaves 

of Arabidopsis lyrata ssp. petraea (Wales, Sweden, Iceland) grown under control (20 

ºC) or cold (5 ºC for 7 days) conditions.  Significant differences between control and 

cold treatments within each population are given as * = P ≤ 0.05; ** = P ≤ 0.01; *** 

= P ≤ 0.001. Data are mean (± SE). 
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Figure 2: Concentrations of soluble free amino acids in the leaves of Arabidopsis 

lyrata ssp. petraea (Wales, Sweden, Iceland) grown under control (20 ºC) or cold (5 

ºC for 7 days) conditions.  Amino acids are listed according to their biosynthetic 

family and origin.  Significant differences between control and cold treatments within 

each population are given as * = P ≤ 0.05; ** = P ≤ 0.01; *** = P ≤ 0.001. Data are 

mean (± SE).
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between control and cold-treated Icelandic, Swedish and Welsh populations of

Arabidopsis lyrata spp. petraea plants with overlapped regions denoting the number 

of shared changing bins of the selected population.  The percentage of the total 

number of 0.2 Da Bins that had significantly different % total ion counts between 
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Figure 4.  Score scatter plots from principal component analysis of m/z values (binned 

to 0.2Da) obtained by metabolic fingerprinting of Arabidopsis lyrata spp. petraea

populations from Iceland (I), Sweden (S) and Wales (W). The percent of the variation 

of the data explained by each component is provided in each graph.  Fingerprints were 

obtained from direct injection mass spectrometry of the aqueous phase in negative 

ionisation (1a, e); aqueous phase in positive ionisation (1b, f); organic phase in 

negative ionisation (1c, g); organic phase in positive ionisation (1d, h). The score 

contribution plots (e-h) indicate which bins differ the most between control (more 

positive) and cold-treated (more negative) plants along the selected principal 

components (note differences in x-axis scale).  



Carbohydrates and polyols Amino acids

Metabolite
All Site 

differences
Biosynthetic family (origin) Metabolite

All site 
differences

Site*temp 
interactions

Monosaccharide Arabinose S > I * Glycolysis Serine n.s. S > W*

Xylose S > I & W * Glycine n.s. n.s.

Mannose S > I & W *** Tryptophan n.s. n.s.

Galactose S > I & W *** Phenylalanine n.s. n.s.

Glucose S > I & W *** Pentose Phosphate Pathway Histidine W > S * I > W&S**

Fructose S > I & W *** Glycolysis Alanine n.s. n.s.

Disaccharide Sucrose n.s. Valine n.s. n.s.

Trehalose n.s. Leucine n.s. n.s.

Maltose W > S * Citric acid Cycle Glutamic acid n.s. n.s.

Lactose n.s. Glutamine n.s. n.s.

Trisaccharide Raffinose n.s. Arginine n.s. I > W&S*

Polyhydric alcohol Erythritol n.s. GABA n.s. n.s.

Inositol S > I ** Aspartic acid n.s. I & S > W*

Sorbitol n.s. Asparagine n.s. n.s.

Mannitol W > I & S *** Methionine n.s. n.s.
Total 
monosaccharides

S > I & W *** Lysine n.s. n.s.

Total di- and 
saccharides n.s. Threonine W > S ** n.s.

Total polyols n.s. Isoleucine n.s. I > W**

Total 
carbohydrates and 
polyols

S > I & W *** Total amino acids n.s. n.s.

Table 1: Significant differences of carbohydrate, polyol and amino acid 

concentrations of Arabidopsis lyrata ssp. petraea between all sites (Wales, W; 

Sweden, S; Iceland, I) and site*temperature interactions from a Multivariate General 

Linear Model analysis of variance (ANOVA) followed by a Tukeys Post-Hoc test to 

identify which population has the greatest significant difference between control and 

treatment temperatures compared to the other populations. * = P ≤ 0.05; ** = P ≤ 

0.01; *** = P ≤ 0.001. n.s. = not significant.
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Table 2. The number and percent of significantly different bins (0.2 Da bins), based 

on % total ion count, obtained for each solvent extract phase and mass spectrometer 

ionisation mode between control (20 ºC) and cold treated (5 ºC) Icelandic, Swedish 

and Welsh populations of Arabidopsis lyrata spp. petraea. The number of bins below 

a P value of 0.05 and of a Bonferroni P value to reduce the number of false positives.

Bonferonni P value (0.05/no. of bins compared): * P = (0.05/942) = 0.000053; † P = 

(0.05/1232) = 0.000041; ‡ P = (0.05/1454) = 0.000034; § P = (0.05/1788) = 0.000028.

Aqueous

Negative  

Aqueous

Positive

Organic

Negative

Organic

Positive

No. of significantly different 
bins between ALL treatments 
and populations at P<0.05

211 240 155 236

Percent significantly different 
bins between ALL treatments 
and populations at P<0.05

22 19 11 13

No. of significantly different 
bins between ALL treatments 
and populations below the 
Bonferroni P value

68* 43† 5‡ 19§

Percent significantly different 
bins between ALL treatments 
and populations below the 
Bonferonni P value

7 3 0 1
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* = Bin was also significantly different between treatments at the Bonferonni P value level (Table 2)

Phase and 
ionisation 

mode
Comment/response

BIN
[M-H] or 
[M+H]

PCA Score 
contribution

Putative metabolite identification [m/z +/- H+]

Aqueous 
negative

High I 20; low I/W 5   163*      4.49 Caffeic aldehyde p-Coumaric acid L-Fucose Phenylpyruvic acid D-Rhamnose
High S; low W   115*      2.70 Fumaric acid 2-Ketoisovalerate Maleate
High I 20; low I 5, S   193*      2.12 Ferulic acid D-Galacturonic acid 5-Hydroxyconiferyl aldehyde
High I 20; low S,  W 5   212      1.77 L-4_Aspartyl phosphate
High I 5, low S 20   133*   -24.94 L-Malic acid
High S 5; low I   145*     -4.24 L-Glutamine α-Ketoglutaric acid Ketopantoic acid
High I 5; low S 20   191*     -4.23 Citric acid Isocitric acid Quinic acid
High I 5; low S 20 (isotope of 133?)   134*     -3.47 L-Homocysteine Phenylacetaldoxime

Aqueous 
positive

High W 20; low S 20/5, I 20   277.2*      6.38 Saccharopine
High 20, low W 5   135      5.45 L-Malic acid
High I 20; low W 5   140*      5.03 L-Histidinal 6-Hydroxynicotinic acid
High I 20; Low 5   209      4.11 L-Kynurenine 2-(2'-Methylthio)ethylmalic acid
High I 5; low I 20   147*   -15.82 L-Glutamine α-Ketoglutaric acid Ketopantoic acid
High W; low I 20   130*   -14.90 Pyroglutamic acid
High I/S/W 5, S 20; Low W 20   116   -12.38 L-Proline
High I 5; low I/W 20   175.2*     -6.71 L-Arginine

Organic 
negative

High I/S 20; low S 5     87      1.94 Pyruvic acid
High I; low W   117      1.21 Succinic acid
High 20 all; low 5 all   112      1.12 L-Δ1-Pyrroline-5-carboxylate
High S/I 20; low S/I 5     94      1.08 2-Hydroxypyridine 4-Hydroxypyridine
High I/W 5; low 20, S 5   133     -4.15 L-Malic acid
High I 5; low all (isotope of 145?)   146     -2.64 O-Acetyl-L-serine L-Glutamic acid
High I/W 5; low I/S/W 20   145     -2.44 L-Glutamine α-ketoglutaric acid Ketopantoic acid
High 5; low20 all   316.2     -2.33 4-Hydroxysphinganine

Organic 
positive

High W 20; low I/S   277.2*      4.84 Saccharopine
High I/S 20; low I/S 5, W 20/5   302.2      2.57 Sphinganine
High I/S 20; low W 5   135      2.51 L-Malic acid
High S/I 20; low I/W 5   222.2      1.96 Dihydrozeatin
High 5; low20 all   130     -2.23 Pyroglutamic acid
High 5; low 20 all   169     -1.89 Homogentisate Pyridoxamine Urate Vanillic acid
High 5; low20 all   116     -1.82 L-Proline
High W 20/5, S/I 20; low S/I 5   104     -1.74 γ-Aminobutyruc acid
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Table 3. The putative metabolite identification for the top four most positive (control 

20 ºC) and negative (cold 5 ºC) PCA contribution scores for each extraction and 

ionisation mode for Arabidopsis lyrata spp. petraea. A high positive or negative value 

indicates a high contribution that such a bin has on separating control (more positive) 

or cold treated (more negative) treatments. Metabolites for each bin [m +/- H adduct] 

were putatively identified using KNApSAcK v1.2. http://kanaya.naist.jp/KNApSAcK/ 

using a search resolution of ±0.1Da. Only metabolites found and reported in 

Arabidopsis thaliana were selected.  I = Iceland; S = Sweden; W = Wales; High = 

high ion count; Low = low ion count; 20 = 20 ºC control; 5 = 5 ºC cold treatment.




