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Type 2 diabetes (T2DM) promotes premature atherosclerosis and inferior prognosis after arterial reconstruction.
Vascular smooth muscle cells (SMC) respond to patho/physiological stimuli, switching between quiescent con-
tractile and activated synthetic phenotypes under the control of microRNAs (miRs) that regulate multiple
genes critical to SMC plasticity. The importance of miRs to SMC function specifically in T2DM is unknown. This
studywas performed to evaluate phenotype and function in SMC cultured fromnon-diabetic and T2DMpatients,
to explore any aberrancies and investigate underlying mechanisms. Saphenous vein SMC cultured from T2DM
patients (T2DM-SMC) exhibited increased spread cell area, disorganised cytoskeleton and impaired proliferation
relative to cells from non-diabetic patients (ND-SMC), accompanied by a persistent, selective up-regulation of
miR-143 and miR-145. Transfection of premiR-143/145 into ND-SMC induced morphological and functional
characteristics similar to native T2DM-SMC; modulating miR-143/145 targets Kruppel-like factor 4, alpha
smooth muscle actin and myosin VI. Conversely, transfection of antimiR-143/145 into T2DM-SMC conferred
characteristics of the ND phenotype. Exposure of ND-SMC to transforming growth factor beta (TGFβ) induced
a diabetes-like phenotype; elevated miR-143/145, increased cell area and reduced proliferation. Furthermore,
these effects were dependent onmiR-143/145. In conclusion, aberrant expression of miR-143/145 induces a dis-
tinct saphenous vein SMC phenotype thatmay contribute to vascular complications in patientswith T2DM, and is
potentially amenable to therapeutic manipulation.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Insulin resistance leading to type 2 diabetesmellitus (T2DM) confers
a risk equivalent to 15 years of aging [1]. Early diagnosis is difficult as
the disease is initially symptomless; hence up to half of patients have
evidence of cardiovascular complications by the time diabetes is con-
firmed [2]. Such individuals are vulnerable to accelerated atherosclero-
sis and premature coronary heart disease (CHD), and revascularisation
procedures are also problematic with disappointing long-term out-
comes [3]. Despite this, coronary artery bypass grafting (CABG) using
autologous saphenous vein (SV) remains the optimal treatment for dia-
betes patientswithmultivessel disease, followingwhich graft failure is a
nd Diabetes Research, Worsley
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significant problem [4,5]. Importantly, structural abnormalities in SV of
diabetic subjects are evident pre-operatively, the severity of which ap-
pears to be associated with poor glycaemic control [6].

Clinical trials revealed that intensive control of hyperglycaemia is ef-
fective in retarding and preventing the microvascular complications of
diabetes [7] yet medium term, macrovascular complications persist par-
ticularly in patients with diabetes and active CHD [7,8]. Development of
vascular complications as a result of prior exposure to hyperinsulinaemia
and hyperglycaemia in diabetes appears to confer persistent alterations
in vascular gene expression, indicative of epigenetic modulation that is
referred to as metabolic memory (reviewed in [9]). Elucidating molecu-
lar mechanisms that underlie this phenomenon is therefore of great
interest.

Smoothmuscle cells (SMC) of blood vessel walls switch between dif-
ferentiated and dedifferentiated phenotypes in response to local cues.
Phenotypic switching is essential during vascular development, repair
and adaptation, but also contributes to progression of atherosclerosis
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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and bypass graft failure [10]. Effective adaptation to arterial environ-
ments early after implantation is a determinant of the long-termpatency
of SV grafts [11]; hence the ability of SMC to retain plasticity during ad-
aptation and “arterialisation” is vital. Failure of SMC to respond dynami-
cally to conditions of increased flow and pressure early after grafting
conceivably jeopardises the longer-term patency of SV used as arterial
bypass grafts [12].

We previously reported that human SV-SMC cultured from patients
with T2DMwere phenotypically and functionally distinct from those of
non-diabetic individuals [13]. Key featureswere rhomboidmorphology,
F-actin fragmentation and reduced proliferation capacity [13], any of
which can conceivably contribute to impaired vessel remodelling in di-
abetic patients following bypass grafting.

Recent evidence suggests that changes in SMC phenotype and func-
tion during vascular remodelling are controlled by epigenetic mecha-
nisms, including microRNAs (miRs) (reviewed in [14]). These small
non-coding RNAs act in a tissue- and cell-specific manner, regulating
target genes by inducing mRNA degradation or translational repression
[15]. Altered levels of miRs have been associated with a number of car-
diovascular complications in diabetes (reviewed in [16,17]), however
little is known about how diabetes per se modulates phenotype and
function of vascular SMC. Dysregulation of miRs induced by the meta-
bolic milieu may contribute to altered gene expression and SMC aber-
rancies in individuals with T2DM [18].

In this study, we discovered that SMC cultured from T2DM patients
expressed increased levels of miR-143 and −145 and elucidated roles
for these miRs in driving cellular dysfunction.
2. Materials and methods

2.1. Cell culture

SMC were cultured as we previously described from explants of SV
[19] obtained from patients without known diabetes (ND-SMC), or
with diagnosed type 2 diabetes (T2DM-SMC) receiving oral therapy
alone or oral therapy plus insulin. All patients were undergoing elective
CABG surgery at the Leeds General Infirmary. Local ethical committee
approval and informed, written patient consent was obtained and the
study conformed to the principles outlined in the Declaration of
Helsinki.
2.2. Cell area measurements

Cells were imaged at x100 magnification and the boundaries of 50
subconfluent individual cells per patient were traced. Spread cell areas
were calculated using Image J software (http://imagej.nih.gov/ij/). For
each patient population, cell areaswere ordered (1000 μm2 increments)
fromwhich a distribution profile and average cell area was determined.
2.3. Rhodamine phalloidin immunofluorescence

Cells were cultured for 48 h in full growthmedium (FGM) and fixed
in 4% paraformaldehyde. F-actin fibres were labelled using rhodamine
phalloidin (1:40) as previously described [20].
2.4. Quantitative real-time RT-PCR

Cellular RNA was extracted and real-time RT-PCR was performed
using intron-spanning human ACTA2 primers and Taqman probes (Ap-
plied Biosystems, Foster City, California) and Applied Biosystems 7500
Real-Time PCR System. Data are expressed as percentage of glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) endogenous control mRNA
expression using the formula 2-ΔCT x 100.
2.5. Proliferation assays

Proliferation assays were performed over 7 days as previously de-
scribed [13].

2.6. Quantification of miR expression levels

RNA was isolated and relative expression levels of miR-125b,
−133a,−143 and−145 determined using specific TaqManmicroRNA
assays (Applied Biosystems, Foster City, California) and real-time PCR
according to manufacturer’s protocols. Data analysis was performed
using the comparative CT method, and values normalised to U6
expression.

2.7. Transfection of premiRs and antimiRs

Subconfluent cells were transfected with premiRs (30 nM) or
antimiRs (60 nM) for miR-143 and miR-145, and associated negative
controls. Endpoints were measured 72 h later (cell morphology, RNA
isolation, F-actin staining) or proliferation assays performed.

2.8. Immunoblotting

SMC were transfected with relevant premiRs, antimiRs or negative
controls. Following transfection, whole cell homogenates were
sequentially prepared 3, 5, 7 and 10 days later. Protein lysates were
immunoblotted for alpha-smooth muscle actin (α-SMA), calcineurin
(PPP3CA), calcium/calmodulin-dependent protein kinase 2 delta
(CaMKIIδ), kruppel-like factor 4 (KLF4), insulin-like growth factor-1 re-
ceptor (IGF-1R), insulin receptor substrate-1 (IRS-1), myosin VI or pro-
tein kinase C epsilon (PKCε), as described previously [21]. GAPDH acted
as a loading control. Selected proteins were also investigated from na-
tive ND- and T2DM-SMC cultured under identical conditions.

2.9. Induction of miR expression

SMCwere treatedwith high glucose (25mM), insulin (100 nM), pro-
inflammatory cytokines (a combination of interleukin (IL)-1α and tu-
mour necrosis factor (TNF)-α, both 10 ng/mL), or TGFβ (0.1-10 ng/mL)
in low serum (0.4%)-containing medium for 48 h. Cells maintained in
5.5 mM glucose for the same timeframe acted as controls. RNA was ex-
tracted and miR-143 and miR-145 expression levels determined.

2.10. TGFβ signalling blockade

For functional experiments, T2DM-SMC were treated with 10 μg/ml
anti-TGFβRII neutralising antibody or control polyclonal goat IgG for 48
h after which end-points were measured (cell morphology, RNA isola-
tion, F-actin staining). For proliferation, media was refreshed after 48
h and final cell counts performed after 96 h. Data were expressed as in-
crease in cell number between days 0 and 4.

2.11. Chronic TGFβ treatment

ND-SMC were treated daily with 1 ng/ml TGFβ or vehicle for 7 d in
media containing 2.5% FCS. TGFβ was then withdrawn and culture
was continued for a further 7 d. Cell area measurements were
performed and RNA was extracted on days 7, 11 and 14. Data were
expressed as fold change in miR-143/145 levels in cells treated with
TGFβ versus vehicle at each time point.

2.12. Statistical analysis

Results are presented as mean ± SEM with n representing the
number of experiments on cells from different patients. Any potential
differences in cardiovascular therapies between ND and T2DM-SMC

http://imagej.nih.gov/ij/


Table 2
Clinical characteristics of patients from whom SV-SMC were cultured.

No diabetes Type 2 diabetes P value

Oral therapy
Metformin - 85.6% -
+ Sulfonylurea - 21.4% -
+ Gliptin - 7.1% -

Oral + insulin therapy - 30.8% -
Statins 80.0% 78.6% P = 1.00
ACE inhibitors/ARBs 91.0% 73.3% P = 0.37
β-blockers 92.8% 80.0% P = 0.37
Antiplatelet/anticoagulant 84.6% 93.8% P = 0.61
Diuretics 33.3% 40.0% P = 1.00

Comparison of drug therapies between the patient cohorts. Typical cardiovascular
treatments: cholesterol-lowering drugs (statins), angiotensin-modulating agents (ACE-I,
ARBs), beta adrenergic receptor blockers (β-blockers), anticoagulation therapies and
diuretics were common to both patient groups. All diagnosed T2DM patients were
receiving oral therapies (predominantly metformin) with some patients also receiving
sulfonylureas or gliptins. Of these, 30% were also receiving insulin therapy.
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were evaluated using contingency tables and two-sided Fishers exact
test. All experimental data were tested for normality and analysed
using parametric or non-parametric unpaired ratio t-tests, one-way
ratio ANOVA or two-way ANOVA with post-hoc test as appropriate
(GraphPad Prism software). P b 0.05 was considered statistically
significant.

3. Results

3.1. Subject characteristics

SV-SMC were cultured from a total of 130 patients recruited be-
tween August 2008 and January 2014. Themean age of non-diabetic in-
dividuals (n= 77, 84% male) was 65.2 ± 1.05 (range 42–83) years. For
T2DMpatients (n=53, 100%male) themean agewas63.0±1.4 (range
34–85) years. The lack of female subjects in the T2DM group was a re-
flection of the predominance of male gender undergoing CABG surgery
and greater prevalence of T2DM inmale subjects, together with the ret-
rospective analysis of subject characteristics.

More detailed data were acquired for 57 of the non-diabetic and 44
of the T2DMpatients.Whilst plasma levels of LDL-cholesterol and creat-
inine were similar between cohorts, fasting glucose and HbA1c were
significantly elevated in the diabetic patients (Table 1). All T2DM pa-
tients were receiving oral therapy (metformin/sulfonylureas/gliptins),
and 30% of these were also receiving insulin (Table 2). Routine cardio-
vascular medications were similar in both cohorts (Table 2).

Plasma levels of glucose, glycated haemoglobin (HbA1c), LDL choles-
terol (LDL-C) and creatinine in non-diabetic and T2DM patients at the
time of surgery. Data are expressed as median (range). Whilst choles-
terol and creatinine levels were similar, both fasting glucose and
HbA1cwere significantly elevated in the diabetic patients (Mann–Whit-
ney unpaired t-test, NS - not statistically significant).

Comparison of drug therapies between the patient cohorts. Typical
cardiovascular treatments: cholesterol-lowering drugs (statins),
angiotensin-modulating agents (ACE-I, ARBs), beta adrenergic receptor
blockers (β-blockers), anticoagulation therapies and diuretics were
common to both patient groups. All diagnosed T2DM patients were re-
ceiving oral therapies (predominantly metformin) with some patients
also receiving sulfonylureas or gliptins. Of these, 30%were also receiving
insulin therapy.

3.2. SV-SMC from T2DM donors exhibit distinct morphology and impaired
proliferation

In contrast to the spindle morphology of ND-SMC, cells cultured
from T2DM patients were predominantly rhomboid (Fig. 1A), consis-
tent with our previous report [13]. The majority of ND-SMC had spread
areas b10,000 μm2 (Fig. 1B). In contrast, T2DM-SMC displayed greater
morphological heterogeneity (Fig. 1B) reflected by mean spread cell
area ~60% larger than ND-SMC (Fig. 1C). There was a trend towards in-
creased ACTA2 mRNA levels (the gene encoding α-SMA, a marker of
SMC differentiation) in T2DM-SMC although this did not reach
Table 1
Biochemical characteristics of patients from whom SV-SMC were cultured.

No diabetes Type 2 diabetes P value

Fasting glucose (mmol/L) 5.4 (4.9-9.9) 8.1 (4.3-15.7) ***P b 0.001
HbA1c (mmol/mol) 42.5 (32.0-56.0) 66.0 (32.0-94.0) ***P b 0.001
HbA1c (%) 6.04 (5.08-7.27) 8.19 (5.08-10.75) ***P b 0.001
LDL-C (mmol/L) 3.9 (2.4-7.8) 3.9 (2.2-6.6) P = 0.97
Creatinine (μmol/L) 97.0 (50.0-147.0) 100.7 (54.0-203.0) P = 0.57

Plasma levels of glucose, glycated haemoglobin (HbA1c), LDL cholesterol (LDL-C) and
creatinine in non-diabetic and T2DM patients at the time of surgery. Data are expressed
as median (range). Whilst cholesterol and creatinine levels were similar, both fasting
glucose and HbA1c were significantly elevated in the diabetic patients (Mann–Whitney
unpaired t-test, NS - not statistically significant).
statistical significance (Fig. 1D). Additionally, T2DM-SMC exhibited a
disrupted F-actin cytoskeleton with truncated fibres compared to ND-
SMC (Supplementary Fig. 1A) and proliferated more slowly than ND-
SMC (Supplementary Fig. 1B), consistent with our previous observa-
tions [13]. These divergent profiles appear specific to SV-SMC since we
recently observed no disparity in proliferation rate of SMC cultured
from internal mammary artery of ND and T2DM patients [22].

3.3. Expression of miR-143 and miR-145 is elevated in T2DM-SMC

Dysregulated expression of miRs has been implicated in T2DM com-
plications [16,17] Therefore we determined expression levels of “candi-
date” miRs (125b, 133a, 143 and 145) using quantitative RT-PCR
(Fig. 1E). MiR-143 and −145 are highly expressed in SMC in vascular
walls where they reportedly regulate SMC homeostasis and differentia-
tion [23,24]. MiR-125b and miR-133a were investigated given the re-
ported increase in miR-125b in vascular SMC of db/db mice [25] and
the contribution of miR-133a to abnormal cardiac function in a rabbit
model of diabetes [26]. Neither miR-125b nor miR-133a levels differed
between SMC populations, butmiR-143 andmiR-145were both elevat-
ed (~60%) in T2DM-SMC (Fig. 1E). Absolute miR-145 levels were ~10-
fold higher than miR-143 in both ND- and T2DM-SMC, but there was
a strong correlation between them (Fig. 1F). Expression levels of miR-
143 and −145 remained stable throughout passaging (Supplementary
Fig. 2).

3.4. MiR-143 and miR-145 regulate SV-SMC morphology

To determine whether miR-143 and/or−145 were driving changes
in SV-SMC morphology, we artificially manipulated them by transfec-
tion with premiRs or antimiRs (Fig. 2). As miR-143 and miR-145 were
proportionally higher in T2DM-SMC we used antimiRs to reduce ex-
pression levels in T2DM-SMC. Conversely, we used premiRs to increase
expression in ND-SMC. Transfection of ND-SMC with premiR-143 and
−145 (alone or combined) led to a 36% increase in spread cell area
(Fig. 2A) and the appearance of truncated F-actin fibres similar to
those in native T2DM-SMC (Fig. 2B). In T2DM-SMC the combination of
antimiR-143 + 145 together was required to modulate spread cell
area (~36% reduction) (Fig. 2C) and also visibly reduced the abundance
of truncated F-actin fibres (Fig. 2D).

3.5. MiR-145 regulates SMC proliferation

To determine whether altered miR-143/145 expression contributed
to the divergent SMC proliferation between non-diabetic and T2DM
patients, appropriately transfected cells were incorporated into
proliferation assays. Overexpression of premiR-143 + 145 reduced
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Fig. 1. Differential morphology andmiR expression of SV-SMC from non-diabetic and type 2 diabetic patients. (A) Representative phase contrast images of SV-SMC. Cells from non-
diabetic patients (ND) show typical spindle-shapedmorphologywhereas those from patients with type 2 diabetes (T2DM) exhibit amore rhomboidmorphology. Scale bar=100 μm. (B)
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SV-SMC.Normalized to GAPDH, P= 0.286, n=20patient donors each. (E) Relative expression ofmiRs in SV-SMC from10non-diabetic (open bars) and 10 diabetic (closed bars) patients.
Normalized to U6 (*P b 0.05, ns= not significant). (F) Two-tailed Pearson correlation of relative expression of miR-143 andmiR-145 in SV-SMC from same 10 nondiabetic (open circles)
and 10 diabetic (closed circles) patients. P b 0.001, r2 = 0.6197.
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proliferation of ND-SMC by 35% (P b 0.05, Fig. 2E). Conversely, transfec-
tion of T2DM-SMC with antimiR-143 + 145 increased cell proliferation
by 50% (P b 0.05, Fig. 2F). In both cases, the functional effect on prolifer-
ation was attributable solely to miR-145; manipulating miR-143 alone
was ineffective (Figs. 2E,F).

3.6. Identification of miR-143/145 targets in SV-SMC

We used immunoblotting to investigate protein targets potentially
responsible formediating the effects of alteredmiR-143/145 expression
on SMC function. Six validated miR-143 and −145 target genes whose
activities are known to regulate SMC function and/or phenotype (KLF4,
myosin VI, CaMKIIδ, IGF-1R, IRS-1 and PKCε) [27–30] were explored.α-
SMA was studied because endogenous ACTA2 mRNA levels were
generally higher in T2DM-SMC (Fig. 1D) and therewas a strong correla-
tion betweenmiR-145 and ACTA2mRNA levels (P b 0.001, r2= 0.6324,
n=20). Initial experiments revealed that protein levels of CaMKIIδ, IRS-
1 and PKCεwere unaffected bymiR-143 + 145modulation at any time
point (Supplementary Fig. 3). For targets where some regulation was
evident, day 7 post-transfectionwas optimum for evaluatingprotein ex-
pression following premiR transfection in ND-SMC, and day 10 for
antimiR transfected T2DM-SMC (Supplementary Fig. 4).

In ND-SMC, protein levels ofα-SMA (amarker of differentiation) in-
creased in response to elevatingmiR-143/145 levels (premiR-143/145)
alone or combined, whilst miR inhibition using antimiR-143 + 145-
transfected T2DM-SMC exhibited N40% decrease in α-SMA expression.
In each case, modulation appeared predominantly attributable to miR-
145 (Fig. 3A). KLF4 (a potential direct target of miR-145) protein levels
followed the opposite pattern; theywere reduced by either premiR-143
or premiR-145 in ND-SMC and increased following transfection of
either antimiR-143 or −145 (Fig. 3A). Although both premiR-143 and
−145 induced IGF-1R protein expression, neither antimiR reduced
IGF-1R protein levels (Fig. 3A). For myosin VI, a small yet consistent re-
duction was observed following premiR transfectionwith a comparable
increase in response to antimiRs (Fig. 3A).

Immunoblotting of lysates fromnative ND- and T2DM-SMC revealed
inherent variability in target protein levels between samples, although
therewas a trend towards increasedα-SMAanddecreased KLF4 protein
levels in T2DM-SMC (Figs. 3B,C), in agreementwith the premiR/antimiR
studies (Fig. 3A). There were no discernible differences in IGF-1R ex-
pression (Fig. 3D), but myosin VI expression was significantly lower in
native T2DM-SMC than in ND-SMC (Fig. 3E) compatible with the effect
of artificially manipulating miR-143 and−145 levels (Fig. 3A). Expres-
sion levels of miR-143 and miR-145 were quantified in RNA extracted
from cells from the samepatient donors as the protein samples; demon-
strating that miR-143 and miR-145 were significantly elevated in the
T2DM-SMC used specifically in these experiments (Figs. 3F,G), and in
agreement with data in Fig. 1E and Supplementary Fig. 2.

3.7. TGFβ modifies miR-143/145, cell area and proliferation

In order to identify the molecular mechanisms underlying elevated
miR-143/145 in T2DM-SMC, we used a variety of “diabetogenic” stimuli
to investigate their ability to increase miR-143/145 levels in ND-SMC
(Fig. 4). Whilst glucose, insulin and inflammatory cytokines (IL-1α and
TNFα) did not induce miR-143 or−145 expression over the timeframe
studied, TGFβ (10 ng/mL) provoked a 2.5-fold increase in miR-143 and
−145 after 48 h (Figs. 4A,B). This effect was concentration-dependent
(data not shown), being maximal at 1 ng/mL TGFβ. Treatment of ND-
SMC with 1 ng/mL TGFβ increased spread cell area by 57% (Figs. 4C,D),
increased fragmented F-actin fibres (Fig. 4E), and impaired cell prolifer-
ation by 37% (Fig. 4F).
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3.8. MiR-143/145 modulate effects of TGFβ on ND-SMC function

To investigate the relationship between miR-143 + 145 and TGFβ-
mediated cellular effects, ND-SMC were transfected with antimiRs
prior to TGFβ stimulation. In control (antimiR negative) cells, TGFβ in-
duced a 48% increase in cell area whilst in antimiR-143 + 145-
transfected cells this increase was prevented (P b 0.01, Figs. 5A,B). Sim-
ilarly, TGFβ reduced proliferation in control cells by 65%, an effect
completely negated in antimiR-145-transfected cells (P b 0.01,
Fig. 5C). These data suggest that increased cell area and reduced prolif-
eration rate in response to TGFβ is mediated via miR-143/5.

We then explored whether inhibition of TGFβ signalling per se could
reinstate ND characteristics to T2DM-SMC. A TGFβRII neutralising anti-
body used at a concentration that abrogated TGFβ-induced Smad3
phosphorylation (Fig. 5D) did not modulate T2DM-SMC cell morpholo-
gy (Figs. 5E,F), F-actin organisation (Fig. 5G), proliferation (Fig. 5H) or
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expression of miR-143 or −145 (Fig. 5I). Thus although we show that
TGFβmodifies cellular properties throughmiR-143 and−145, these ef-
fects are not readily reversible in cultured cells.

3.9. Chronic exposure to TGFβ exerts persistent effects on ND-SMC
phenotype

To investigate whether long-term application of TGFβ could induce
persistent changes in cellular phenotype even after its removal, ND-
SMCwere treated for 7 d with TGFβ and then cultured for an additional
7 d without TGFβ treatment. TGFβ induced a 1.9-fold increase in cell
area after 7 days (Figs. 6A,B), which was maintained after the removal
of TGFβ for at least one further week (Figs. 6A,B). In parallel, TGFβ in-
duced a 2.5-fold and 2.2-fold increase in miR-143 and miR-145 expres-
sion respectively after 7 days (Figs. 6C,D). However in contrast to the
persistent effect on cell morphology, expression of miR-143 and miR-
145 returned towards basal levels following withdrawal of TGFβ.

4. Discussion

4.1. Human saphenous vein smooth muscle cells from diabetic patients
exhibit a distinct and persistent phenotype

Structural anomalies and varying degrees of fibrotic thickening have
been observed in intact SV prior to use as bypass grafts [31–33]. In
addition, pre-operative abnormalities have been detected in SV har-
vested from T2DM patients [6] but characterisation at the level of the
SMC has not previously been reported. To our knowledge this is the
first study to associate dysregulation of miR-143/145 with aber-
rancies of SV-SMC phenotype and function specific to patients with
T2DM.

The principal function of differentiated vascular SMC is contraction,
yet their remarkable plasticity confers an ability to undergo phenotypic
switching. Vessel remodelling in response to altered blood flow, and re-
pair mechanisms following vascular injury are characterised by
dedifferentiated, synthetic SMC with reduced expression of differentiat-
ed contractile markers (reviewed in [10]). These classical phenotypes
represent extremes of the differentiation scale although SMC may exist
in intermediate states [34]. Our data indicate a distinct phenotype in
T2DM-SMC, exhibiting both classical differentiated and dedifferentiated
characteristics that likely compromise remodelling of venous grafts by
preventing dynamic structural changes that are necessary early after im-
plantation to withstand arterial haemodynamic forces (“arterialisation”)
[11]. Importantly, this adaptive phase is temporally distinct from ensuing
maladaptive intimal thickening and occlusion [35], and requires mainte-
nance of SMC plasticity to execute appropriate cellular function, includ-
ing proliferation [12]. The data we present therefore is in the context of
early graft failure through inadequate arterialisation rather than the sub-
sequent development of intimal hyperplasia. In support of this proposal,
recent translational studies demonstrated that loss of primary patency in



A

E

C
on

tr
ol

TG
Fβ

C
C

on
tr

ol
TG

F β

B

D F

Fig. 4. Effect of TGFβ onmiR-143/145 expression, cellmorphology and proliferation. (A,B)ND-SMCwere treatedwith high glucose (25mM), insulin (100 nM), IL- 1α and TNF-α (both
10 ng/mL) or TGFβ (10 ng/mL) for 48 h, and expression of miR-145 and miR-143 analyzed by RT-PCR (***P b 0.001, ns= not significant, n = 5 patient donors). (C)Quantification of cell
areas of ND-SMC treated with 1 ng/mL TGFβ (***P b 0.001, n = 5 patient donors). (D) Representative phase contrast images of cells from same experiment (scale bar = 100 μm). (E)
Rhodamine phalloidin staining of control and TGFβ-treated cells (scale bar = 50 μm). (F) Proliferation of ND-SMC cells treated with or without 1 ng/ml TGFβ (*P b 0.05, n = 5 patient
donors).

246 K. Riches et al. / Journal of Molecular and Cellular Cardiology 74 (2014) 240–250
SV grafts was associated with a failure to remodel efficiently within the
first 30 days [36].

We discovered increased levels of miR-143 and −145 in SV-SMC
cultured from T2DM patients that persisted in long-term culture and
in the absence of deleterious stimuli. This modest (1.6-fold) elevation
is comparable with other studies that have investigated miR expression
in atherosclerosis in native tissues and cells [37–39]. Over-expression of
miR-145 (and to a lesser degree miR-143) in ND-SMC increased cell
area, disturbed F-actin dynamics and impaired proliferation reminiscent
of native T2DM-SMC. Conversely, inhibition of miR-143 + 145 in
T2DM-SMC reduced cell area, restored F-actin organisation and in-
creased proliferation to a level indistinguishable from native ND-SMC.
Patients with T2DM have elevated plasma levels of TGFβ [40] and we
demonstrated that TGFβ modulated miR-143/145 expression, cell area
and proliferation akin to the native phenotype of T2DM-SMC; effects
mediated in part viamiR-143+145. Ourmain findings are summarised
in Fig. 7.
4.2. MiR expression and function is cell type and species-specific

Animal studies have shown that miR-143/145 expression is upregu-
lated in the liver ofmousemodels of obesity [41], and downregulated in
SMC of rats with metabolic syndrome [42]. No differences in plasma
levels of miR-143/145 were observed in a study of T2DM and non-
diabetic patients [43]; however the source of plasmamiRs is most likely
circulating and endothelial cells rather than SMC. Our study is therefore
the first to discover elevated expression levels of miR-143 and −145,
specifically in SV-SMC from T2DM patients, conferring characteristics
that persist in culture and throughout passaging.
MiR-143 and −145 are SMC-enriched miRs, yet expression is re-
ported in other tissues such as liver, adipose tissue and plasma [41,
43]. Both are transcribed from the same locus in a bicistronic transcript
unit [27] and accordingly we observed similar fold increases in expres-
sion of miR-143 and−145. Relative expression levels of miR-145 were
10-fold higher than miR-143, consistent with previous reports [44].

We observed no difference in expression ofmiR-125b andmiR-133a
between SV-SMC from human non-diabetic and T2DMpatients, despite
previous associations with T2DM in cardiovascular cells of animal
models [25,26,45]. These anomalies may therefore highlight species-,
tissue- or cell type-specific differences. Of particular relevance is a re-
cent report that miR-145 expression was reduced in coronary SMC of
rats with metabolic syndrome and associated with impaired collateral
growth [42]. Of critical importance however, and of direct relevance to
our study, was a demonstration that whilst reinstatement of physiolog-
ical miR-145 levels completely restored collateral growth, overexpres-
sion of miR-145 severely compromised this function, underscoring the
necessity for “physiological” levels of miR-145 for normal vascular
structure and function [42].

4.3. miR-143 and−145 modulate SV-SMC morphology and function

We observed an association between T2DM, larger SMC size and in-
creased expression levels of miR-143 and −145, concurring with re-
ports that aortic SMC from diabetic rats have larger cytoplasmic
volumes than their non-diabetic counterparts [46], and that vascular
SMC of miR-143/145 knockout mice are smaller than those of wild-
type littermates [47]. We also showed that manipulation of miR-143
andmiR-145 regulated actin expression and organisation. Interestingly,
a number of regulators of actin dynamics are known targets of these
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miRs [43,47]. Through the promotion of contractile gene expression,
miR-145 overexpression has been shown to inhibit the development
of neointimal hyperplasia in injured murine arteries [23,48]. Interest-
ingly in a very small human study, miR-145 downregulation in “tradi-
tionally” harvested SV was associated with poorer patency than in
veins harvested using a “no touch” technique where miR-145 levels
were reportedly higher [49].

We previously reported that T2DM-SMC exhibit impaired prolifera-
tion rate [13]; results corroborated in the present study and additionally
found to be characteristic of SV, but not internal mammary artery. This
impairment was effectively rescued by transfection with antimiR-145
and conversely, premiR-145 transfection into ND-SMC reduced prolifer-
ation. Manipulation of miR-143 in either SMC population was ineffec-
tive, indicating that specifically miR-145 modulates proliferative
activity. In accordance with our findings, overexpression of miR-145
and to a lesser degree miR-143, suppressed proliferation of rat aortic
[27] and human pulmonary artery SMC [50]. As the most abundantly
expressed in the vasculature, miR-145 is associated with differentiated
SMC [23] with apparent greater influence than miR-143 [44]. Reduced
levels of miR-143/145 were observed in proliferative vascular SMC fol-
lowing carotid injury in a murine model [27]. However, no such differ-
ences were evident in cardiac muscle in the same animals, again
highlighting the cell and tissue-type specificity of miR expression, fea-
tures that are potentially attractive for therapeutic miR manipulation.

4.4. Identification of miR-143/145 targets in SV-SMC

Our data suggest that overexpression of miR-145 reduced expression
of KLF4 and increased expression of the differentiationmarkerα-SMA. In
human pulmonary artery SMC, miR-143 or−145 overexpression down-
regulated KLF4, although the magnitude of effect was greater with miR-
145 [44]. Lentiviral transfer of miR-145 into murine carotid arteries
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in vivo increased expression of markers of SMC differentiation, including
α-SMA [27]. KLF4 is not expressed in healthy blood vessels but is rapidly
induced following vascular injury where it is associated with transcrip-
tional repression of SMC differentiation marker genes including α-SMA
[51]. Recent studies provide new evidence that loss of KLF4 and subse-
quent SMC differentiation is driven at least in part by miR-143/145 [27,
47]. In the current study,whilst a trend towards increasedα-SMAandde-
creasedKLF4 in T2DM-SMCwas apparent, thiswas not statistically signif-
icant. It is likely that the high inter-patient variation together with
Cell area ↑ Truncated
F-actin ↑ α-SMA↑ Cell 

proliferation↓KLF4↓Myosin VI ↓

Diabetic stimuli, e.g. TGFβ

Diabetic stimuli, e.g. TGFβ

miR-145 ↑

miR-143 ↑

Fig. 7. Summary Figure. Stimuli associated with type 2 diabetes (e.g. TGFβ) drive persis-
tent increases in expression of miR-143 and −145 in SV-SMC. Increased miR-145 levels
reduce SV-SMC proliferation,whilst increases in eithermiR-143 or−145 levels lead to in-
creased cell area and truncated F-actin. Broken arrows indicate a proposed association
based upon our data and literature within the discussion.
the semi-quantitative nature of immunoblotting were contributing fac-
tors. Myosin VI regulates cellular adhesion, endocytosis and gene tran-
scription and of particular relevance to this study, has been shown to
stabilise F-actin fibres [52,53]. It is plausible that the persistent
disorganised F-actin cytoskeleton that we observed in T2DM-SMC may
be related to reduced expression of myosin VI, although a more detailed
study of the time course of this effect would be required.

4.5. TGFβ up-regulates miR-143/145 and alters SV-SMC phenotype and
function

Upregulation of miR-143/145 could conceivably be caused by any
number of factors within the diabetic milieu. Elevated concentrations
of glucose, insulin and inflammatory cytokines reportedly modulate ex-
pression of various microRNAs [25,54,55]. We examined the effect of
several stimuli on miR-143/145 expression and discovered TGFβ as a
candidate, concurring with reports in pulmonary and coronary artery
SMC [44,56]. One of these studies clearly demonstrated rapid transcrip-
tional induction of miR-143/145 and increased contractile gene expres-
sion by TGFβ in human pulmonary artery SMC, and importantly, this
was specific to SMC of human, but not rodent origin [44]. Furthermore,
in our study, treatment of ND-SMC with TGFβ increased spread cell
area and reduced proliferation similar to levels observed in T2DM-
SMC; effects rescued by miR-143 + 145 knockdown. Elevated plasma
levels of TGFβ in T2DM patients in vivo [40,57,58] may therefore aug-
ment vascular dysfunction evident in this patient group, at least in part
through elevatingmiR-143/145 expression. Inhibition of TGFβ signalling
through Smad3 failed to re-establish a ND phenotype in T2DM-SMC, in-
dicating that continued TGFβ signalling in T2DM cells is not required for
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these sustained phenotypic differences that more likely arose from ear-
lier in vivo TGFβ exposure. This concept was confirmed by our data re-
vealing a persistent effect of TGFβ on cell morphology that was
retained for a week following its withdrawal. Additionally, secretion of
TGFβ from cultured ND- and T2DM-SMC was similar (data not shown).

To examine the persistent nature of TGFβ stimulation further we
also monitored miR-143/145 levels following the removal of TGFβ. In
this case, and in contrast to the effects on cell morphology, expression
of miR-143/145 returned towards baseline levels. It is possible that ex-
posure time of greater than a week would be necessary to confer a
prolonged upregulation of miR-143/145. Indeed, in terms of the pro-
gression of T2DM it is likely that patients endure elevated TGFβ levels
for months or years (a scenario that is difficult to model in vitro),
which may inflict persistent upregulation of miR-143/145. Whilst in
our study we clearly demonstrated that miR-143/145 does drive
TGFβ-mediated cellular effects (i.e. they were abrogated by antimiR
transfection), the diabetic milieu is complex and other factors are likely
to act in concert with TGFβ in vivo inmaintaining elevatedmiR-143/145
expression as we observed in native T2DM cells.

4.6. Clinical Perspective

Effective adaptation to arterial environments after grafting is a key
determinant of SV graft patency [11] and hence the ability of SMC to re-
tain plasticity during this early phase of adaptation and “arterialisation”
is of major importance. We have revealed a distinct and persistent phe-
notype of T2DM-SMC possessing characteristics in common with both
classically differentiated and dedifferentiated SMC that would poten-
tially compromise this plasticity. Owing to the silent, progressive nature
of insulin resistance leading to T2DM, the vasculature is exposed to cir-
culatingmetabolic disturbances for a prolonged period. Clinical data un-
equivocally illustrate the harmful nature ofmetabolicmemory and have
led to intense activity aimed at deciphering the underlying molecular
mechanisms [59]. For example, even transient exposure to high glucose
appears sufficient to impose long-term changes in gene expression in
cultured vascular endothelial cells [60]. Our data indicate that elevated
levels of miR-143/145 in human SV-SMC induced by diabetogenic stim-
uli such as TGFβ may represent one such mechanism (summarised in
Fig. 7). Species and tissue specificity is undoubtedly an important aspect
of miR expression; defining potential disparate functions of individual
miRs according to pathophysiology and/or cell type are key consider-
ations [24]. Therapeutic manipulation of miR-143/-145 in SV-SMC
may therefore provide a novel opportunity to erase metabolic memory
and restore vascular function in T2DM patients.
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Glossary

α-SMA: alpha smooth muscle actin
CABG: coronary artery bypass grafting
CaMKIIδ: calcium/calmodulin-dependent protein kinase 2 delta
CHD: coronary heart disease
DMEM: Dulbecco’s modified eagle medium
FCS: foetal calf serum
FGM: full growth medium
GAPDH: glyceraldehyde 3-phosphate dehydrogenase
IGF-1R: insulin-like growth factor receptor 1
IL-1α: interleukin-1 alpha
IRS-1: insulin receptor substrate 1
KLF4: Kruppel-like factor 4
miR: microRNA
ND: non-diabetic
PKCε: protein kinase C epsilon
SMC: smooth muscle cell
SV: saphenous vein
T2DM: type 2 diabetes
TGFβ: transforming growth factor beta
TNF-α: tumour necrosis factor alpha
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