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Modelling real-time dynamic
substructuring using partial delay
differential equations

By Y.N. KYRYcHKO!, S.J. HOGAN!, A. GONZALEZ-BUELGA?
AND D.J. WaGG?

! Department of Engineering Mathematics, University of Bristol, Queen’s Building,
Bristol BS8 1TR, UK

2 Department of Mechanical Engineering, University of Bristol, Queen’s Building,
Bristol BS8 1TR, UK

Real-time dynamic substructuring is a new component testing method for sim-
ulating the dynamics of complex engineering systems. The physical component
is tested in a computer generated ’virtual’ environment using real time control
techniques. Delays in communication which occur between the component and the
virtual environment can potentially destabilise the simulation. In this paper the
mechanism for this instability is studied using a beam-oscillator system as a case
study. We will show how the stability and the amplitude response of the system
change with the time delay. The numerical simulations of the reduced system as
well as a full delayed beam equation are performed. A series of experimental tests is
carried out on a beam-oscillator system. The comparison between the theoretical,
numerical and experimental results is presented and these agree remarkably well.

Keywords: beam-oscillator system; real-time dynamic substructuring; delay
equations; hybrid testing

1. Introduction

The main methods of testing the response of the structures under external loads and
excitations (e.g. earthquake testing techniques) are shaking tables, pseudo-dynamic
testing and real-time dynamic substructuring, see Williams & Blakeborough (2001)
and Blakeborough et al. (2001). Every method has its advantages and limitations.
In particular, shaking tables are usually expensive to build and operate, and the
structures have to be scaled down. This reduces the understanding of the structural
response as reducing the structures leads to a non-commensurate change of material
properties of the original system. Pseudo-dynamic testing is not done in real time
and this leads to a lengthy and costly experiments.

On the other hand, recent advances in analytical and numerical methods have
led to further development of the real-time dynamic substructuring. The structure
to be tested, or emulated, is first divided into two parts. One part is placed in
the laboratory, and another one is modelled numerically. The parts are usually
connected by electric or hydraulic actuators, which introduce the interface forces
between computational and experimental parts. The actuators act as a transfer
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2 Kyrychko and others

system and are designed to follow appropriate output displacements calculated by
the numerical model (Wallace et al. 2005; Kyrychko et al. 2006).

The main advantage of this technique is that experiments are not very expensive
to build, run in real-time, and are repeatable. This technique also allows parametric
variation of numerical model parameters and can be applied not only to test the
structural response under an earthquake, but also to test parts of machinery, cars
etc (Williams & Blakeborough 2001). Also, in this way the numerical, analytical
and experimental techniques are tied together, and this helps to better understand
the behaviour of the model under consideration. Potentially, real-time dynamic
substructuring can be performed online in different places, even different countries.

The main challenge is to ensure that the substructured system behaves in the
same way as the emulated system. The transfer systems typically introduce a time
lag or delay into the system, and this effect must be accounted for while performing
a real-time dynamic substructuring experiment. Recently it was suggested that the
way to analytically model a dynamic substructuring experiment is to use delay dif-
ferential equations (DDEs) (see, for instance, Wallace et al. 2005; Kyrychko et al.
2006). Thus the system is modelled more realistically, and therefore, shall lead to
more reliable results. Unfortunately, time delay can lead to a complete destabiliza-
tion of the system but artificial variation of the delay time may help one to change
from unstable to stable regime. Because of the infinite-dimensionality of the DDEs,
inclusion of time delays into the equation of motion makes analysis more difficult
and challenging. The theory of the equations with time-delays is an active topic of
research and some recent developments can be found in, for example, Laurent et
al. (2006); Adimy et al. (2006); Hu & Wang (2002).

In this paper we introduce a system which consists of a clamped-free cantilever
beam, with a mass-spring-damper attached to the free end of the beam. There are
many applications of such system, including vibrations of elastic arms and their
suppression, robotics, vibrations of vehicle on a compressed rail etc. An analytical
and experimental investigation of beams carrying elastically mounted masses was
performed by Ercoli and Laura (1987). Rossi et al. (1993) have found the exact
solution of the free vibrations of Timoshenko beams carrying elastically mounted
masses. Giirgoze has derived the frequency equation for the cantilever beam with
attached tip mass and a spring-mass (Giirgéze 1996) and studied the sensitivity of
the eigenvalues of a viscously damped cantilever beam carrying a tip mass (Giirgoze
1998). The question of controlling hybrid experiments in which only some of the
state variables are accessible for measurements, has been investigated by Sieber and
Krauskopf (2006). Our stability findings will provide a background for implementing
this control technique in a real experiment.

We propose to implement real-time dynamic substructuring in this system by
modelling a mass-spring-damper connected via a transfer system to the beam placed
in the laboratory, with the force being generated by an electrically driven actu-
ator. Mathematically, the system will be modelled using partial delay differential
equations (PDDEs). We believe that this is the first ever attempt to use PDDEs
to represent a real-time dynamic substructuring experiment. It should be noted
that the theory of PDDEs with applications to engineering systems is at its early
stage in general, and neutral PDDEs in particular. The qualitative theory of partial
functional differential equations with emphasis on reaction-diffusion equations with
delay can be found in Wu (1996).
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Beam mass-spring-damper system 3

After reducing the system to the finite mode truncation of the beam, we analyse
the dynamics of the model using the method of multiple scales, and derive the
amplitude equation for the resonant case. The numerical simulations of the finite
mode truncation of the delayed beam equation are performed and subsequently
compared to the experimental results. We present the experimental response of
the beam to the excitation with different time delays, which show periodic and
quasi-periodic behaviour. Also, experimental and theoretical amplitude response
diagrams are compared.

Section 2 introduces the equation of motion of the beam-mass-spring-damper
system. In Section 3 the multiple scales method is used to derive the amplitude
response relation. Section 4 is devoted to the stability analysis of the neutral delay
differential equation and stability regions in the parameter plane are identified.
The numerical simulations of the delayed system are presented in Section 5. In Sec-
tion 6 the experimental results are given and compared to analytical and numerical
findings. The paper concludes with the summary in Section 7.

2. Analytical formulation of the problem

The system under investigation is a cantilever steel beam clamped at one end and
free at the other with a mass-spring-damper (MSD) attached to the free end of the
beam. The equations of motion of the coupled system can be written as

8u du
(M TR (z,t) + C’6 (z,t) + Ku(x,t)) 0(x — L)
gt;‘ (z,t) + Elg =2 (a,) = Asin(wt)é(z — L), (2.1)

where z is the coordinate along the beam and ¢ is the time, L denotes the unde-
formed length of the beam and m is the mass. Furthermore,  is the Dirac delta
function, ET is constant, M, C, K are mass, damping and stiffness coefficients of
the oscillator. A mass-spring-damper is attached to the free end of the beam. An
external force is acting on the MSD with the amplitude A and frequency w which
in turn excites the beam. The emulated, or real, system is divided and the MSD
is taken to be the numerical model while the beam is constructed in the laborat-
ory. The two parts are connected via an electrical actuator. This means that there
is a delay between the time a signal is sent and the moment the displacement of
the beam is received back. The schematic description of the model in presented in
figure 1. Therefore, the modified equation of motion has the form:

(M62 (z, t)—}—Ca (x,t)+Ku(a:,t)) §(z — L)

ot? ot
0%u 84 .

where 7 is the time delay (assumed to be constant).
To simplify the equation (2.2), one can introduce the following non-dimensional
quantities:

EI
w2 =

tszt7 T = —mL4.

]
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Fexternal

Actuator

7 /s 7 7/
Figure 1. Schematic description of the coupled beam-MSD system.

Under this rescaling and omitting tildes equation (2.2) can be rewritten in the form

(%(m,t) + 2{%(@‘,1&) + /sQu(:c,t)> o(z—1)

0%u tu .
+MW(Z‘, t—71)+ ,u%(w,t —7) = asin(wt)d(z — 1), (2.3)

(= ¢ K= K = and a——A
T AMwy "\ M T M MW

An approximate series solution of equation (2.3) can be taken to be in the form
(Giirgbze 1998):

where

u(z,t) = Z U (2) g (),

where u, () are the orthogonal eigenfunctions of the clamped-free beam without
an MSD, normalised with respect to the mass density. Functions ¢, (¢) represent the
unknown time dependent generalised coordinates. Upon substituting the expansion
of the solution u(z,t) into the equation (2.3), multiplying both sides by the k-th
eigenfunction uy(z) and integrating over the rescaled beam length, we obtain the
set of delay differential equations

uk(1) Z U (1)Gm (t) + 2Cug (1) Z U (1)gm (1) + quk(l) Z U (1)gm (2)
+uge(t — 1) + pBrae(t — 7) = aup(1) sinwt, k=1,..n, (2.4)

where the eigenvalues §; are solutions of the transcendental equation

coshB;cosB; +1 =0, i =1,2...,
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with 8, ~ 1.8751.

Assuming that the dynamics of the beam is well represented by that of its first
mode, we can reduce the system (2.4) to one second order neutral delay differential
equation (as it involves time-delayed highest derivative):

uf (1) (1) +2¢u? (1) (1) + £2uf (1)q1 () + pga (¢ —7) + pBiar (t—7) = aur(1) sinwt,
(2.5)

where

cosh 81 + cos 34

u1 (z) = cosh f1x — cos f1x — 1 (sinh f1x — sin Byz), 11 = m

We can further recast the equation (2.5) as
Q) + 200 () + K (t) + p*@a(t - 7) +oq(t — 1) = o sinwt,  (2.6)
where
* __ 12 (67
by u (D)

Equation (2.6) is the equation whose properties will be investigated in this paper.

v=pPt, and o* =

3. Perturbation analysis

In order to analyse the primary resonance of the neutral delay equation (2.6) using
the method of multiple scales (Nayfeh & Pai 2004), we confine the study to the case
of small damping, weak feedback, and soft excitation. This means that we assume
the following:
¢=0(e),p* = O(e),a" = O(e),
v=0(),w—k=¢c0 and o = O(1),

where ¢ is small and o is a detuning parameter. We look for a solution as a two
scale expansion:

a(t) = vo(To, Th) + eni (To, Th) + O(€?), (3.1)
where Tp =t and Ty = t. We use the following differential operators:
d 15] 0
— = — — =D D 2
a 6T0+68T1 o +eDy + O(e?),
(3.2)
d? 2 2
ﬁ = DO + 26DOD1 + O(E )

Substituting expansion (3.1) into (2.6) and using the differential operators (3.2),
gives (by equating powers of €) a set of linear partial delay differential equations.
The zeroth and first order approximations are

Dgvo(To, Th) + £*vo(To, Th) = 0, (3.3)
and

Dgl/l(To,Tl) + I<.',2V1(T0,T1) = —2DOD1V0(T0,T1) — ZCD()I/()(T(),TI)
—/J/*Dgl/()(TO -7, Tl) - UI/()(TO -7, Tl) + a* Sil’l(lﬁ}TO + O'Tl). (34)
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Solving equation (3.3), we have
Vo(To, T]_) = A(T]_)einTo + c.c., (35)
where c.c. stands for complex conjugate, and
1 )
A(Ty) = Ea(Tl)e”‘ﬂ(Tl). (3.6)
Using vy from (3.5) in (3.4) gives
D2vy (To, Ty) + k%01 (To, Th) = —2ikD; Ae™ ™0 — 2¢kiAetrTo — At Toe=ix
FR2p AemimReinTo %eiaTl ¢inTo 4 ¢ (3.7)
To eliminate the secular terms in the equation (3.7), we set
—2ik(Dy 4+ O)A + &2p* A(Ty)e ™" —vAe™F + %ei"Tl =0.

Substituting (3.6) into the last expression and separating into the real and imagin-
ary parts gives

1
Dia = ~9. [u*n2a sin k7 — o sin(oTy — BK) — vasin kT + 2(/@04] ,
1 * 2 *
aDf = ~53 [p*ak? cos kT — vacos kT + a* cos(oTh — BK)] .
K

Moreover, if we introduce a phase ¢ such that ¢ = oTy — §(T1)k, then the
equations governing the amplitude «(7T}) and the phase ¢(T}) take the form:

1 *
Dia = — (vsinkT — p*k*sin kT — 2(k) a + 2 in ©,
2k 2k

1 . *
aDyp = 53 (oKk® + veos KT — p*K® COS KT) @ — 5.3

Obviously, the presence of time delay 7 in the original equation modifies the aver-
aged equations by adding additional terms.

Steady state solutions of equation (2.6) for the primary resonance correspond to
the fixed points of equations (3.8), and these can be obtained by setting Dy = 0
and Do = 0. This leads to a set of algebraic equations (assuming a # 0):

COS (. (3.8)

(vsin kT — p*K?sin kT — 2(K) @ + a*sinp =0

(ok* + veoskT — p*K% cos kT) o — o cos ¢ = 0.

From the last system of equations we can derive the frequency response relations
between the amplitude a and ¢ and the phase ¢ and o:

*

a
o =
. . 2 5 2 1/2
[(U sin kK7 — p*k2 sin k7 — 2(K)” + (0K2 + v COS KT — P*K2 COS KT)
(vsin kT — p*K? sin kT — 2(k)
tanyp = —

(oK% + vcos KT — p*K2 COSKT)
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Amplitude

0.05
0.03

0.01

0.2

® ' 0.6

Figure 2. a) Amplitude response as a function of time delay and frequency of the

perturbation.
a) b) c)
1 1 1
" W a
0.5 0.5 0.5
00 25 . 5 C|0 25 ¢ 5 00 25 » 5

Figure 3. Stability boundary: a) k = 5.4,¢ = 0.003; b) k = 8,¢ = 0.003; c)
k= 5.4,{ = 0.153. Coloured region is a stable region, area above it is an unstable region.

These expressions will be used later when comparing analytical and experimental
amplitude responses. The extreme values of the amplitude are

a*

Olextr = ’
o v — p*K2 £ K\/o2K2 + 42

(3.10)
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a) b)
0.04 0.05
T
o
0 10 ¢ 20 ~0.05 0 q,(h 0.05

Figure 4. Solution ¢:(t) of equation (2.6) with delay time 7 = 0.2. a) Temporal
dynamics. b) Phase portrait in the plane (g1 (¢),q1(t — 7)).

and they are attained at

2
7O = arctan (——C) +mm, m=12,..
ok

Figure 2 illustrates amplitude response as given by the expression (3.9) for different
delay times. One can observe that there are two nearby perturbation frequencies
which exert the largest response of the system. In the vicinity of those two fre-
quencies which correspond to the absolute maxima, of the response, the system also
has peaks in the amplitude response whose position depends on the perturbation
frequency and time delay as given by expression (3.10).

4. Stability analysis

Returning to the equation (2.6) the characteristic equation for the trivial solution
has the form

AN 420N+ K2+ p*A2e M ve M =0.

Purely imaginary eigenvalues occur when A = i), ¢ # 0 with
—% + 20 + K2 — p*p?e VT 4 ve T = 0.

Separating the last equation into the real and imaginary parts gives

e 1 * [(%2 —REH)E \/(2@ — K+ pv)? — (Kt —0?)(1 - M*Z)] ;
—u
(4.1)
and p 2
2

1
T = — |arccos

K
5 :l:27m] ,n=1,2, ..
+

v — Pl

Figure 3 shows stability boundary in the parameter plane of the time delay 7
and the mass ratio p* for different values of k and (. The values of p* (i.e. the
mass ratio of mass of the beam to the mass of the MSD) do not exceed 1 as for
|#*| > 1 the trivial steady state is unstable for any delay time (Kyrychko et al.
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a) 0.1 b)
0.05
T
= 0
q; 0 =
-0.05 W

-0.
0 T 2x 0 g 01

Figure 5. Solution ¢i(t) of equation (2.6) with delay time 7 = 0.9. a) Temporal
dynamics. b) Phase portrait in the plane (qi(¢),q1(t — 7)).

a)

-1

0 10 20

Figure 6. Solution qi(t) of equation (2.6) with delay time 7 = 1.2. a) Temporal
dynamics. b) Phase portrait in the plane (qi(¢),q1(t — 7)).

2006). One can notice that the increase of the spring stiffness leads to the shift
of the stability boundary to the left, and also to a slight decrease in the critical
value of p*. Stable region becomes smaller and narrower. On the other hand, when
the damping coefficient increases, the horizontal position of the stability boundary
remains unchanged, while both the peaks and the bottoms on the curve grow.
These changes in the stability boundary provide important information needed for
the design of a stable experiment. Moreover, they indicate how varying the values
of parameters of the numerical model can stabilize the system.

For a detailed description of stability switches and extensive stability study of
neutral delay differential equations the reader is referred to Kyrychko et al. (2006).

5. Numerical simulations

This section is devoted to the numerical simulations of the neutral delay equation
(2.6) and then the system (2.4). The equation (2.6) was discretized with an explicit
finite difference scheme; to improve numerical stability of the scheme the damping
term was approximated by central differences. In all simulations the values of the
damping coefficient (, rescaled stiffness of the oscillator x and the rescaled ratio

Article submitted to Royal Society
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a) b)
u(x,t) u(x,t)

.—u"—
'.",‘wul"-'.‘y'.’
A mi."""”' /I

S

A1V

Figure 7. Spatio-temporal dynamics of a three-mode truncation of the beam equation
with a) 7 = 0.2 and b) 7 = 0.9.

-3
55X 107 a) 35519 b)
1=0.017s 7=0.095s
3 3
25
2.5 0]
3 3 5
2z
Eis <15
1 1 4
£
0.5 .y xR % 0.5
0 Q
0 2 4 , 6 8 10 0 2 4 o 6 8 10

Figure 8. Amplitude response plot. Solid line is the theoretical prediction from (3.9);
stars show experimental points.

of mass of the beam to the mass of the MSD p* were taken to be constant. The
values used in figures 4-6 are { = 0.003, k = 5.4 and p* = 0.6. In principle these
values can vary since the parameters of the MSD can easily be changed as they
are represented by a numerical model in the experiment. We have tried different
combinations of parameters in our numerical simulations and the results are robust
and qualitatively similar to those presented in this paper. The equation was forced
with an amplitude a* = 1 and frequency w = 5. The time delay was varied, starting
with a value of 7 = 0.2 (hence the first stability boundary crossing in figure 3a)).
As the trivial steady state of the unforced equation (2.6) is linearly asymptotically
stable, external forcing transforms it into a stable periodic orbit. The result of this
simulation is shown in figure 4 together with a corresponding phase plane.

For a larger value of the time delay 7 = 0.9, the stability of the steady state
is lost and the solution develops into a quasi-periodic orbit shown in figure 5. Fig-
ure 6 illustrates the solution of the equation (2.6) when the time delay is increased
further still. The solution is unstable and it is characterized by a fast growth of the
amplitude of oscillations.

To demonstrate the full spatio-temporal dynamics of the beam-MSD system

Article submitted to Royal Society
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b)
x10° a)
0.002
2
— E
E F o
20 5
\5 =3
-0.002
2
-0.002 0 0.002
1 3 g u(L), [mi

Figure 9. Experimental displacement of the free end of the beam for 7 = 0.067s. a)
Temporal dynamics. b) Phase portrait in the plane (u(L,t), u(L,t — 7)).

under external excitation, we solve the system (2.4) numerically. For illustration
purposes the number of modes in the expansion is taken to be three. One end
of the beam is fixed while the MSD is attached to the other one. The applied
external forcing makes the free end of the beam to vibrate. In figure 7a) the value
of the delay time is 7 = 0.2. One can observe the influence of the higher beam
modes which lead to a non-monotonicity of the profile. For 7 = 0.9 the beam
profile remains qualitatively similar but the quasi-periodic nature of the temporal
component induces a complex dynamics as shown in figure 7b).

6. Experimental set-up

In order to confirm our analytical investigations, real-time dynamic substructuring
tests are carried out. As discussed earlier, the steel beam is taken to be the physical
substructure part, and mass-spring-damper is modelled numerically. The numerical
model will be used to calculate the displacement at the interface due to external
forcing. This displacement is then applied to the beam in real-time using an electro-
mechanical actuator. The beam is mounted on the heavy frame to reduce noise and
other unwanted effects. One end of the beam is screwed to the frame, and an
actuator is mounted on the free end of the beam. The force acting on the beam is
measured using a load cell, an LVDT displacement transducer is used to track and
control the movements of the actuator and a digital incremental encoder records
the vertical displacement of the beam. In order to implement a real-time testing
we use dSpace DS1104 RD Controller board and MATLAB/Simulink are used to
programm a numerical model.

The beam has a fixed length of 1m with width 5cm and thickness 5mm. The
mass, stiffness and damping of the numerical model will be varied during the exper-
iment. First, we take M = 5kg, C = 1kgs—! and K = 3500 Nm~1. The amplitude
of the external excitation is A = 6N and frequency is set to be 2Hz. In figure 8 the
amplitude response of the system is shown. The solid line represents an analytical
amplitude, and stars are experimental points. Figures 8a) and 8b) are plotted for
two different time delays,namely, 7 = 17ms and 7 = 95ms. The original time delay
in the system is 17ms. We can see from figure 8b) that increasing the time delay de-
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a) 0.005
0.005 B
£

E 1?‘ 0
= 0 5
iy 5

5
~0.005 ~0.005
-0.005
0 2 s 4 6 u(L,b), [m]

Figure 10. Experimental displacement of the free end of the beam for 7 = 0.072s. a)
Temporal dynamics. b) Phase portrait in the plane (u(L,t),u(L,t — 7)).

a)
0.02 0.02
E E
= 0 T 0
2 :
-0.02 -0.02
-0.02 0 0.02
0 2 s 4 6 u(Ly, (m]

Figure 11. Experimental displacement of the free end of the beam for 7 = 0.112s. a)
Temporal dynamics. b) Phase portrait in the plane (u(L,t),u(L,t — 7)).

creases the peak amplitude by around 30%. The experimental points closely follow
the theoretical curve which shows a very good accuracy of the analytical predictions.

For experimental results shown in figures 9-11, we fixed all parameters of the
system, and increased the time delay. The external force is applied to the numerical
model and then the excitation is sent to the free end of the beam. Figure 9 shows
periodic oscillations of the beam displacement at the free end for a small time
delay. As the time delay is increased, the system undergoes a transition into quasi-
periodic motion due to the loss of stability of the trivial steady state as shown in
figure 10a). These oscillations are robust against external perturbation, i.e. they do
not change to periodic motion if an additional disturbance is applied at the free end
of the beam. In this case the dynamics is characterised by large excursions in the
phase space (see figure 10b)). As the time delay is increased further still, the quasi-
periodic oscillations persist but their amplitude grows. This results in very large
transversal displacements of the beam, and eventually the system becomes unstable.
This regime is illustrated in figure 11. It is worth noting that experimental beam
displacements show dynamics qualitatively very similar to the numerical simulations
presented in the previous section.
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a b
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Figure 12. Snapshots of the Fourier spectrum of the experimental displacement of the
free end of the beam for different delays. a) 7 = 0.067s, and b) 7 = 0.072s.

In figure 12 we have plotted the Fourier transform of the experimental signals
given in figures 9-10. In figure 12a) when 7 = 0.067s, we observe one main frequency
in the Fourier spectrum that corresponds to the frequency of external excitation of
2Hz. For a larger time delay 7 = 0.072s, there are two frequencies present in the
spectrum as shown in figure 12b). One of them at 2Hz is a forcing frequency, and
the second one at w =~ 4.59Hz (analytical value w = 4.65) is the Hopf frequency
that appears when a trivial steady state loses its stability for larger time delay. The
Fourier transform of the signal presented in figure 11 is qualitatively similar to the
one plotted in figure 12b).

7. Conclusions

This paper deals with modelling of the real-time dynamic experiment of a spatially
extended system. The system consists of a steel beam clamped at one end and a
mass-spring-damper attached to the free end. This system has been substructured
by taking the beam to be the physical structure and a mass-spring-damper replaced
by its numerical counterpart. The transfer system used to connect real and ’virtual’
parts is an actuator which introduces delays into the experiment. The model equa-
tions of motion are given by a partial differential equation with time delay. It is well
known that time delays induce instability and analytical treatment of the system
allows one to find the regions of system stability and their variation depending on
the parameters of the mass-spring-damper. The significant advantage of this exper-
imental technique is that these parameters can easily be varied as they are defined
in the numerical part of the experiment. This allows one to switch between different
stability regions thereby enhancing the overall stability of the experiment. Despite
the fact that time delay is an unwanted effect in real-time dynamic substructur-
ing experiments with stability areas sometimes being very small and narrow what
makes them harder to find when running an experiment, the use of the theoretical
stability predictions gives insights into their location.

Using the method of multiple scales we find an amplitude response relation
of the system depending on the time delay. This is then verified experimentally
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giving excellent agreement. We observe that changing time delay helps to reduce
the amplitude response peaks. Numerical simulations of an externally forced system
demonstrate periodic and quasi-periodic behaviour in different parameter regions.
This again gives good correspondence to the experimental observations.

The analytical, numerical and experimental results for the beam-mass-spring-
damper system considered in this paper provide important information on the be-
havioral changes in system dynamics with respect to time delays which are always
present in the real-time dynamic experiments. These findings provide much needed
insights into the problems and their solutions in the case of larger scale experiments.

The authors would like to acknowledge the support of the EPSRC: YK is supported by
EPSRC grant (GR/72020/01), AGB is supported by EPSRC grant (GR/S49780) and
DJW via an Advanced Research Fellowship.
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Response to reviewers’ comments

Referee 1

We would like to thank the referee for excellent comments regarding this manu-
script. The referee is absolutely correct in saying that the time delay is an unwanted
effect in real-time dynamic substructuring experiments. To make this clear, we have
amended the appropriate paragraph in the conclusions, as suggested by the referee.
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Referee 2

We would like to thank the referee for raising several issues regarding the manu-
script. Referee has pointed out that time-varying external load was replaced by a
prescribed sinusoid. In fact, this is not the case, as while the external force was
indeed chosen to be a sine wave, the mass-spring-damper system was replaced by
its numerical model and transfer system.

As stated in the introduction, time delays arise mainly due to the non-instantaneous
nature of the transfer system. Of course, unsubstructured system does not have any
delays, however in most cases it is not possible to experimentally test full scale struc-
tures and produce real external excitations. Real-time dynamic substructuring is
a way forward to overcome the issues of scaling by replacing a part of the system
by its numerical counterpart. The main point here is that on this case study sys-
tem we test mathematical model against experiment in order to make full use of
mathematical predictions in more difficult cases such as testing parts of a bridge.
In current experiment the time delay is indeed small allowing it to be predicted
forward in time. However, as a transfer system becomes more involved, e.g. shaking
table or a number of actuators, it is unclear how to deal with different and un-
known time delays. This is where the mathematical investigations are the only way
to predict the behaviour of the system depending on system parameters before the
construction of an actual experimental rig.

Answering to the last comment, we reduced PDDE equation to a system of
DDEs, and used a first mode expansion to calculate the amplitude response of the
system. The agreement between theoretical and experimental amplitude responses
is excellent even with a single mode expansion. We would like to make a comment
that this paper is highly multidisciplinary and it contains a comparison between
theoretical and experimental results which makes it likely to be of interest to the
readers of Proceedings A.
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Referee 3

We would like to thank the referee for useful and encouraging comments regarding
this work. In specific response to the referee’s comments:

e The real-time dynamic substructuring technique is very useful in overcoming
the scaling issues involved in a large number of experiments. However, it does have
a drawback in the fact that transfer systems (actuator in this paper) are non-
instantaneous. Mathematical modelling is used as a way of predicting what will
happen to the substructured system under the influence of time delays. We have
modelled mathematically a coupled beam-mass-spring-damper system with the in-
clusion of time delays into the equations to be able to predict delay effects likely
to occur in the experiment. The ultimate aim is to apply real-time dynamic sub-
structuring to a more realistic system such as a cable-stayed bridge or a building,
and because of the fact that time delays will come from several different actuat-
ors, the first step will be to model the full system mathematically, and understand
the influence of time delay on the dynamics before conducting an actual experiment.

e The value of the time delay 7 in our experimental set-up is 17ms. In order to
account for a time delay, we use a prediction forward method, and this gives us a
stable experiment with time delay of 17ms for certain values of mass, stiffness and
damping of an MSD. However, if prediction forward is not used, the accumulation
of delays on each experimental loop leads to desynchronisation of different parts of
experiment and eventually to an instability itself.

e For the sake of simplicity of presentation we have used non-dimensional model for
theoretical investigations. In section 6 we have presented experimental results and
they are dimensional. That is the reason why the values of time delay in Figures
9-11 as opposed to Figures 4-6 are not the same. However, the increase of time
delays for numerical simulations was chosen to correspond to the increase of time
delay in the experiment. The numerical simulations show behaviour qualitatively
similar to the one seen in the experiment.

e We have used a different graphics package and replotted figures 2 and 7. The
pictures 2a) and 2b) are now combined in one.
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