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Abstract
All conventional acoustic/elastic media are restricted to possess positive constants for their
constitutive parameters (density and modulus). Metamaterials provide an approach through
which this restriction can be broken. By making these parameters negative and/or tuneable a
broader range of properties becomes possible. This paper describes the first experimental
implementation of an acoustic/elastic metamaterial in which the material parameters can be both
simultaneously negative in a finite frequency band and the magnitude of the parameters
independently tuneable on demand. The design is an active metamaterial (meta-mechanical-
system) which is realized by directly applying feedback control forces to each layer within the
metamaterial. The ability to tune the magnitude of the negative parameters has important
implications for the use of a standard design that can be tuned to a particular application, or one
which can adapt to a changing performance requirement. The implementation of the design is
relatively large scale and low frequency, but the unit-cell length is significantly smaller than the
wavelength in the double negative band. Importantly, assuming appropriate control hardware is
available, the design can be both reduced in scaled and expanded to greater degrees of freedom.

S Online supplementary data available from stacks.iop.org/sms/23/075020/mmedia
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1. Introduction

Metamaterials are artificially structured periodic media which
can be designed to produce an effective homogeneous
response which breaks the restrictions imposed by conven-
tional media. Early work conducted in electromagnetics/
optics, led to metamaterial designs in which the material
parameters (permittivity and permeability) can be negative
and a function of frequency (Pendry et al 1996, 1999, Smith
et al 2000). For a material with a simultaneously double

negative response (negative permittivity and permeability),
‘exotic’ material properties arise, such as a negative refractive
index and frequency dependent wave velocity (Vese-
lago 1968). A negative refractive index has been subsequently
shown to be required for the construction of innovative
devices such as invisibility cloaks (Pendry et al 2006) and
sub-wavelength super lenses (Pendry 2000). Later work in
other domains, such as mechanical/elastic/acoustic materials,
where the parameters are the density and various elastic
moduli, has yielded similar results (Li and Chan 2004, Liu
et al 2005, Wang et al 2006, Fang et al 2006) and the
associated applications of invisibility cloaks (Milton
et al 2006) and sub-wavelength lenses (Guenneau et al 2007).
In an acoustic metamaterial the propagating wave is a pres-
sure wave in a fluid, whereas with elastic metamaterials the
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propagating wave can include pressure, shear or surface
waves in a solid. However, there are a limited number of
experimental demonstrations of acoustic metamaterials
(materials in which the density and bulk modulus are the
focus) which possess a frequency band with a simultaneously
double negative response. The first double negative acoustic
metamaterial consisted of a one-dimensional tube filled with
air in which side holes are drilled and separated internally by
membranes (Lee et al 2010). A second design used a com-
bination of split hollow spheres and hollow rods to create a
double negative response in a narrow bandwidth (Chen
et al 2013). This double negative acoustic metamaterial is
described as three dimensional. However, in reality its novel
response is present in two dimension and tested in one
dimension using an impedance tube, whereas it is the con-
struction that is three dimensional. Subsequent work showed
the negative refractive behavior of the metamaterial in two
dimensions (Zhai et al 2013). A third design uses a ‘space-
coiled’ metamaterial in which the incident wave is forced to
follow a pre-defined path within a unit-cell (Xie et al 2013). A
potential problem with this design is the considerable extra
distance that the wave has to travel within the unit-cellcom-
pared to free space. This potentially increases the losses and
the phase difference of the manipulated wave compared to a
wave in free space, which can be an issue in cloaking
applications. Experiments were conducted for a two dimen-
sional arrangement of units cells, which showed a negative
refractive index. However, the negative effective parameters
were only measured for a single discrete unit cell and the bulk
property of the metamaterial was inferred from these mea-
surements. The lack of experimental demonstrations of dou-
ble negative acoustic or elastic metamaterials is in despite
some properties, such as larger wavelengths compared to
electromagnetic applications, removing the need for micro or
nano-fabrication in some cases, which leads to a more
amenable design prospect. However, in contrast the full
elastodynamic wave equation leads to a more complex
response requiring both pressure and shear wave effects to be
designed for and as yet elastic metamaterials that do this have
not been manufactured. In-fact all experimental double
negative metamaterials have focused on pressure waves. No
experiments of negative density and shear modulus meta-
materials have been presented. The importance of developing
the field of metamaterials in domains other than electro-
magnetics has been recently highlighted (Wegener 2013).
One particularly promising route is the potential of active
acoustic (AAM) and active elastic (AEM) metamaterials.
Active digital control provides the potential to realize designs
which are not possible with passive components alone, have a
wide range of parameter values and which are tuneable almost
instantly on demand. Other proposed tuneable designs rely on
soft media (Brunet et al 2013), which can limit their use to
applications with low load bearing requirements, or require
changes in constituent media to implement the tuning (Liang
et al 2012), which does not allow the design to be tuned easily
in situ. Compared to electromagnetic applications, the con-
siderably lower frequency of most noise and vibration
applications brings digital active control well within the

boundaries of current technology. For example, the visible
light spectrum is about 430–790 THz, requiring extremely
high sample rates. In contrast, the audible frequency spectrum
is about 20 Hz–20 kHz, which is well within the reach of
current digital electronics. For this reason electromagnetic/
optical active metamaterials have relied on other designs
(Boardman et al 2011), which do not necessarily possess the
flexibility associated with digital control.

A theoretical design for a one-dimensional AEM with
both mass and in-plane stiffness which can become simulta-
neously negative and tuneable across a designed frequency
band has been previously proposed (Pope and Daley 2010,
Pope et al 2012). These designs were based on a series of
actively controlled resonators connected to a viscoelastic
transmission system. Recently a design for a one-dimensional
AAM which has a positive bulk modulus and a density
response which is negative and tuneable across a designed
frequency band was experimentally demonstrated for a single
layer (unit cell) (Popa et al 2013). Other related work includes
a design for a theoretical one-dimensional AAM in which
both the density and bulk modulus can be simultaneously
tuned to a wide range of positive values across a frequency
range (Akl and Baz 2013). These designs are based on
actively controlled periodic membranes and Helmholtz reso-
nators. Other work has proposed theoretical designs for
acoustic lenses based on AAMs (Wen et al 2013).

This paper presents the experimental implementation and
characterization of the previously proposed double negative
AEM (Pope and Daley 2010, Pope et al 2012). As with the
previous passive double negative acoustic metamaterials (Lee
et al 2010, Chen et al 2013) the design is tested using a one-
dimensional setup, which is sufficient to provide proof of
principle. However, unlike the previous passive designs, the
paper shows how the feedback control system can be used to
tune the magnitude of the negative parameters on demand.
This has important implications for the use of metamaterials
in applications which need to adapt to a changing environ-
mental or user scenario. In addition, the double negative
frequency band is located at approximately 30 Hz, which is at
least an order of magnitude below what has been achieved
with the previous passive designs. The location of this fre-
quency band places it within the domain applicable to seismic
and civil applications.

2. AEM—theory

The AEM in figure 1(a) consists of several layers (unit cells).
Each layer is composed of a pair of masses m connected
together by linear springs k and dashpot dampers c in the
Kelvin–Voigt arrangement for viscoelasticity. This is the
‘transmission’ system. The system is made active through the
application of a feedback control force f

n
to each of the

transmission masses. Each control force is implemented
through an inertial actuator (ma, ka and ca). For comparison, in
the previously proposed AEM a control force was applied to a
sequence of resonant masses connected to the same
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transmission system (Pope and Daley 2010). This system was
shown to theoretically possess a double negative (negative
mass and stiffness) frequency band when subjected to a pre-
designed feedback control force. The AEM in figure 1(a) is
almost identical to the earlier theoretical design, with the
inertial mass of the actuator replacing the locally resonant
masses. The only difference is that in this system the active
force acts across the actuator, such that it is applied to the
transmission mass and with inverse phase to the inertial mass.
The effects of using an inertial actuator on the theoretical
performance and stability of an AEM has previously been
investigated (Pope et al 2012). One important benefit of using
an inertial actuator is that because it does not require a fixed
termination, the control force is effectively embedded locally
within the material.

Three masses are sufficient to demonstrate that negative
effective parameters have been achieved and the response is
homogeneous over multiple unit cells. More cells can be
added, but little is gained in terms of knowledge. Even though
this is a single dimension design and any propagating wave is
constrained to be in-plane pressure variations, the concept can

be generalized to higher dimension and for both pressure and
shear waves. With this design the only fixed connection point
is between the bottom mass and the base. This is an important
addition to the design and experiment. The previous experi-
ments using double negative passive acoustic metamaterials
have assumed a free boundary condition and thus no static
load bearing capability. The design here explicitly includes a
fixed boundary point, allowing the metamaterial to be load
bearing. In addition, many practical applications of metama-
terials (such as an invisibility cloak attached to and sur-
rounding an object) will also inherently require metamaterials
to exhibit their desired response when integrated into an
arrangement with a fixed boundary.

The equations of motion of the three transmission masses

are (1a)–(1c). = + ˙ − ˙ + −( )f f c u u k u u( )
d d d d d1 1 is the total

disturbance force applied by the disturbance actuator

¨ = ˙ − ˙ + −

+ ˙ − ˙ + − + −( )
( )mu c u u k u u

c u u k u u f f a

2 2 ( )

( ) (1 )a a a a

1 2 1 2 1

1 1 11 1
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Figure 1. The active elastic metamaterial. (a) Is the theoretical design in which the elements with no subscript indicate the transmission
system, elements labeled with the subscript a the control actuator components and elements with the subscript d the disturbance actuator
components. (b) is the experimental implementation, which is aligned with the theoretical design in (a) for ease of comparison.
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¨ = ˙ + ˙ − ˙ + + −

+ ˙ − ˙ + − −( )
( ) ( )mu c u u u k u u u

c u u k u u f b

2 2 2 2

( ) (1 )a a a a

2 1 3 1 1 3 2

2 2 22 2

¨ = ˙ − ˙ + −

+ ˙ − ˙ + − −( )
( ) ( )mu c u u k u u

c u u k u u f c

2 2 2 2

( ) . (1 )a a a a

3 2 3 2 3

3 3 33 3

The equations of motion of the three inertial actuators are
(2a)–(2c)

¨ = ˙ − ˙ + − +( )m u c u u k u u f a( ) (2 )a a a a a a1 1 11 1 1

¨ = ˙ − ˙ + − +( )m u c u u k u u f b( ) (2 )a a a a a a2 2 22 2 2

¨ = ˙ − ˙ + − +( )m u c u u k u u f c( ) . (2 )a a a a a a3 3 33 3 3

Converting into a frequency domain form of the
equations of motion, and substituting for the motion of the
inertial masses from (2a)–(2c) into (1a)–(1c), leads to
(3a)–(3c) and (4). Un, Fn and F are the harmonic form of the
variables un, f

n
and f. The passive resonance of the inertial

actuator leads to an initial frequency dependent form for the

effective stiffness ω( )m jp , which will be further modified by

the feedback control force f
n

ω ω ω

ω
ω ω

− = + − +

+
− + +

( ) ( ) ( )m i U c i k U U F

m

m c i k
F a

2

(3 )

p

a

a a a

2
1 2 1

2

2 1

ω ω ω

ω
ω ω

− = + + −

+
− + +

( ) ( ) ( )m i U c i k U U U

m

m c i k
F b

2 2

(3 )

p

a

a a a

2
2 1 3 2

2

2 2

ω ω ω

ω
ω ω

− = + −

+
− + +

( ) ( ) ( )m i U c i k U U

m

m c i k
F c

2 2

(3 )

p

a

a a a

2
3 2 3

2

2 3

ω
ω

ω ω
= +

+
− + +

( )
( )

m i m
m c i k

m c i k
. (4)p

a a a

a a a
2

The feedback control force can be divided into a part
designed to control the effective mass of the system and a part
designed to control the effective stiffness, such that

= +f f f
n n nm k

. The aim is to select the control forces so that

each of equations (3a)–(3c) can be written in the form for an
homogeneous effective system in which each equation of
motion has the same effective mass and stiffness function. For
the effective mass this is straightforward to achieve using a
collocated control system that feeds back the acceleration of
each local transmission mass, such that = − ¨f m u

n c nm
, where

mc is the control parameter. This leads to the three frequency
domain control forces (5a)–(5c)

ω=F m U a(5 )c1
2

1m

ω=F m U b(5 )c2
2

2m

ω=F m U c. (5 )c3
2

3m

For the effective stiffness the motion of the adjacent
transmission masses need to be included in the control force.
For an infinite number of transmission masses this leads to the

non-collocated feedback force = + −− +( )f k u u u2
n c n n n1 1k

,

in which kc is the control parameter. The use of the feedback
control system allows the boundary conditions to be explicitly
taken into consideration to maintain the homogeneous struc-
ture. This is important for the stiffness control force f

nk
since

it inherently includes the motion of the connections either side
of each transmission mass. The three stiffness control forces
that take into account the free boundary for the top mass and
the zero motion of the fixed boundary (point four) at the
bottom mass are (6a)–(6c). By comparison of (6a)–(6c) with
(3a)–(3c), it is clear that the displacements in each of the
stiffness control forces are chosen so that the feedback signal
can combine with the passive equivalent stiffness ω +c i k,
i.e. the stiffness control system emulates the connections
required to influence the effective stiffness of the system

= −( )F k U U a(6 )c1 2 1k

= + −( )F k U U U b2 (6 )c2 1 3 2k

= −( )F k U U c2 . (6 )c3 2 3k

On substitution of the control forces (5a)–(5a) and
(6a)–(6c) into (3a)–(3c), the homogeneous effective system of
(7a)–(7c) is realized, in which the effective mass (8) and the
effective stiffness (9) are both complex functions of frequency
and independently controlled by mc and kc respectively. The
real parts of the mass (8) and stiffness (9) determine the wave
propagation characteristics such as phase velocity in the
effective medium. The imaginary parts constitute the losses in
the effective medium

ω ω ω− = − +( ) ( ) ( )m i U k i U U F a(7 )e e
2

1 2 1

ω ω ω− = + −( ) ( ) ( )m i U k i U U U b2 (7 )e e
2

2 1 3 2

ω ω ω− = −( ) ( ) ( )m i U k i U U c2 (7 )e e
2

3 2 3

ω
ω ω

ω ω
= +

+ +

− + +
( )

( )m i m
m m c i k

m c i k
(8)e

a c a a

a a a

2

2

ω ω
ω

ω ω
= + +

− + +
( ) ( )k i c i k

m k

m c i k
2 . (9)e

a c

a a a

2

2

The simulated response of the effective mass and stiffness
for a range of feedback gains is plotted in figure 2. The para-
meters for the simulation are taken to match the identified
parameters of the experimental implementation shown in
figure 1(b). The experimental system is described in more detail
in the next section. These simulated effective parameters include
the electrical characteristics of the voice-coil in the control
actuators. This can be modeled by an inductance La, resistor Ra

and back electro-motive force connected in series. Including the
electrical characteristics and following the same process of sub-
stitution described above, results in a slightly modified effective
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mass (10) and stiffness (11). g
ea
and g

ma
are the gains for the

voice-coil and driver amplifier respectively. The explicit deriva-
tion of (10) and (11) is included in the supplementary material
(available at stacks.iop.org/SMS/23/075020/mmedia).

ω

ω ω ω ω

ω ω ω ω

=

+
+ + + +

− + + + +

( )
( )

( )
( ) ( )
( )

m i

m
m m g g g i c i k L i R

m c i k L i R g i
(10)

e

a c e m e a a a a

a a a a a e

2 2

2 2

a a a

a

ω ω

ω

ω ω ω ω

= +

+
− + + + +( )

( ) ( )

( )

k i c i k

m k g g

m c i k L i R g i

2

. (11)

e

a c e m

a a a a a e

2

2 2

a a

a

Both the effective mass and stiffness contain a resonance
at 30 Hz which is associated with the mechanical components
of the actuator and can be independently controlled through
the feedback gains mc and kc respectively. The effect of this
resonance is to amplify the feedback control forces in the

Smart Mater. Struct. 23 (2014) 075020 S A Pope and H Laalej

Figure 2. The frequency response of the simulated material parameters of the effective system representation of the active elastic
metamaterial. (a) and (c) are the real part effective mass and stiffness respectively of the simulated system when the feedback back gains are

= [ ]m 0, 4c and = [ ]k 0, 60 000c . (b) and (d) are the imaginary parts of the effective mass and stiffness respectively. The grey regions mark
the negative domain. The dashed black lines in (a) and (b) are the parameters for the transmission system (the system without any actuators
attached), which for the stiffness of the simulated system is the same as when =k 0c .
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region immediately above the resonant frequency. The effect
of the resonance on the control forces can be seen by the
resonant transfer function in each of the terms on the right-
hand side of (3a)–(3c). The polarity of the feedback signal is
such that the real parts of the effective parameters can be
driven negative in this frequency region for sufficiently large
feedback gains. As the feedback gains are increased the
magnitude of the parameters in the negative band increase.
Another way of viewing the system is that, in this frequency
region f

nm
causes the acceleration of each transmission mass

to exhibit a dipole resonance which is out of phase with a
driving force and f

nk
causes the relative displacement response

of two adjacent transmission masses to exhibit a monopole
resonance which is out of phase with a driving force. The
effective mass control force f

nm
contains only the local

acceleration of each transmission mass. Thus it adds to the
effect of the local dipole resonance created by the passive
mechanical components of the inertial actuators, which is the
dispersive part of (4). The choice of feedback displacements
for the effective stiffness control forces f

nk
in (6a)–(6c)

include the motion of the adjacent masses. This ‘virtual’
connection essentially converts the local actuator resonance
into a response that emulates a monopole resonance, allowing
the effective stiffness to be controlled.

3. AEM—experiment

Figure 1(b) shows a photograph of the experimental imple-
mentation of the proposed AEM. It is constrained to move in
a single dimension by two vertical metal bars which pass
through linear bearings integrated into each of the aluminum
transmission masses. It is mounted vertically to reduce the
load on the bearings and thus minimize the losses associated
with them. The connecting springs are steel coils. The control
actuators are of the electromagnetic voice-coil type (Data
Physics Corporation IV40) and each has a mechanical reso-
nance of 30 Hz, which is above the largest of the three natural
frequencies of the transmission system. These actuators are
chosen due to their well-defined characteristics and easily
modelled performance. The motion of each mass is measured
by an accelerometer (PCB Piezotronics 333B50) which is
connected to a digital data acquisition and control unit
(dSPACE control unit). This same unit also closes the loop
and provides the control force in the form of a voltage to each
of the actuators through amplifiers (Data Physics Corpora-
tion). The disturbance (external) force is applied to the top
mass by another inertial actuator (Data Physics Corporation
IV45). The total disturbance force, which is the sum of the
force provided by the electromagnetic component of the
actuator and the resonance force associated with the relative
motion of the inertial mass of the actuator and the top
transmission mass, is directly measured by a load cell
(Novatech F256). The digital control unit is set to sample at a
rate of 2 kHz, which is sufficient to extract the relevant fre-
quency data and minimize the inherent delay in the feedback

loops. The actuators and sensors have been chosen based on
the availability of suitable commercial off-the-shelf compo-
nents. Importantly, since the novel characteristics are not a
function of the dimensions of the sub-systems, the general
concept is scalable through the use of different transmission
components and sensor and actuator technology. For exam-
ple, the current separation between two adjacent transmission
masses is approximately 300 mm. This is larger than the
70 mm unit cell length in the first double negative passive
acoustic metamaterial (Lee et al 2010). However, the unit cell
size in this AEM was limited by the length of the transmission
springs with the required stiffness. The length of the control
actuator is 75 mm and this (plus a small distance to allow for
its motion and connection) provides the minimum gap pos-
sible between the transmission masses. Thus with shorter
springs the unit cell can be reduced to a length comparable to
the first double negative acoustic metamaterial. The para-
meters of the experimental AEM have been determined
through either direct measurement (e.g. mass), manufacturers
supplied values or through fitting a model to the component
or systems response. These parameters are listed in table 1
and are similar to those used in previous theoretical and
simulated work (Pope et al 2012).

The general concept of the system in figure 1 can be
described as a mechanical metamaterial since the objective is
to emulate the response of a material with certain effective
non-conventional parameters. However the term meta-
mechanical-system is probably a more accurate description
for a number of reasons. Firstly, the term meta-mechanical-
system acknowledges that the proposed design is more than a
material composed of an array of passive meta-atomʼs, but is
instead a system composed of an array of sub-systems that
can incorporate embedded sensors, actuators and feedback

Smart Mater. Struct. 23 (2014) 075020 S A Pope and H Laalej

Table 1. Material and component parameters identified for the
experimental AEM.

Parameter Value

Mass m 4.971 kg
Stiffness k 25 000 −N m 1

Damping coefficient c 25 −N s m 1

Mass ma 1.21 kg
Stiffness ka 42 992 N m
Damping coefficient ca 4.56 N s m
Mass md 4.2 kg
Stiffness kd 73 122 N m
Damping coefficient cd 2.22 N s m
Inductance La 9 mH
Resistance Ra 1.7 Ω
Inductance Ld 2.5 mH
Resistance Rd 2.3 Ω
Coil gain g

ea
12.5

Coil gain g
ed

2

Amplifier gain g
ma

0.76

Amplifier gain g
md

1.2
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loops that may lead to some form of inter-connection between
the separate sub-systems. Secondly, the lumped element
experimental realization in figure 1(b) does not posses the
homogeneous bulk composition associated with a material,
despite it being possible to extend the design to a homo-
geneous material with embedded sensors and actuators, which
would effectively provide the same response.

A crucial stage in the experimental analysis of double
negative elastic metamaterials is extracting the negative
effective parameters. In previous studies, two different
approaches have been used. In the first experiment conducted
using a double negative acoustic metamaterial, the sign of the
effective density was measured by comparing the phase dif-
ference between the pressure gradient in adjacent unit cells
and the displacement of the membrane separating the two
cells (Lee et al 2010). Opposing phase indicates negative
density. However, this method does not provide an actual
value for the density, just its sign. In contrast the sign of the
negative bulk modulus was not measured directly. The phase
velocity was measured by observation of the time series of the
pressure measurements in the unit cells. This was possible
due to the use of a matched boundary condition that elimi-
nated any reflection at the boundary, leading to a bulk wave
propagating in a single direction in the effective medium. A
negative bulk modulus was then inferred from the simulta-
neous observation of both a negative phase velocity and
negative density. Later work used a method requiring mea-
surements of the reflection and transmission coefficients of
the acoustic metamaterial (Fokin et al 2007, Chen et al 2013,
Xie et al 2013). The method assumes a plane wave dis-
turbance that is normal to the boundary of the metamaterial.
In this form it is only suitable for extraction of effective
density and bulk modulus (not shear modulus or density when
the system is subjected to a shear wave excitation) of one
dimensional materials. Due to multiple possible solutions, it
makes several more assumptions required to calculate the
correct signs for the effective parameters from the impedance
and refractive index, which are derived from the reflection
and transmission coefficients. Importantly, one of these
assumptions is that the metamaterial is passive, leading to a
positive imaginary part of the impedance due to the inherent
dissipation. Since this assumption does not necessarily hold
for active metamaterials, the correct signs cannot always be
extracted.

Neither of the two previous approaches to effective
parameter extraction can be directly used for the metamaterial
implemented in this study, because it includes a fixed
boundary and is actively controlled. In this paper a derivative
of well-known gray box systems identification techniques are
used to identify the parameters of a model for the effective
system. The advantage of this method is that it is not
restricted to passive systems and it can be applied to systems
with arbitrary boundary and wave propagation, assuming that
the correct initial model structure is known. Since the
experiment is constrained to pressure waves in a single
dimension, the assumed effective model is that of the standard
lumped element form of the one dimension pressure wave
equation. Analysis of the direct measurements of the motion

of the internal structure of the metamaterial, together with the
analysis of the model residuals, allows additional information
to be extracted, such as the presence of any inhomogeneity.
By extension to a full black box identification routine, the
method could also be used to extract the explicit structure for
the model, as opposed to making an initial assumption about
its structure, as is the case with the grey box approach
used here.

The method used to identify the parameters of the
effective system description is derived as follows. The set of
assumed time domain equations describing the three mass
system in figure 1(b) are (12a)–(12c)

¨ = − +m u k u u f a( ) (12 )e e1 2 1

¨ = + −( )m u k u u u b2 (12 )e e2 1 3 2

¨ = −( )m u k u u c2 . (12 )e e3 2 3

By converting to the frequency domain and re-writing
(12a)–(12c) in terms of the harmonic displacements they
become (13a)–(13c)

ω− = − +( )m U k U U F a(13 )e e
2

1 2 1

ω− = + −( )m U k U U U b2 (13 )e e
2

2 1 3 2

ω− = −( )m U k U U c2 . (13 )e e
2

3 2 3

Since ω ω− = ( )U T j Fn n
2 (where ω( )T jn is the discrete

frequency transfer function between the input force and each

of the acceleration measurements =( )n 1, 2, 3 ), (13a)–(13c)

can be further reduced on substitution and cancellation to
(14a)–(14c), which can be re-arranged and re-written in
matrix form as (15)

ω ω ω ω= − − +− ( )( ) ( ) ( )m T j k T j T j a1 (14 )e e1
2

2 1

ω ω ω ω ω= − + −− ( )( ) ( ) ( ) ( )m T j k T j T j T j b2 (14 )e e2
2

1 3 2

ω ω ω ω= − −− ( )( ) ( ) ( )m T j k T j T j c2 . (14 )e e3
2

2 3

ω ω ω

ω ω ω ω

ω ω ω

=

−

+ −

−

−

−

−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )

( ) ( )
( ) ( ) ( )

( ) ( )

T T j T j

T T j T j T j

T T j T j

m

k

1
0
0

2

2

. (15)
e

e

1
2

2 1

2
2

1 3 2

3
2

2 3

Equation (15) is of the form β=y X and thus the least

squares solution β =
−( ) yX X XT T1

is readily available and can

be used to calculate the complex effective mass and stiffness
at discrete frequencies across the desired frequency range
using the acceleration frequency response transfer functions

ω( )T jn determined from the experimental data. This approach

can be easily extended to any number of unit cells or higher
dimension arrangements. The structure of the matrix X relates
to the configuration of the material/system. Each row corre-
sponds to each degree of freedom of each transmission mass,
so a p element one-dimension system would have p rows. The
first column of X corresponds to the effective mass, so will be
the column of acceleration transfer functions. The second
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column is the column of transfer functions relating to the
stiffness connections in the desired effective system. For a
one-dimension system of p masses rows n = 2 to = −n p 1

will be ω ω ω ω+ −−
− +( )( ) ( ) ( )T j T j T j2n n n

2
1 1 , i.e., each mass

is connected on either side by a stiffness element. Rows 1 and
p are modified forms of this function to accommodate the
boundary conditions. y is the vector of normalized magni-
tudes of external forces acting on each mass in the system.
For this system a single external force is present at n = 1.

In comparison to the simulated system, the effective
parameters of the experimental implementation of the AEM
for the same range of feedback gains, is shown figure 3. To
calculate the effective material parameters plotted in figure 3,
120 s of acceleration and force input data was collected for
the AEM subject to each of the pair of feedback gains. The
input signal was band limited white noise. For each data set

the discrete frequency transfer function ω( )T jn between the

input force and each of the acceleration measurements

=( )n 1, 2, 3 was calculated across the frequency domain

⎤⎦(0, 1 kHz at 0.1 Hz intervals. The parameters were then

determined from β =
−( ) yX X XT T1

. The residuals resulting

from the parameter identification are shown in figure 4, which
indicates that above 30 Hz the assumption of an homo-
geneous effective system is correct and the parameters are
identified to a good level of accuracy.

From figure 3 the first observation is that the experi-
mental results do replicate the important characteristics of the
simulated results, including the overall shape and the tuneable
negative behavior. As each feedback gain is increased the real
part of the targeted parameter approaches and crosses zero for
a critical gain in the region immediately above the control
actuator resonance. Further increasing the feedback gains
broadens the negative frequency band and increases the
magnitude of the parameters in the negative band. The second
observation is that the real part of the non-target parameter
(i.e. ke for mc and me for kc) does also show some dependence
on the feedback gain, unlike the theoretical and simulated
results in figure 2. This is evident for the system response in
figure 3 in the region immediately below 30 Hz, when the
mass feedback gain is fixed at =m 4c and the stiffness
feedback gain is increased from =k 40 000c to 60 000.
However, in the double negative region the two parameters
are controlled much more independently. The deviation of the
response extracted from the experimental data from that of the
simulation is partly due to several types of un-modeled
dynamic: local losses in the bearings, springs which are not
massless, a local resonance due to the bearings and variations
in the actual component parameters such that they are not
identical throughout the experimental system. The effect of
the mass of the springs has been identified as the likely reason
for the coupling between the two control regions below
30 Hz. The deviation below 21 Hz is due to the input force
lying below the resonance of the disturbance actuator, which
leads to a small magnitude for the input force and thus a low
signal-to-noise ratio in the measured variables. A third

observation is that the effective mass matches the response of
the simulated system very well above 21 Hz, whereas the
effective stiffness shows more of a deviation. The most sig-
nificant difference is that the stiffness returns to a positive
value much quicker when compared to the simulated system,
leading to a narrower negative stiffness band for the relevant
feedback gains.

3.1. AEM—bandwidth analysis

The simulated data in figure 2 predicts that feedback gains
of =m 4c and =k 60 000c should lead to a significant
simultaneously double negative response. From figure 3 it is
clear that the simultaneously double negative response has
been achieved. The real part of the mass and stiffness of the
AEM subject to feedback gains of =m 4c and =k 60 000c

are plotted separately and overlaid in figure 5. The effective

mass is negative across the frequency range ⎡⎣ ⎤⎦32.8, 41.7 Hz

and the effective stiffness negative across the frequency

range ⎡⎣ ⎤⎦30.3, 35.8 Hz. Thus a simultaneously double

negative band exists over the frequency range ⎡⎣ ⎤⎦32.8, 35.8

Hz. The double negative band is quite narrow (3 Hz) due to
the deviation of the stiffness from the simulated systems
response and the inherent locally resonant nature of the
design. However, in the band the maximum magnitude of
the negative parameters is substantial. The ratios of mag-
nitude of the maximum negative effective parameter to
transmission parameter are −1.04 for the effective mass
and −1.63 for the effective stiffness, corresponding to
absolute values of −5.17 kg and − −81500 N m 1. The max-
imum feedback gains used ( =m 4c and =k 60 000c ) cor-
respond to close to the maximum force that can be
generated by the control actuators and thus these effective
material parameters represent the approximate maximum
that can be achieved with this implementation. In compar-
ison the passive acoustic metamaterial composed of split
hollow spheres and hollow cylinders achieved a double
negative bandwidth of 42 Hz, but with a lower edge of
1612 Hz and maximum negative parameters (normalized to
the transmission medium) of approximately −6.5 and −3.8
(Chen et al 2013). The main reason for the larger bandwidth
and magnitude of the parameters compared to the AEM
demonstrated here is the large inherentlosses in the inertial
actuators, which reduces the strength of the local
resonances.

3.2. AEM—sub-wavelength analysis

For the AEM to be considered as a homogeneous material to a
propagating wave, the unit cell (layer) size must be con-

siderably smaller than the wavelength λ( ) of the propagating

wave, i.e. λ ≪ d , where d is measured across the center lines
of the transmission masses. For a lumped element system,
such as the one adopted here, the sub-wavelength condition

reduces to ≪f k m for the transmission system and

≪ ( ) ( )f k f m fe e for the effective system (Pope 2013),
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where f is frequency in Hz. Figure 6 plots both k m for the

transmission system and ( ) ( )k f m fe e for the AEM when

=m 4c and =k 60 000c . The ratio for the transmission system
(crosses) is at least twice the frequency (dots), thus the
required condition is met over the whole of the plotted fre-
quency range. For the AEM (black line) the significant
changes due to its resonant characteristics lead to several
frequency bands in which the condition is met. The periods

when this line is zero correspond to when a single parameter
is negative and thus the phase velocity is imaginary. The grey
band marks the double negative region for the AEM. In
approximately the lower half of this region the condition is
met, whereas in the upper half the response approaches and
crosses the frequency line. The conclusion is that in the lower
half of the grey band the AEM can be considered as a
homogeneous material with negative effective material
parameters.

Smart Mater. Struct. 23 (2014) 075020 S A Pope and H Laalej

Figure 3. The frequency response of the experimental material parameters of the effective system representation of the active elastic
metamaterial. (a) and (c) are the identified real part of the effective mass and stiffness respectively of the simulated system when the feedback
back gains are = [ ]m 0, 4c and = [ ]k 0, 60 000c . (b) and (d) are the imaginary parts of the effective mass and stiffness respectively. The gray
regions mark the negative domain. The dashed black lines in (a) and (b) are the parameters for the transmission system (the system without
any actuators attached), which for the stiffness of the simulated system is the same as when =k 0c .
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4. Conclusions

This is the first time that an AEM which has simultaneously
negative mass and stiffness has been experimentally demon-
strated. It is also the first experimental implementation of an

Smart Mater. Struct. 23 (2014) 075020 S A Pope and H Laalej

Figure 4. The frequency response of the mean-square-error, where the errors are the real and imaginary parts of the residuals β−y X
resulting from the least-mean-square parameter identification method for the active elastic metamaterial when subjected to the seven

combinations of feedback control parameters. The residuals are already normalized since = [ ]y 1 0 0
T
. The transmission system is also

included and indicated by the dashed black line.

Figure 5. The frequency response of the real part of the effective
mass and stiffness of experimental active elastic metamaterial when
the feedback back gains are =m 4c and =k 60 000c . The light gray
region marks the negative domain.
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Figure 6. The frequency response of the sub-wavelength homo-
geneous condition k m determined using the identified parameters
for the experimental system. The red and blue lines are the sub-
wavelength condition for the transmission and active elastic
metamaterial ( =m 4c and =k 60 000c ) respectively. The black line

is f = f, thus allowing the condition for homogeneity ≪f k m to
be observed. The grey region marks the double negative band for the
active elastic metamaterial.
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elastic metamaterial in which the negative parameters can be
independently tuned. The work adds to the limited number of
passive and fixed response acoustic/elastic metamaterials that
have been demonstrated experimentally. The feedback control
system is crucial to emulating the cross-coupling that is
required to convert a local dipole resonance into a monopole
resonance that effectively acts between two adjacent ele-
ments. This result is an important milestone in creating active
tuneable metamaterials for some of the previously proposed
novel applications. The experimental design is composed of a
lumped element test rig with integrated sensing, actuation and
feedback loops. This leads to a realization of the design that
can be more accurately described as a Meta-Mechanical-
System, as opposed to a metamaterial, which implies more of
a bulk material construction. Importantly, because the prop-
erties of the metamaterial are not determined by the dimen-
sions of the sub-systems, the design is scalable, assuming that
suitable materials and control hardware are available. The
design and experiment show that the novel properties can also
be realized with a load bearing structure with a fixed
boundary condition. The load bearing nature coupled with the
frequency of the double negative band, which is below 50 Hz,
places it in the application domain of a wide range of vibra-
tion control problems, including earthquake cloaks which
have previously been identified as a potential application for
elastic metamaterials (Farhat et al 2009, Stenger et al 2012,
Kim and Das 2012).
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