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Evaluation of Output Frequency Responses of
Nonlinear Systems Under Multiple Inputs

Zi-Qiang Lang and S. A. Billings

Abstract—In this paper, a new method for evaluating output
frequency responses of nonlinear systems under multiple inputs,
defined as a sum of sinusoids of different frequencies, is developed.
The method circumvents difficulties associated with the existing
“frequency-mix vector” based approaches and can easily be
applied to investigate nonlinear behaviors of practical systems,
including electronic circuits, at the system simulation and design
stages. Application of the method to the analysis of nonlinear
interference and distortion effects in communication receivers
is studied, and specific procedures are proposed which can be
directly used in practice for this analysis.

Index Terms—Communication receivers, frequency-domain
analysis, nonlinear systems/circuits.

I. INTRODUCTION

M OST engineering systems including electronic circuits
are intrinsically nonlinear. Although measures such as

differential configurations, feedback, inverse function cancella-
tion, etc., are often taken to reduce nonlinear effects when prac-
tical design problems are addressed, nonlinear distortion cannot
usually be cancelled out completely, and it is therefore impor-
tant to evaluate system behaviors to estimate how the residual
nonlinearity degrades system performances.

Systems such as transistor amplifiers and operational
transconductance amplifier-capacitor (OTA-C) filters, which
are designed to exhibit mainly linear characteristics but still
possess unavoidable residual nonlinearities, can be reasonably
regarded as weakly nonlinear systems [1] and can be investi-
gated in the frequency domain using the Volterra series theory
of nonlinear systems [1]–[5], [8], [9], [12].

The frequency-domain method of nonlinear systems based
on the Volterra series theory was initially established in the
1950’s when the concept of generalized frequency response
functions (GFRF’s) of nonlinear systems was introduced
[7]. GFRF’s were defined as the multidimensional Fourier
transformations of Volterra kernels in the Volterra series
expansion of nonlinear systems which extend the frequency
response function of linear systems to the nonlinear case.
One of the important features of GFRF’s is associated with
the description of nonlinear system output responses in the
frequency domain. The frequency-domain output responses of
practical systems are often directly related to physical system
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performances especially for electronic circuits. Therefore,
analysis of the responses is important for examining system
behaviors. Nonlinear effects which are likely to be expected in
practice can be determined at the system design and simulation
stages by evaluating and analyzing the system output frequency
responses.

The multiple inputs are defined as a sum of sinusoids with
different frequencies which can be used at the design and sim-
ulation stage and/or laboratory testing period of systems such
as communication receivers [8] to excite the systems in order to
examine the system output behaviors in the frequency domain.
Analysis of nonlinear systems with multiple inputs has been an
important topic in the frequency-domain analysis of nonlinear
systems using Volterra series theory since the 1950’s. Many the-
ories and methods have been developed to address problems as-
sociated with this topic [1]–[4], [8], [9] and applications of the
associated theories and methods to circuit analyses can be found
in [6], [8], [10], [11].

The presently available methods for analysis of nonlinear sys-
tems with multiple inputs are almost all based on a concept
called the “frequency-mix vector” which reveals the manner by
which intermodulation frequencies are generated in nonlinear
systems. Intermodulation is an important nonlinear phenom-
enon which indicates that output frequency components of a
nonlinear system could be much richer than the components in
the input, while in the linear system case the possible output fre-
quency components are exactly the same as the components in
the corresponding input. Although the analyses using the “fre-
quency-mix vector” can clearly interpret how output frequen-
cies of nonlinear systems are produced by particular frequency
mixes, the output frequency response components at frequen-
cies of interest are generally difficult to evaluate in practice
using associated methods. This is because the output compo-
nent of a nonlinear system at a particular frequency actually de-
pends on many different frequency mixes and it is generally hard
to identify all frequency-mix vectors associated with these dif-
ferent frequency mixes.

In the present study, the above problem which is associated
with the practical evaluation of output frequency responses of
nonlinear systems to multiple inputs is addressed. At first, an ex-
pression for the system response is derived which can be readily
used in practice to evaluate the results. Then, output frequencies
of nonlinear systems under multiple inputs are analyzed and an
effective algorithm is developed to determine the frequencies.
The algorithm extends the concept regarding the relationship be-
tween the system input and output frequencies to the nonlinear
case where systems are under an arbitrary multiple input excita-
tion. Based on the first and second results, a new method is then
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developed to evaluate output frequency responses of nonlinear
systems under multiple input excitations which provides an ef-
fective and practical means for evaluating frequency-domain ef-
fects of practical nonlinear systems, including electronic circuits
at the system design and simulation stages. Finally, the applica-
tion of this method to the analysis of nonlinear interference and
distortion effects in communication receivers is studied and spe-
cific procedures are proposed which combine the method with
our previously developed nonlinear system modeling and anal-
ysis techniques and which can be directly used in practice for
this analysis.

II. A NALYSIS OF NONLINEAR SYSTEMS UNDER MULTIPLE

INPUTS

Systems such as transistor amplifiers and OTA-C filters
which possess weak nonlinearities can be described by a
Volterra series representation [2]–[4]. The Volterra series
representation of a nonlinear system can be generally written as

(1)

where

(2)

and are system input and output, respectively,
are the Volterra kernels, and is

the maximum order of system nonlinearities which is finite for
a wide class of nonlinear systems and input excitations [5].

Under the excitation of a multiple input defined by

(3)

where , denotes the conjugate of , and
, the th-order output response of the system (1) and (2) can

be described, by substituting (3) into (2), as

(4)

where

(5)

is the th-order GFRF of the system evalu-
ated at .

Equations (1) and (4) provide a general description for output
responses of nonlinear systems under multiple inputs. Analysis
of this response can, in most cases, be sufficiently performed
based on (4) to investigate theth-order portion of and

Fig. 1. The nonlinear equivalent circuit of an OTA-C integrator.

Fig. 2. Block diagram of the OTA-C integrator.

the total response is simply a summation of all from
to .

Equation (4) indicates that when a sum ofsinusoids is ap-
plied to a nonlinear system, additional output frequencies are
generated by the th-order portion of the system output con-
sisting of all possible combinations of the input frequencies

taken at a time.
In order to illustrate this general expression, consider a prac-

tical example in [6] which is an OTA with capacitor load. Fig. 1
shows the nonlinear model of the OTA-C integrator with a non-
linear current source where is the characteristic function of
the OTA which can be exactly determined from the circuit struc-
ture and parameters [6].

It can be shown from Fig. 1 that the circuit equations in the
frequency domain are given by

(6)

where , , and , , are the
Fourier transforms of , , and , respectively. Thus,
the block diagram description of the circuit can be shown as in
Fig. 2.

Representing by the Taylor series expansion about
the operation point yields

(7)

where . Then
the th-order GFRF of the circuit can be obtained for

as [6]

(8)

Consider a case where the circuit is subject to a one-tone
input, i.e., , and examine the second-order output re-
sponse of the circuit to this input. In this specific situation

(9)
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and

(10)

Moreover, substituting (8) into (10) for yields

(11)

Equation (11) indicates that the second-order response of the
circuit to the one-tone input is composed of two frequency com-
ponents and , which are the absolute values of
the summations of the input frequencies and taken two
at a time, that is

and

The specific case above is a very simple example where
the output frequencies composed of all possible combinations
of the input frequencies can be easily identified. For general
cases where systems are subject to arbitrary multiple inputs
where could be any integer, the frequency-domain analysis
of nonlinear systems under multiple inputs is more compli-
cated and is usually carried out based on a concept called the
“frequency-mix vector” [1].

Because, under a multiple input, output frequencies generated
by the th-order system nonlinearity consist of all possible com-
binations of the input frequencies
taken at a time, let denote the number of times the fre-
quency appears in a particular frequency mix, the frequency
mix can then be represented by the vector

(12)

where the ’s obey the constraint

(13)

Vector is referred to as theth-order frequency-mix vector
and the corresponding output frequency is given by

(14)

Therefore, the output frequencies in given by (4) can be
interpreted as those frequencies that can be generated by all pos-
sible choices of the ’s such that (13) is satisfied.

It has been shown that the output component in (4) which
corresponds to a particular frequency mixis given by [1]

(15)

where the GFRF is assumed to be symmetric
in the case, for

example, and denotes consecutive arguments
in having the same frequency . Thus the th-order
portion of can be written as

(16)

where the summation over is defined to be

and (13) appended below the summation signs indicates that
only terms for which the indices sum toare included in the
2R-fold summation.

The above analysis for theth-order nonlinear output re-
sponse to a multiple input clearly reflects how an output fre-
quency component is produced by a particular frequency mix
and how the component can be evaluated using the associated
frequency-mix vector.

Consider the above circuit example again but under a
two-tone input. The frequencies in the second-order output re-
sponse of the circuit are
with the ’s obeying the constraint
The output component corresponding to a particular

can be determined using (15)
where the GFRF is defined by (8) for . In this case, it is
not difficult to show the associated frequency-mix vectors are

and is, therefore, the result of the summation of
given by (15) over all these frequency-mix vectors.

Output frequencies corresponding to these vec-
tors can be easily obtained as

Therefore, the practical output
frequencies, which are the nonnegative results of the above
frequencies, are and 0.

Although, as shown above, the frequency-mix vector is
very useful in nonlinear frequency-domain response analyses
under multiple inputs, an important defect with this concept
is that distinct frequency-mix vectors of the same order may
give rise to the same output frequency. For example, when

, and , the fre-
quency-mix vector yields an output
frequency , while the frequency-mix vector

also yields . So,
in general, (15) can not be used to represent the frequency
response of the systemth-order nonlinear output. Based on
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the concept of “frequency-mix vector,” this response can only
be represented as

(17)

where denotes the totalth-order output response at fre-
quency .

From (17), it is hard to evaluate practically. This is be-
cause, given a frequency of interest, it is generally a very diffi-
cult job to identify all possible ’s such that . However,
determining these ’s is necessary if is to be evaluated
from (17). In [9], a general algorithm was proposed to address
this problem which transformed the problem of identifying all
possible ’s to the problem of sorting out all possible integers
’s such that . Obviously, the diffi-

culties with the original method of identifying all possible’s
can not be bypassed when using this algorithm.

Motivated by the attempt to completely resolve the problem
above with existing methods, a new method is proposed in Sec-
tion V to provide a practical and effective strategy to evaluate
the nonlinear frequency responses to multiple inputs and there-
fore to investigate possible nonlinear behaviors of systems in the
frequency domain. The derivations and analyses in Sections III
and IV establish the important and necessary basis for this new
method.

III. EXPRESSION FOR THEOUTPUT FREQUENCYRESPONSES

When a nonlinear system described by (1) and (2) is excited
by a multiple input (3), the systemth-order nonlinear output is
generally given by (4), which can be rewritten as

(18)

where is defined by

if
otherwise.

(19)

In order to obtain a more transparent frequency-domain to
time-domain relationship, consider

(20)

where the * denotes conjugation, and write (18) as

(21)

where

(22)

In (21) and (22)

denotes the summation of

over all the which satisfy the constraint
with

defined by (22) is the th-order output frequency re-
sponse of the system (1) and (2) to the input (3) in terms of
nonnegative frequencies, which represents the contribution of
the th-order system nonlinearity to the output frequency com-
ponent .

Substituting (21) into (1) gives

(23)

where

(24)

So, the output frequency response of a nonlinear system under a
multiple input is given, in terms of nonnegative frequencies, by

(25)
Notice that the relationship between the system output fre-

quency spectrum and is

(26)

Because of (23), can be more easily related to the system
time domain response.
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It can be observed from (25) that the possible output frequen-
cies in the th-order nonlinear output are
with

This clearly reflects how the output frequencies are composed
in this situation. In addition, from the definition of

the terms which compose theth-order output frequency com-
ponent can be readily identified. Therefore, the evalu-
ation of and, moreover, of the total frequency response

can easily be achieved using (25). This is because the
evaluation of can be simply implemented in the fol-
lowing way

(27)

where for , for , and the terms
in which

are zeros according to the definition of given by (19), and,
moreover, can be obtained by just making a summation
of the results determined from (27) from to .

In order to illustrate how to evaluate using the above
idea, consider an example where the OTA-C circuit in Section
II is excited by a two-tone input and
the second-order output frequency response of the circuit at fre-
quencies and is to be examined.

In this case,

if

otherwise

and the second-order GFRF

Therefore

(28)

Thus and can be immediately obtained as

and

and the corresponding output components are therefore

and .
Clearly, compared to the evaluation of anth-order output re-

sponse at a particular frequency using (17), the computation of
this response based on (25) is much more straightforward and
the difficulty with determining all possible frequency-mix vec-
tors for a specific frequency, which is necessary when (17) is
used, is circumvented. Notice that the expression for
given in (25) or (27) accommodates all possible terms which
could make contributions to frequencyand, when given a spe-
cific value of , the terms which actually have no effect on the
response at the specific frequency automatically become zero
due to the definition of .

The analyses and examples above indicate that based on (25)
the output frequency responses of nonlinear systems under mul-
tiple inputs can easily be evaluated at any frequencies of in-
terest. However, it is obviously unnecessary to evaluate the re-
sponse components at frequencies which are beyond the range
of system output frequencies since these components are def-
initely zero. To address this issue involves determining pos-
sible output frequencies of nonlinear systems subject to multiple
input excitations.

IV. DETERMINATION OF THEOUTPUT FREQUENCIES

For linear systems, it is well known that the possible output
frequencies are exactly the same as the frequencies in the
corresponding input. However, this property does not hold if
the system is nonlinear. When a nonlinear system is subject to a
multiple input, it has been shown from the analyses in previous
sections that output frequencies generated by theth-order
system nonlinearity consist of all possible combinations of the
input frequencies taken at a
time. This result can be analytically described as a set given by

(29)
The problem to be addressed initially here is to develop an

algorithm to determine the frequencies composed of the non-
negative part of the result given by (29).

For the simplest case of , it is obvious that these fre-
quencies are , which can be rewritten in a vector
form as

...
... (30)

where

(31)
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and denote the summation of the
elements in theth-row of matrix .

The output frequencies in the case of can be deter-
mined from

... (32)

Define two vectors

(33)

of length 2R and

(34)

to express (32) in terms of a vector as

(35)

where

...
... (36)

For , it is easy to show that the vector representing the
output frequencies produced by the third-order nonlinearity is

(37)

where

...
... (38)

Consequently the algorithm for computing the vector repre-
senting the (nonnegative) frequencies in theth-order nonlinear
output is given by

...

...
...

(39)

Many of the elements in may be the same. Therefore, the
final result of this algorithm is a set composed of all different
elements of . Denote this set as, then

(40)

where means a set composed of all the different ele-
ments of vector .

In order to illustrate the application of this algorithm, consider
an example where and the frequencies in the
second-order nonlinear output is to be determined.

In this case,

, therefore
.

From the above algorithm, can be determined for any.
Therefore, the frequencies in the system output represented by

can be obtained as .
However, there is actually no need to obtain all’s and

then to determine as shown above. This is because, for any
, there is a deterministic relationship between the frequen-

cies in the th-order nonlinear output and the frequencies in the
th-order nonlinear output.

It can be shown from (39) that

(41)

where

...
...

...
...

...

and

Similarly

(42)

Substituting (42) into (41) yields

(43)

In the matrix given by (43), the first matrix block takes the
form

...

(44)
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the second matrix block takes the form

...

(45)

and the third takes the form

...

(46)

It is not difficult to observe from (43)–(46) that the elements of
vector

include all elements of vector

This implies that that is

(47)

or all frequencies in theth-order nonlinear output are present
in the th-order nonlinear output.

This conclusion was proved before [9] under the assumption
that form a frequency base which means there does
not exist a set of rational numbers (not all zero) such
that . Since no assumptions are made
on in the above derivation, the conclusion has now
been established for arbitrary input frequencies.

It is straightforward from (47) that the frequencies in the
system output

(48)

where the value to be taken by could be
where [.] denotes to take the integer part. The specific value of

depends on the system nonlinearities. If the system GFRF’s
for , and

, then .
In the example above, where a nonlinear system is subject to a

two-tone input with , assume that the maximum

nonlinear order and the first-order frequency-response
function . It is straightforward to show that in this
case . Therefore, the output frequencies of the system
can be determined using (48) as

Equations (39), (40), and (48) compose an algorithm for de-
termining output frequencies of nonlinear systems under mul-
tiple inputs. This result actually extends the relationship be-
tween the input and output frequencies of linear systems to the
nonlinear case when the systems are subject to multiple inputs
and is therefore also of theoretical significance.

V. NEW METHOD FOREVALUATING NONLINEAR OUTPUT

FREQUENCYRESPONSES TOMULTIPLE INPUTS

It has been shown in Section III that, based on (25) output
components of nonlinear systems under multiple inputs at any
frequencies of interest can be readily evaluated. Equations (39),
(40), and (48) derived in Section IV provide an effective al-
gorithm for determining possible output frequencies of non-
linear systems in this situation. Based on these two results, a
new method is proposed below to evaluate nonlinear output fre-
quency responses to multiple input excitations.

The basic idea of this new method is to determine all possible
system output frequencies and the frequencies contributed by
each order of system nonlinearities using the algorithm derived
in Section IV. Thus, if the frequencies of interest are beyond the
range of possible output frequencies, it is known immediately
that the output responses at these frequencies are zero. If the
frequencies of interest are within the range of possible output
frequencies then the frequencies contributed by each order of
system nonlinearities provide important information concerning
which order of system nonlinearities could make a contribu-
tion to these frequencies of interest. Moreover, system output
responses at the frequencies of interest are evaluated using (25)
and the computation is implemented by first calculating the re-
sponses at these frequencies contributed by the nonlinear or-
ders which really make contributions to these frequency com-
ponents, and then simply making a summation of the results ob-
tained for corresponding nonlinear orders.

A summary of the new method, which requires the fre-
quency-domain model of the considered nonlinear system, i.e.
the GFRF’s, , , to be known
a priori, is given below.

1) Calculate all possible output frequencies using (39), (40)
and (48) to yield the set .

2) For , calculate to determine a set
which is composed of the numbers of the nonlinearity

orders which have contributions to the output frequency
at which the output component is to be evaluated.

3) Compute as below

(49)
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where

(50)

and

if
otherwise.

4) Evaluate the output response at frequencyas

(51)

The example of the OTA-C circuit in Section I is considered
again to illustrate the application of this method in the following.

Assume that can be approximated sufficiently well
by a third-order polynomial , where

, for , and the output response of the circuit
to the multiple input
at the frequency of interest is to be evaluated.

The GFRF’s of the circuit system are given by (8). They are
all zero in this case for , but not zero for be-
cause can be approximated well by a third-order poly-
nomial and , for . Obviously the maximum
order of system nonlinearities in this case is . Because

, . Thus, using (39), (40) and (48) with
and

yields indicating
that belongs to the frequencies which possibly appear
in the system output.

obtained using (39) and (40) in this case, are
. So

for the frequency of interest .
Using (50) and considering that in this specific case,

if

otherwise

it follows that

Thus, in this case, the output response component of the cir-
cuit at is

The method developed and illustrated above provides an
effective means for evaluating the output frequency responses
of nonlinear systems under multiple inputs based on the system
frequency-domain descriptions. Exact evaluation of system
output frequency responses can only be achieved using both
system models and exact knowledge of the corresponding input
spectra. Multiple input signals can easily be generated with all
parameters of the signals under control. Methods are currently
available for estimating the GFRF’s of nonlinear systems
[13]–[15] and for systems such as some electronic circuits the
GFRF’s can even be derived directly from the system structure
and parameters. Therefore, this method can, hopefully, be
widely applied to analyze nonlinear behaviors of practical
systems including electronic circuits at the system/circuit
design and simulation stages. The application to nonlinear
analysis of communication receivers will be discussed in the
next section to demonstrate how to use this method in practical
system analysis.

VI. A NALYSIS ON NONLINEAR INTERFERENCE AND

DISTORTION EFFECTS INCOMMUNICATION RECEIVERS

In communication systems, the modulated information signal
from a transmitter is transmitted to a receiver where the signal
is amplified and the information extracted. A simplified block
diagram of a superheterodyne receiver is illustrated in Fig. 3.
The block diagram of receivers in modern radio communication
systems are essentially the same as this [16].

Ideally, when the receiver input consists of signals from many
communication channels, tuning the receiver to the carrier fre-
quency of a channel by changing the frequency of the local oscil-
lator could allow only the information from the selected channel
to be eventually recovered at the detector stage. However, this
is correct only when the amplifier and intermediate frequency
filter in the receiver are made up of ideal linear circuits, which
is impossible in practice.

Fig. 4 illustrates the input and output frequency components
of an amplifier which possesses nonlinearities up to the third-
order [1]. If the amplifier and filter stages of a receiver have the
frequency-response characteristics as shown in Fig. 4, where
and represent the carrier frequencies of two different com-
munication channels, it is not difficult to observe from the figure
that owing to the intermodulation effects of the third-order non-
linearity, the signal from the second channel will definitely have
an effect on the receiver output when the receiver is tuned to
only select the signal from the first channel. This kind of inter-
ference between different communication channels and the re-
sulting distortion on the transmitted information are clearly im-
portant problems which must be addressed in the design stage
of communication receivers [16] and quantitative analysis of
these nonlinear effects on the performance of communication
receivers is necessary when dealing with these problems.
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Fig. 3. A simplified block diagram of a superheterodyne receiver.

Fig. 4. The input and output frequency components of an amplifier possessing
nonlinearities up to the third-order (the numbers in the curved brackets indicate
the nonlinear orders which produce the corresponding frequency components).

Analysis of the effects of circuit nonlinearity on communi-
cation receivers was previously carried out based on theories of
nonlinear circuit analysis and using the “frequency-mix vector”
approach developed from the Volterra series theory of nonlinear
systems [1], [8]. The nonlinear circuit analysis was applied to
establish the nonlinear frequency-domain model of the receiver
circuits to be analyzed and the “frequency-mix vector” approach
was then used to evaluate and analyze the output frequency re-
sponses of the circuits to multiple inputs. There are two disad-
vantages to this approach. The first is that a complete and exact
theoretical modeling for nonlinear circuits is usually impossible
due to the fact that parameters of some devices may not be avail-
able and the second is associated with the problems of the “fre-
quency-mix vector” approach which were discussed in Section
II.

Based on the method in Section V and nonlinear system iden-
tification and frequency-domain analysis techniques developed
by the authors, a different approach is proposed in the following
to implement the analysis of frequency responses of nonlinear
circuits in communication receivers. This approach can be ap-
plied at the design and testing stages to examine the effects
of nonlinear interference and distortion on the receiver perfor-
mance.

Application to Analysis of Nonlinear Effects in Communication
Receivers

1) Establish a nonlinear difference model of the amplifier
and filter circuit of the receiver to be analyzed using the
Nonlinear AutoRegressive Moving Average model with
exogenous inputs (NARMAX) methodology [18]–[19]
and the input and output data from an experiment on
the circuit in a prototype of the receiver. NARMAX

methodology includes effective nonlinear system mod-
eling techniques developed by Billings and coworkers
which involve methods for model structure selection,
parameter estimation, and model validation and can be
used to produce a nonlinear difference model referred
to as nonlinear autoregressive with exogenous input
(NARX) model without using any prior knowledge of
the identified system.

The polynomial NARX model of a nonlinear system
can be expressed as follows:

where is a “ th-order output” given by

with and
. is the maximum

lag and , , and are the output, input, and
model coefficients, respectively.

A specific NARX model such as, for example

may be obtained from the above general form with
, , ,

, ,
else .

2) Map the identified NARX model of the circuit into the
frequency domain to yield the GFRF’s of the circuit
system . The mapping from
the polynomial NARX model to the frequency domain
has been developed [14] and is given by
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where

For the specific NARX model above, for example, the
mapping can be readily obtained from the general rela-
tionship as

Notice that the above procedure shows how to obtain the
GFRF’s of the discrete time model of a nonlinear cir-
cuit. If the frequency-domain description of the contin-
uous time model of the circuit is required, the results are
essentially the same as the results obtained for the discrete
time model.

3) Determine the maximum order of nonlinearities in the
circuit using the method in [20] concerning truncation of
the Volterra series expansion of nonlinear systems. But
for the above simple specific NARX model, it is clear that

.
4) Evaluate the output frequency response of the circuit to a

multiple input using the method in Section V to examine
the nonlinear effects on the performance of the commu-
nication receiver. This involves the following steps.

a) Select the frequencies and corre-
sponding magnitude and phase for the multiple
input to be applied. These frequencies could, for
example, be the carrier frequencies of the different
communication channels associated with the re-
ceiver which is to be analyzed.

b) For , determine the frequency set
, which contains output frequencies contributed

by the th-order circuit nonlinearity, using the al-
gorithm given by (39) and (40), and then determine
a set which is composed of the numbers of the

nonlinearity orders that have contributions to the
output frequency with .
The specific value of here depends on which
communication channel is required to be analyzed
for nonlinear interference and distortion.

c) Evaluate

where is evaluated using (50) to examine
the nonlinear interference effect on the commu-
nication channel associated with the carrier fre-
quency . Notice that the complete output com-
ponent at frequency is given by

where the first term represents the linear output re-
sponse of the circuit to the multiple input at fre-
quency , which, without nonlinear interference
and distortion reflected by the second term, should
be the output frequency response of the circuit to
the signal channel associated with the carrier fre-
quency .

These procedures can be readily coded and implemented such
that the new approach can be directly applied for the interference
and distortion analysis of communication receivers at the design
and testing stages.

In engineering, two-tone ( ) tests are commonly used
to experimentally quantify the degree of nonlinearity of a non-
linear communication system or device. It is obvious that the
new approach can be readily applied to perform the same anal-
ysis. In addition to this, the new approach also allows the anal-
ysis to be easily implemented when the system is subject to
a arbitrary ( ) tone sinusoidal excitation so as to be
able to accommodate complicated but more practical situations,
which is impossible to be analyzed based on simple experi-
mental studies.

VII. CONCLUSION

The behavior of practical systems, including electronic cir-
cuits, usually exhibit nonlinear characteristics although mea-
sures are often taken to try to compensate for undesirable non-
linear effects. It is therefore important to evaluate system output
responses so as to estimate how the nonlinearities affect the
system performance. Multiple inputs are typical signals which
are used to excite systems when the system performance in the
frequency domain is to be investigated. The existing methods
for this investigation are almost all based on a concept known
as the “frequency-mix vector.” This concept is useful for ex-
plaining how the output frequencies of nonlinear systems are
generated but it is difficult to use to evaluate the output response
at frequencies of interest. In order to overcome this problem, a
new method is developed in the present study to evaluate the
frequency responses of nonlinear systems under multiple in-
puts. This method circumvents difficulties associated with the
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existing “frequency-mix vector” based approaches and provides
an effective means to investigate nonlinear behaviors of prac-
tical systems including electronic circuits at the system design
and simulation stages. The application of the method to non-
linear analysis of communication receivers has been studied and
specific procedures are proposed which can be directly used in
practice for this application.
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