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ABSTRACT. In this paper, the method of fundamental
solutions (MFS) is used to solve numerically an inverse prob-
lem which consists of finding an unknown cavity within a re-
gion of interest based on given boundary Cauchy data. A
range of examples are used to demonstrate that the technique
is very effective at locating cavities in both two- and three-
dimensional geometries for exact input data. The technique
is then developed to include a regularisation parameter that
enables cavities to be located accurately and stably even for
noisy input data.

1. Introduction. Electrical Impedance Tomography (EIT) is a
technique in which an image of the permittivity, or conductivity, of the
interior of an object is inferred from surface measurements of electrical
phenomena. Practically, this can be achieved by attaching conducting
electrodes to the boundary of a person or object and applying small
alternating currents to some or all of the electrodes. The resulting
voltages are measured and the process repeated for numerous different
configurations of applied current. The electrical potential produced
across the object containing the cavity depends on the particular
location and the electrical properties of the cavity and, as such, it
should be possible to use boundary measurements of the voltage to
detect and locate such cavities [Hanke and Bruhl 2003, Holder 2005].
This allows an approximate image of the spatial distribution of the
electrical conductivity within the object to be constructed [Borcea
2002].

Keywords and phrases. Electrical impedance tomography, inverse problems,
method of fundamental solutions. Electrical impedance tomography, inverse prob-
lems, method of fundamental solutions.
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As a non-invasive technique, EIT can be of particular benefit when it
is used for medical imaging. The process uses no ionising radiation and
therefore it is possible to use the procedure for continuous monitoring.
The problem of recovering the conductivity information is a nonlinear
and ill-posed inverse problem. As such, one of the current drawbacks
to the technique is a low spatial resolution [Boone 2006].

We consider the inverse problem of determining an unknown conduc-
tor D compactly contained in a bounded domain Ω ⊂ IR

d, d = 2, 3, i.e.
D ⊂ Ω, entering the Laplace equation

(1) ▽2u = 0 in Ω \ D, with u|∂D = 0,

from the knowledge of a single Cauchy pair of nontrivial data (u, ∂nu)
on the boundary ∂Ω of Ω, where n is the outward unit normal to ∂Ω and
u is the electrical potential. This type of mathematical model appears
in many applications of electric field sensing [Smith 1996, Smith et al.
1998]. In EIT, the homogeneous condition u|∂D = 0 means that the
inclusion D is a perfect conductor, i.e. of infinite conductivity.

It has been shown in earlier work [Borman et al. 2007] that the
MFS procedure is a technique that accurately approximates the direct
problem solution in both two- and three-dimensions and it will be
developed in this paper for solving numerically the inverse problem
of identifying the unknown cavity D entering in (1).

2. Mathematical Formulation. Let Ω and D be bounded
domains with smooth boundaries such that D ⊂ Ω, and Ω \ D is
connected. Let f ∈ H1/2(∂Ω) be the given applied voltage potential,
not identically zero. Then f generates the electric field E = − ▽ u ,
where the electric potential u satisfies the following Dirichlet problem:

▽2u = 0 in Ω \ D,(2)

u = 0 on ∂D,(3)

u = f on ∂Ω.(4)

Note that if the inclusion D is an insulator, i.e. of zero conductivity,
then condition (3) should be replaced by ∂nu = 0 on ∂D.

When D is known, it is well-known that the Dirichlet problem for the
Laplace equation, as given by equations (2) - (4), has a unique solution
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u ∈ H1(Ω). Then we can define a nonlinear operator Ff , which maps
from the set of admissible subdomains D to the data space of Neumann
values in H−1/2(∂Ω) as follows:

(5) Ff (D) := ∂nu|∂Ω = g ∈ H−1/2(∂Ω).

Then the inverse problem under consideration consists of extracting
some of the useful information about the domain D from the data
Ff (D). As opposed to the direct problem, the inverse problem is
nonlinear and ill-posed. The issue of uniqueness, i.e. the identifiability
of an unknown perfectly conducting curve ∂D from the Cauchy data
(f �≡ 0, g) on ∂Ω, can be found in [Kress 2004]. The uniqueness
can also be established for the identifiability of an unknown perfectly
insulated curve ∂D from the Cauchy data (f �≡ constant, g) on ∂Ω
with

∫

∂Ω
g ds = 0, [Haddar and Kress 2005]. Stability estimates were

obtained in [Alessandrini and Rondi 2001].

Since the response operator Ff is a highly nonlinear function of the
domain D, extracting useful information from the measurements is
a difficult computational problem. If one is interested only in the
location of D, then one can employ efficiently the plane or sphere search
method for tracking the position of a two- or three-dimensional cavity
D, respectively, as described in [Kim et al. 2002]. On the other hand,
if the location, shape and size of the obstacle D are all of interest
then one can use iterative schemes which require the solution of many
forward problems for each change of geometry and position of D, see
e.g. [Duraiswami et al. 1997]. These authors used the Boundary
Element Method (BEM) as a direct solver. It is the purpose of this
paper to use instead the MFS due to its advantages over the BEM
that stem mostly from the fact that the method is meshless and only
the boundary of the domain of the problem under consideration needs
to be ’discretised’ (as a set of collocation points). This completely
avoids any integral evaluation and makes no significant difference in
coding between the two- and the three-dimensional cases [Burgess and
Mahajerin 1984, Fairweather and Karageorghis 1998].

3. The Method of Fundamental Solutions (MFS). The MFS
is a member of a class of boundary-type techniques that involve compu-
tations being undertaken with respect to points on the boundary of the
region of interest. As such, they do not involve interior points of the
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region of interest, which is useful in many real world engineering appli-
cations. Like the BEM, the MFS is an effective technique for solving
linear elliptic partial differential equations with constant coefficients for
which a fundamental solution is available in explicit form, such as the
Laplace, biharmonic and Helmholtz equations. It is a form of indirect
boundary integral equation method and a technique that uses bound-
ary collocation or boundary fitting [Johnston and Fairweather 1984].
Based on density results for linear elliptic partial differential equations
[Bogomolny 1985, Golberg and Chen, 1998], in the MFS we seek an
approximation to the solution of the Laplace equation (1) as a linear
combination of fundamental solutions, namely,

(6) u(x) ≈ UN (x) =
N

∑

j=1

CjGd(x,yj), x ∈ Ω \ D,

where Gd is a fundamental solution of the Laplace equation in IR
d given

by

(7) Gd(x, ξ) =

⎧

⎨

⎩

−ln|x − ξ|, if d = 2,
1

|x − ξ|
, if d = 3,

and the distinct singularities (yj)j=1,N are located in D ∪ (IRd \ Ω̄).

The following lemma [Alves and Martins, 2006] gives the linear inde-
pendence and denseness results of the MFS based on the approximation
(6).

Lemma 1. (i) The set of functions {Gd(., yj)}y=1,N : Ω \ D → IR

is linearly dependent.

(ii) Let D1 ⊂ D ⊂ Ω ⊂ D2 ⊂ IR
2 be two domains with regular

boundaries ∂D1 and ∂D2. Then the set

span{G2(., y)|∂Ω ; y ∈ D1 ∪ ∂D2} + IR

is dense in L2(∂Ω).

In the first instance, we adopt the simpler version of the MFS, usu-
ally called the charge simulation method [Golberg and Chen 1997], in
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which part of the singularities are known at fixed positions on an ar-
tificial boundary located outside Ω. The price to pay for not allowing
the singularities to move in an adaptive and optimal way is that the
location of the fixed artificial boundary has to be dealt with heuris-
tically [Balakrishnan and Ramachandran 2000], although [Bogomolny
1985] suggested that theoretically the locations of singularities can be
restricted to any surface embracing Ω. The remaining singularities are
located in D and they are moving with the unknown object D through-
out the iterative process described below.

In the direct problem given by equations (2) - (4), in which D
is known, the unknown coefficients (Cj)j=1,N in equation (6) are

determined by imposing the boundary conditions (3) and (4). However,
in the inverse problem (IP), given by equations (2) - (5), D is unknown.
Let us consider a star shaped cavity D (with respect to the origin)
whose boundary admits the polar (if d = 2), or the spherical (if d = 3)
parametrizations

(8) r = r(θ), 0 < θ ≤ 2π,

or,

(9) r = r(Ψ, θ), 0 < ψ ≤ π, 0 < θ ≤ 2π,

respectively. Without reducing the generality of the problem we may
assume that Ω is the unit circle (if d = 2), or the unit sphere (if d = 3).

For simplicity, let us consider the two-dimensional case. Based on
expression (8), the boundary of D is pointified by

(10) ri = r(θi), i − 1, M,

where
θi = 2πi/M, i = 1, M

Then the coefficients (Cj)j=1,N and the radii (ri)i=1,M can be deter-

mined by imposing the boundary conditions (3) - (5) in a nonlinear
least-squares sense which recasts into minimising the function

(11) S(C, r) :=‖UN −f‖2
H1/2(∂Ω)+‖∂nUN −g‖2

H−1/2(∂Ω)+‖UN‖2
L2(∂D).

A few remarks about this function are worth mentioning at this stage:
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(i) In the discretised version of (11), for technical computational
reasons, we consider all the norms in L2.

(ii) The constraints 0 < ri < 1, i = 1, M , are imposed during the
iterative procedure by adjustment at each iteration (∂Ω is the unit
circle).

(iii) The current flux Neumann data (5) comes from practical mea-
surements which are inherently contaminated with noisy errors and
therefore,we replace g in (11) by gǫ, where

(12) ‖gǫ − g‖L2(∂Ω) ≤ ǫ

Based on the above remarks, it is natural to propose minimising the
modified discretised objective cost function

(13) S(C, r) :=

M
∑

i=1

[UN(xi) − f(xi)]
2 +

M
∑

i=1

[∂nUN (xi) − gǫ(xi)]
2

+
2M
∑

i=M+1

[UN(xi)]
2,

where

(14) xi = (cos(θi), sin(θi)), i = 1, M,

are boundary collocation points uniformly distributed on ∂Ω = ∂B2(0, 1),
and

(15) xi+M = (ri cos(θi), ri sin(θi)), i = 1, M,

are boundary collocation points on ∂D. Essentially, we have M
collocation points taken on the outer boundary ∂Ω and M on the inner
boundary ∂D of the cavity. It remains to specify the position of the
singularities (yj)j=1,N in D ∪ (IR2 \ Ω). These are taken as

yj = (Rext cos(θ̃j), Rext sin(θ̃j)), j = 1, N1,(16)

yj+N1 =
(rj

s
cos(θ̃j),

rj

s
sin(θ̃j)

)

, j = 1, M1,(17)

where s > 1, Rext > 1, θ̃j = 2pj/N1 andN = N1 + M .
Typically, the values of Rext and s are taken as 2, meaning N1
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singularities are located at a radii twice that of the outer boundary
and M singularities are located at a radii half that of the internal
boundary.

In equation (13), UN is given by (6) from which the normal derivative
can be calculated as

(18) ∂nUN(x) =
N

∑

j=1

Cj∂n(x)Gd(x,yj), x ∈ ∂Ω

where from (7)

(19) ∂n(x)Gd(x, ξ) =

⎧

⎨

⎩

−
(x−ξ)·n
|x−ξ|2

, if d = 2,

− (x−ξ)·n
|x−ξ|3

, if d = 3

The minimisation of the objective function (13) is performed compu-
tationally using the NAG routine E04FCF, which is a comprehensive
algorithm for finding an unconstrained minimum of a sum of squares
of m nonlinear functions in n variables, where no derivatives need to
be provided by the user as they are calculated internally by the routine
using forward finite differences.

The approach assumes that the cavity is star shaped and defined
by M radii and the centre located at the origin, meaning that this
will provide M unknowns to be found during the minimisation. In
addition, the MFS procedure requires the vector of coefficients C to be
found during the minimisation, i.e. the number of additional unknowns
will be N = M + N1. Therefore, the total number of unknowns to be
found becomes M + N = 2M + N1 . The least squares minimisation
(13) provides 3M equations. Since the number of equations must
be greater or equal to the number of unknowns then this requires
3M = 2M + N1, or M = N1.

An important point to finally note is that the gradient of the function
(13) can be calculated analytically. In section 4 we will take N1 = M
and this means we have 3M unknowns and 3M equations, hence θj = θ̃j

for j = 1, M . We can then re-write (13) explicitly in two-dimensions
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as

(20) S(C, r) :=

M
∑

i=1

⎡

⎣

1

2

M
∑

j=1

Cj ln
[

1 + R2
ext − 2Rext cos(θi − θj)

]

+
1

2

2M
∑

j=M+1

Cj ln

[

1 +
(rj−M

s

)2

−
2rj−M

s
cos(θi − θj−M )

]

−f(cos(θi), sin(θi))]
2

+
2M
∑

i=M+1

⎡

⎣

M
∑

j=1

Cj
1 − Rext cos(θi−M − θj)

1 + R2
ext − 2Rext cos(θi−M − θj)

⎤

⎦

+

2M
∑

i=M+1

[

Cj

1 −
rj−M

s cos(θi−M − θj−M )

1 +
( rj−M

s

)2
−

2rj−M

s cos(θi−M − θj−M )

−gǫ(cos(θi−M ), sin(θi−M ))]
2

+

3M
∑

i=2M+1

⎡

⎣

1

2

M
∑

j=1

Cj ln[r2
i−2M + R2

ext − 2ri−2MRext cos(θi−2M − θj)]

+
1

2

2M
∑

j=M+1

Cj ln

[

r2
i−2M +

(rj−M

s

)2

−
2ri−2Mrj−M

s
cos(θi−2M − θj − M)

]]2

,

and then differentiate this expression with respect to Ck for k = 1, 2M
and rl for l = 1, M to explicitly find the gradient ∇S(C, r).

3.1. Discussion on Previous MFS Approaches. In principle, the MFS
described above for the solution of the inverse cavity problem is in
fact a discretised version of the hybrid method of Kirsch and Kress
[Kirsch and Kress 1986, 1987], compare [Colton and Kress 1998, 2006,
Serranho 2007] previously described, however this was described only
in the inverse acoustic scattering context. Similar MFS approaches
have been recently developed for the numerical solution of the inverse
cavity problem in elasticity [Alves and Martins 2008] and Stokes flows
[Martins and Silvestre 2008]. For the inverse cavity problem in steady
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heat conduction or electrostatics, i.e. for the Laplace equation (2),
previous MFS approaches [Alves and Martins 2006] assume either a
Fourier parametrisation of the boundary ∂D, or seek the unknown
cavity as the zero level set of the MFS solution. In our approach
described above we do not employ these techniques.

4. Numerical Results and Discussion.

4.1 Example 1. As a first example, Example 1, we consider
a simple two-dimensional detection of an unknown circular cavity
D = B2(0, r0) of radius r0 ∈ (0, 1) within the unit circle Ω = B2(0, 1).
We take f = −ln(r0) on ∂Ω in (4) and then the direct problem given
by equations (2) - (4), when D = B2(0, r0) is known, has the unique
solution

(21) u(r, θ) = ln(r/r0), r0 ≤ r ≤ 1, 0 < θ ≤ 2π

The initial guess for the vector C is 0.1 in all Examples 1-3. The initial
guess for the cavity is taken as a circle located at the origin with radius
0.5 unless explicitly stated otherwise. This is typical for problems
of this structure where a cavity is being located in the unit circle.
Numerical results are presented for Rext = s = 2 and M = N1 = 30.
We have found that for M > N1 the convergence became faster, but if
M = N1 increases over 30 convergence problems with the NAG routine
E04FCF were observed.

4.1.1. No noise. The cavity to be identified was located at the
origin of radius r0 = 0.7 and consider first the case when there is no
noise added to the measured data (5), i.e. ǫ = 0. Figure 1(a) shows
the results obtained from the minimisation routine following a series of
200 iterations. It can be clearly seen that the routine locates the cavity
with a high accuracy as the result exactly overlays the analytical desired
cavity. Figure 1(b) shows the objective function (20) as a function of
the number of iterations. From this figure it can be seen that for the
first 100 iterations the solution remains almost at the initial guess after
which it drops for the next 100 iterations and finally it drops to zero
after about a total of 200 iterations. Equally satisfactory results were
obtained when we searched for cavities of radii 0.8, 0.6, 0.4, 0.3 or 0.2.
Small errors in the final location accuracy arise when cavities of size
0.1 or less are attempted to be retrieved.



10 D. BORMAN, D. B. INGHAM, B. T. JOHANSSON AND D. LESNIC

(a) (b)

Figure 1: (a) The output from the minimisation routine for Example 1 when
searching for a circular cavity located at the origin of radius r0 = 0.7, and (b)
the objective function as a function of the number of iterations.

4.1.2. Adding noise to the boundary data. To simulate real measured
data, random noise is introduced into the Neumann boundary data g
as gǫ given by

(22) gǫ(xi) = 1 + ǫi, i = 1, M,

where ǫi are Gaussian random variables with mean zero and standard
deviation σ = p% = percentage of noise, generated using the NAG
routine G05DDF. As expected, since the inverse cavity problem is
illposed and no regularisation was included in the objective least-
squares functional (13), the addition of noise to the data (22) gave
inaccuracies and instabilities into the numerically obtained results even
when very small amounts of noise were used.

4.1.3. Summary of the results obtained. The results obtained for
Example 1 show that the technique employed is capable of detecting
circular cavities of various radii positioned at the origin of a unit circle
when an initial guess of a circle of radius 0.5 located at the origin is
used. Using this procedure enables circles as small as radii 0.2 to be
located accurately when no noise is introduced in the input data. When
noise is added into the normal derivative term (22), the routine fails to
locate the cavity regardless of the mesh size employed. It is anticipated
that the inclusion of a regularisation term into the objective function
(13) will improve the stability of the results.
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4.1.4. Incorporating a regularising term. Regularisation is necessary
in order to obtain a stable solution when noisy data gǫ is used in (13). In
this case we modify the functional S given by equation (13) by adding
to it the regularisation term

(23) T (λ1, λ2, λ3, C, r) = λ1

2M
∑

j=1

C2
j + λ2

M
∑

j=1

r2
j + λ3

M
∑

j=2

(rj − rj−1)
2,

where λ1, λ2, λ3 ≥ 0 are regularisation parameters. The second term
imposes the continuity of the boundary ∂D, whilst the third term
imposes the smoothness C1 of the boundary ∂D. If the boundary
∂D is a priori known to be of class C2 then (23) could include an extra

term λ4

M
∑

j=3

(rj − 2rj−1 + rj−2)
2. It should be noted that one can take

λ2 = 0 whenever λ3 > 0 since the first-order regularisation includes the
zeroth-order regularisation. In the following numerical experiments we
will only discuss, for simplicity, numerical results obtained using the
zeroth-order regularisation, i.e. λ3 = 0 in (23).

4.1.5. Results with regularisation. In the first instance we investigate
results when λ3 = 0 and λ1 = λ2 , for the simplicity of having only one
regularisation parameter to specify. Then, the regularisation term (23)
becomes

(24) T (λ, C, r) =

⎧

⎨

⎩

2M
∑

j=1

C2
j +

M
∑

j=1

r2
j

⎫

⎬

⎭

The circular cavity to be identified was located at the origin of radius
r0 = 0.4. Figure 2(a) shows how the routine successfully locates the
cavity as the final result exactly overlays the analytical solution when
no noise is used. Figure 2(b) shows the objective function when no noise
is used and it can be observed that the function reaches approximately
zero after 200 iterations.

A meaningless result is obtained from the results of the minimisation
routine when 1% noise is included in the data (22) and no regularisation
is used, i.e. λ1 = 0 in (24), see Figure 2(c). It can be observed in Figure
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(c) (d)

Figure 2: The output from the minimisation routine after the final iteration for
Example 1 when searching for a circular cavity located at the origin of radius
r0 = 0.4 with the addition of (a) no noise, (b) the respective objective function,
(c)1% noise, and (d) the respective objective function.

2(d) that, consistent with the cavity not being located, the objective
function fails to minimise. The results for 5% noise were observed
to have very similar characteristics to those of 1% noise. Figure 2(c)
further illustrates the ill-posedness of the inverse problem and that
classical ordinary least-squares methods produce unstable numerical
solutions.

Figure 3 shows the objective function obtained when the regularisa-
tion parameter λ1 = 0.05 is used in (24) for 1%, 3% and 5% noise.
In comparison to Figure 2(d), it can be observed that the results are
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significantly improved with the objective functions approaching zero in
each case. The smaller the amount of noise, the faster the objective
function approaches zero.

Figure 3: The regularised objective function for Example 1, as a function of the
number of iterations, with λ1 = 0.05 for various amounts of noise 1%, 3% and 5%,
when searching for a cavity located at the origin of radius r0 = 0.4.

These objective function results are reflected in the accuracy of the
cavity location. In Figure 4(a) it can be clearly observed that the cavity
is located very accurately when 1% noise is employed and in Figure 4(b)
the r0 = 0.4 radius cavity is located with reasonable accuracy when 5%
noise is used.

4.1.6. Searching for a range of cavity sizes. We have observed that
the MFS successfully solves problems with noisy data by including a
regularisation parameter for the case of locating cavities of radius 0.4,
located at the origin. It is advantageous to validate the technique by
attempting to locate cavities of different sizes.

Cavities of various sizes located at the origin with radii 0.2, 0.6, 0.8
were investigated. In the first instance, the value of the regularisation
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(a) (b)

Figure 4: The output of the regularised minimisation routine for Example 1 with
λ1 = 0.05 after the final iteration when searching for circular cavities of radii
r ∈ 0.2, 0.4, 0.6, 0.8 for (a) 1% noise, and (b) 5% noise. The dots represent
the analytical targets whilst the continuous lines represent the numerical values
retrieved.

parameter is kept the same as in the previous example as this helps to
indicate if the parameter is robust for a range of cavity sizes. Figure
4 (a) shows the results obtained when a regularisation parameter of
λ1 = 0.05 is used for 1% noise and Figure 4 (b) shows the equivalent
result for 5% noise. It can be observed that the results demonstrate
very high accuracy for the 1% noise. For 5% noise the larger cavities
are located with high accuracy. However, we observed a progressive
deterioration in accuracy as the size of the cavities diminished.

The robustness of the technique with the constant regularisation pa-
rameter are very encouraging for the MFS approach as they show that
when using the same value of the regularisation parameter then multi-
ple sizes of cavities can be located with a high level of accuracy, even
when up to 5% noise is employed. Further values of λ1 were investi-
gated without any significant improvement in the results obtained for
the 5% example. The successful implementation of the MFS technique
for solving the inverse problem for a circular cavity provides confidence
for considering examples for cavities with more complex geometries.

4.2. Example 2. In this subsection we aim to locate cavities with
more complicated geometries, such as the bean shaped geometry given
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by the parametrisation

(25) (x(θ), y(θ)) =
0.5 + 0.4 cos θ + 0.1 sin 2θ

1 + 0.7 cos θ
(cos θ, sin θ), θ ∈ (0, 2π]

within the domain Ω = B2(0, 1), namely Example 2.

Once again the initial guess is a circular cavity of radius 0.5 located
at the origin. Unlike the previous case, see example 1, a non-analytical
example is taken to specify the boundary conditions (3) and (4) as
u = 0 on ∂D and u = x on ∂Ω. Since the required Neumann boundary
data ∂nu|∂Ω is not found analytically, the forward MFS procedure was
implemented to calculate these values, as described in [Borman et al.
2007]. When using the data g = ∂nU |∂Ω from the direct solver, noise
was added to this data and a different M in the inverse procedure was
used in order to avoid committing the inverse crime [Colton and Kress
1998]. A wide range of regularisation parameters λ1 and λ2 between 0
and 10−4 and λ3 = 0 were investigated. When either λ1 = 0 or λ2 = 0,
a stable result could not be achieved. An observational approach based
on trial and error found that the most reliable result was achieved
when λ1 = 0.07 and λ2 = 0.05. As expected, the results become more
sensitive to selecting λ1 and λ2 around these values as the amount of
noise increases. Numerical results are presented for M = N1 = 30.
Figure 5 shows the results obtained in this case when 0, 1% and 5%
noise are used. It can be observed that the results are encouraging
as for all noise levels a reasonable approximation to the bean shape is
located. Further, the results are as accurate as the numerical results
obtained by [Ivanyshyn and Kress 2006] using a boundary integral
equation approach.

4.3. Example 3. We now consider a three-dimensional example
which requires locating an unknown spherical cavity D = B3(0, r0) of
radius r0 ∈ (0, 1) within a unit sphere Ω = B3(0, 1). We take f = 1− 1

r0

on ∂Ω in (4), and then the direct problem given by equations (2)-(4),
when D = B3(0, r0) is known, has the unique solution

(26) u(r, ψ, θ) =
1

r
−

1

r0
, r0 ≤ 1 ≤ 1, 0 < ψ ≤ π, 0 < θ ≤ 2π.

In three-dimensions, the spherical parametrisation (9) is used for the
unknown cavity D. The initial guess is taken as a sphere located at
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Figure 5: The output of the regularised minimisation routine for Example 2 with
λ1 = 0.07 and λ2 = 0.05 after the final iteration when searching for a bean shaped
cavity given by equation (25). The continuous line represents the analytical target
whilst the points represent the numerical values retrieved for no noise, 0, 1% and
5% noise.

the origin with radius 0.5. This is typical for problems of this structure
where a cavity is being located in the unit sphere. Numerical results
are presented for Rext = s = 2 and M = N = 64.

The cavity to be identified was a sphere of radius r0 = 0.7 centred
at the origin. Consider first the case when there is no noise added to
the measured data (5) given by g ≡ −1 on ∂Ω. Figure 6(a) shows
the results obtained from the minimisation routine following a series
of 800 iterations. It can be clearly seen that the routine locates the
spherical cavity of radius 0.7 with a high accuracy. Figure 6(d) shows
the objective function (13) as a function of the number of iterations.
From this figure it can be seen that for the first 380 iterations the
solution remains almost at the initial guess after which it drops close
to zero. With further sets of 380 iterations the objective function drops
increasingly close to zero.
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Figure 6: The output from the minimisation routine after the final iteration for
Example 3 when searching for a spherical cavity located at the origin of radius
r0 = 0.7 with the addition of: (a) no noise, (b) 2% noise, (c) 5% noise, and (d) the
logarithm of the objective function (23), as a function of the number of iterations.

A meaningless result is obtained from the results of the minimisation
routine when 2% noise is included in the measured data (5) and no
regularisation is used, i.e. λi = 0, i = 1, 2, 3, in (24). This illustrates
the ill-posedness of the inverse problem. Figures 6(b) and (c) show the
results obtained when the regularisation parameters of λ1 = λ2 = 0.1
and λ3 = 0 are used for 2% and 5% noise, respectively. It can be
observed that the numerical results demonstrate high accuracy with the
spherical cavity being clearly located. In figure 6(d) the minimisation
of the objective function can clearly be observed for both 2% and 5%
noise.
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5. Conclusions. It has been shown that the MFS is well-
suited for the solution of inverse cavity problems arising in EIT. The
numerical experiments exhibited very accurate results for exact data,
but inaccurate results when noise was introduced if no regularisation
was employed. The addition of a regularisation parameter was very
successful and enabled cavities to be found in a stable way for 1-5%
noise added into the Neumann boundary data. As might be expected
intuitively, the larger cavities were located to higher accuracies in
examples containing noise. Multiple star-shaped cavities can also be
located in principle by applying the MFS to each cavity as described in
Section 3. The MFS technique described in this paper can be extended
to solving numerically the inverse cavity problem in the acoustic field
[Erhard and Potthast, 2003], the inverse acoustic scattering problem
[Colton and Kress 1998, Johanasson and Sleeman 2007] and the inverse
electromagnetic scattering problem [Angell et al. 2003], but these
investigations are deferred to a future work.
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