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Abstract

Nonsmooth modelling techniques have been successfully applied to lumped mass

type structures for modelling phenomena such as vibro-impact and friction oscilla-

tors. In this paper the application of these techniques to continuous elements using

the example of a cantilever beam is considered. Employing a Galerkin reduction

to form an N degree of freedom modal model, a technique for modelling impact

phenomena using a nonsmooth dynamics approach is demonstrated. Numerical sim-

ulations computed using the nonsmooth model are compared with experimentally

recorded data for a flexible beam constrained to impact on one side. A method for

dealing with sticking motions when numerically simulating the beam motion is pre-

sented. In addition, choosing the dimension of the model based on power spectra of

experimentally recorded time series is discussed.

1 Introduction

In this paper the dynamics of a flexible vibro-impacting cantilever beam system is

considered. Such continuous beam systems, even without impacts, have well known

1Author for correspondance:David.Wagg@bristol.ac.uk
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multi-modal behaviour which has been documented in a number of classic texts

[1, 2, 3]. The problem of a cantilever beam impacting against an impact stop has also

been considered by several authors, see for example [4, 5] and the references therein.

However, in general, this latter body of literature has been concerned mainly with

modelling the impact event itself, rather than the global dynamics of the beam.

Following the work of Moon & Holmes [6] and Moon & Shaw [7], a new approach

to modelling the vibro-impact dynamics of beams has been developed [8, 9, 10]. In

this approach, the beam is modelled as a single degree of freedom system, and a

piecewise linear stiffness or coefficient of restitution rule is used to model the impact

process. For example, Moon & Holmes [6] considered the nonlinear dynamics of a

beam subject to harmonic and magnetic forcing, using a Galerkin method to reduce

the system to a single degree of freedom (see also [11]). Moon & Shaw [7] and

Shaw [8] considered a single degree of freedom approach to modelling a vibro-impact

cantilever beam experiment, also by reducing the model to a single mode. In this

case, the system was considered as piecewise linear, and the single degree of freedom

model was obtained using a Galerkin method applied to each linear part. Also

using a single degree of freedom approach to model beam dynamics Bishop et al.

[9] compared experimental and numerical results for a stiff vibro-impact cantilever

beam by using an instantaneous coefficient of restitution model for the impacts.

A similar coefficient of restitution rule is used in combination with a single degree

of freedom linear oscillator to form the now well known impact oscillator [12]. These

systems have nonsmooth dynamical characteristics which have been studied in depth

in recent years, see for example: [13, 14, 15, 16, 17, 18] and references therein.

Other approaches to modelling multi-dimensional impact oscillators have included

the use of nonsmooth mappings [19], finite elements [20] and studies of lumped mass

type systems, [21, 22, 23, 24, 25]. In addition work on estimating the dimension

of multi-dimensional impact oscillators has been carried out by Cusamano et al.

[26] using correlation dimension, and by Azeez & Vakakis [27] who consider proper
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orthogonal decomposition as a means of both estimating dimension and creating a

low dimensional model of a flexible vibro-impact system. Other authors have studied

vibro-impact systems which include continuous rods [28, 29] and beam elements

[30, 31, 32].

In this paper the problem of modelling flexible beams subject to impacts, which

because of their flexibility require multiple modes to adequately capture their dynam-

ical behaviour is addressed. In common with previous studies, a Galerkin approach

is used to reduce the system to a finite set of ordinary differential equations — pre-

viously usually one. However, in this work a technique is presented which allows

more than a single mode to be used in the model. In order to model the impact

process a nonsmooth model based on the instantaneous coefficient of restitution rule

is used. Qualitative comparisons with experimental results using models with one

to four degrees of freedom will be presented, and the issues of chatter, sticking and

choosing the dimension of the model are discussed in detail. Finally comparisons be-

tween experimentally recorded and numerically computed bifurcation diagrams will

be drawn.

2 Equations of motion

Consider a vertically clamped cantilever beam with a motion limiting constraint

on one side. This scenario is shown in figure 1, where the beam is constrained by

an impact stop at a single point. The stop is positioned at a distance B from the

base along the beam, and with an initial transverse distance a from the beam. It is

assumed that the beam is harmonically forced at a distance C from the base because

this relates to the situation in the experimental system which will be discussed in

section 4.

The transverse vibration of the centre line of the beam is denoted by, u(x, t),

where x is the length along the beam from the base and t is time. It is assumed

that the beam vibrates with small enough displacements such that it remains within
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the linear elastic range. Therefore a classical approach can be used for deriving the

equation of motion, (for example [3]), such that the equation of motion for the beam

away from the impact constraint can be written as

EI

L4

∂4u

∂s4
+ η

∂u

∂t
+ ρA

∂2u

∂t2
= f(s, t) u < a. (1)

where E is the Young’s modulus, ρ density, A cross-sectional area and I the second

moment of area for the beam of length L. As a measure of length along the beam

centre line the nondimensional coordinate s = x/L is defined, such that the distance

along the beam s ∈ [0, 1], and the function f(s, t) represents the forcing of the beam

per unit length. Similarly we define b = B/L and c = C/L. In addition, the beam

has viscous damping, η, per unit length. Equation 1 is the Euler-Bernoulli beam

equation for a beam with viscous damping and forcing. In the following analysis ρ,

A and I are considered to be constant, corresponding to the case of a beam with

uniform cross section throughout its length.

2.1 Nonsmooth impact condition

When an impact occurs u(b, t) = a and a coefficient of restitution rule of the form

u̇(b, t+) = −ru̇(b, t
−
) u(b, t

−
) = a, (2)

is applied, where t
−

is the time just before impact, t+ is the time just after impact

and r ∈ [0, 1] is a coefficient of restitution. It is assumed that the velocities, u̇ are

normal to the beam centre line, and that the tangential velocity component at impact

is negligible.

For systems with steel impacting components, it has been demonstrated the cu-

mulative impact time can be as little as 1% of the overall time [33]. Thus, for this

class of systems it can be assumed that the time of contact for individual impacts

is so small, as to be close to zero. This assumption means that equation 2 can be

applied instantaneously such that t
−

= t+, and a nonsmooth discontinuity in velocity
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occurs at impact. The advantage of using this assumption is that the analysis of the

system is simplified as there is no need to compute the time of impact.

However, previous systems studied using this nonsmooth assumption have been

the lumped mass type. For such systems the velocity vector relates to a set of discrete

lumped masses. Thus a particular lumped mass can have a nonsmooth discontinuity

in its velocity field independently from the other masses. For a continuous structural

element, such as a beam, the velocity is a continuous function of beam length. Thus,

in order to apply the nonsmooth impact condition, equation 2, at u = a, the ve-

locity components for the non-impacting part of the beam s 6= b remain unaffected.

Therefore in addition to equation 2 the relation

u̇(s 6= b, t+) = u̇(s 6= b, t
−
) u(b, t

−
) = a. (3)

applies.

The combination of equations 2 and 3 are essentially a nonsmooth representation

of the physical impact process for the beam. In the physical beam system the contact

time will be finite (though small for materials with high stiffness) and the velocity

reversal will propagate outwards from the point of impact, a process which is captured

with this type of model.

The application of this type of nonsmooth impact law to a continuous beam can

be illustrated using the schematic diagrams shown in figure 2. In figure 2 (a) the

beam is away from impact, but with a velocity field, indicated with arrows, is acting

in a direction which is forcing the beam towards the impact stop. Figure 2 (b)

represents the time t = t
−
, which is the first part of the nonsmooth impact process;

the beam has come into contact with the stop, u = a at time t = t
−
, just before

the application of the coefficient of restitution rule. The next stage in the impact

process is the application of the coefficient of restitution rule at time t = t+, shown in

figure 2 (c), where the velocity at the point of contact has been reversed and reduced.

Finally, the beam leaves contact with the stop, figure 2 (d) with time t > t+. Figure

2 (d) also shows the case where the velocity field for the beam has both positive and
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negative components at the same time.

So, after an impact has occurred it is possible for some parts of the beam to be

moving away from the impact stop, and at the same time other parts of the beam

are still moving towards the impact stop. This type of behaviour has been observed

qualitatively during experimental testing of vibro-impacting flexible beam systems.

The aim here is to use the nonsmooth impact conditions for the beam, equations

2 and 3, combined with multi-modal modelling techniques to obtain a continuous

nonsmooth model of such flexible beam systems.

2.2 Galerkin reduction

The Euler-Bernoulli equation can be reduced to a series of ordinary differential

equations by using the standard Galerkin approach (see for example [34]), such that

the transverse displacement of the beam is approximated by

u(s, t) =
∞

∑

j=1

φj(s)qj(t), (4)

where φj(s) are the normal mode shapes of the beam, and qj(t) are the modal

coordinates. Then by substituting equation 4, into the Euler-Bernoulli equation

(equation 1), applying the orthogonality principle for normal modes [3], and then

truncating to N equations yields

N
∑

j=1

(

ω2

njqj(t) + 2ζjωnj q̇j(t) + q̈j(t) =
1

ρA

∫

1

0

f(s, t)φjds

)

j = 1, 2, 3 . . .N, (5)

where the natural frequency of each mode is

ωnj = (ξj)
2

√

EI

ρAL4
(6)

and ξj is the jth eigenvalue. A further assumption is that damping η is linearly

proportional to stiffness where ζj = η/ηc is the ratio of damping to critical damping

ηc = 2ρAωnj.
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It is assumed that f(s, t) can separated into a space dependent function and a

time dependent function such that f(s, t) = g(s)h(t). Therefore as the forcing is

applied at a single point, s = c, g(s) is a Dirac delta function g(s) = δ(s− c). Thus

the integral in equation 5 term becomes

∫

1

0

f(s, t)φjds = h(t)

∫

1

0

δ(s− c/L)φjds = h(t)φi(c/L) = h(t)αj (7)

where αj is a constant value for each mode, dependent only on the predefined position

of forcing at s = c. Note when c is close to a node point for a particular mode, the

excitation of this mode can be significantly reduced, because φj = 0 at a node point.

Conversely, if c is at an anti-node, then the excitation of that mode will be maximised.

For each mode, the equation governing the modal coordinate is then

q̈j(t) + 2ζjωnj q̇j(t) + ω2

njqj(t) =
αj

m
h(t) (8)

where m = ρAL. Equation 8 has a well known exact solution (see for example [3])

which applies during non-impacting motion, u(b, t) < a.

2.3 Mode shapes and initial conditions

In previous studies of the constrained cantilever beam, Moon & Shaw [7] and Shaw

[8], the solution of a clamped-free cantilever is matched with a clamped-pinned beam

at impact, to obtain a solution for a piecewise linear beam model. This approach is

based on the assumption that the beam is in contact with the stop for some contact

time tc and that only a single mode of vibration is considered. Our current approach

is to use a nonsmooth coefficient of restitution rule, equations 2 and 3, for which

tc is assumed to be so short as to be approximately equal to zero. Thus, when an

impact occurs, the beam is in contact with the constraint for a negligible (ideally

zero) amount of time, and as a result mode shapes of the beam during impact are

not considered to be those of a clamped pinned beam (see discussion on sticking in

section 5.1).
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The normal modes shapes for a cantilever beam can be defined as,

φj(s) = (cosh ξjs− cos ξjs) − σj(sinh ξjs− sin ξjs) j = 1, 2, 3, . . . (9)

where

σj =
(sinh ξj − sin ξj)

(cosh ξj + cos ξj)
(10)

and ξj are the eigenvalues of the beam [35].

If required, the initial conditions for the motion of the beam can be determined

from

u(s, 0) =

∞
∑

j=1

φj(s)qj(0) (11)

and

u̇(s, 0) =
∞

∑

j=1

φj(s)q̇j(0) (12)

In all the simulations and experiments in this current work the initial conditions are

u(s, 0) = u̇(s, 0) = 0.

3 Vibro-impact cantilever beam analysis

In this section a nonsmooth model for a vibro-impacting continuous beam is

obtained by combining the nonsmooth impact law with a Galerkin reduction of the

Euler-Bernoulli equation. Firstly, following the standard Galerkin approach, the

number of modes is truncated to N , such that the dynamics of the beam is modelled

by N ordinary differential equations of the form of equation 8. The condition for an

impact to occur is that u(b, t) = a, and as the systems is now truncated to a set of

N modes the condition for impact can be written as

u(b, t) = a =
N

∑

j=1

φj(b)qj(t) = φ(b)q(t) (13)

where φ(b) = [φ1(b), φ2(b), ..., φN(b)] and q(t) = [q1(t), q2(t), ...., qN(t)]T . Using this

relationship in the impact law, equation 2 can be expressed as

φ(b)q(t+) = −rφ(b)q(t
−
) φ(b)q(t) = a. (14)
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In the N = 1 case φ(b) and q(t) become scalar and the relationship reduces to

q(t+) = −rq(t
−
). However, for N > 1 this cannot hold because for the remainder of

of the beam, s 6= b, equation 3 applies during impact.

3.1 Example: two mode model of beam

To demonstrate how to include the effect of equation 3 consider the case for

N = 2, using the displacement of the beam at the point of impact, s = b and the

point of forcing, s = c. Thus for such a system at an impact

u̇(b, t+) = −ru̇(b, t
−
)

u̇(c, t+) = u̇(c, t
−
)

(15)

which can be written as

φ(b)q̇(t+) = −rφ(b)q̇(t
−
)

φ(c)q̇(t+) = φ(c)q̇(t
−
)

(16)

where, in this case φ(b) = [φ1(b), φ2(b)], φ(c) = [φ1(c), φ2(c)] and q̇(t) = [q̇1(t), q̇2(t)]
T .

The relations in equation 16 can be combined to give

[Φ]q̇(t+) = [R][Φ]q̇(t
−
) (17)

where [Φ] = [φ(b), φ(c)]T is a 2 × 2 matrix and

[R] =





−r 0

0 1



 (18)

is the coefficient of restitution matrix. Finally, from equation 17 a relationship for

the modal velocities at impact is obtained

q̇(t+) = [Φ]−1[R][Φ]q̇(t
−
) (19)

which is a modal form of the coefficient of restitution rule.

The following observations on this example are made:
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1. To have square matrices, this analysis requires that the number of modes N

to be equal to the number of points considered on the beam. Square matrices

simplify the analysis as matrices have to be inverted.

2. The matrix [Φ] is effectively a subset of the full modal matrix containing the

normal modes for the beam. As N becomes larger, [Φ] becomes a better ap-

proximation of the full modal matrix.

3. For vibro-impact systems, the effect of decoupling the governing Euler-Bernoulli

into normal mode components is to couple the modes via impact; equation 19.

This analysis can be generalised to consider any number of points along the beam.

To ensure that square matrices are used, it is assumed that the number of modes,

N , and the number of points along the beam are the same. Note also that this set

of points must include the point of impact. Then the matrix [Φ] can be written

[Φ] =























φ1(s1) φ2(s1) . . . φN(s1)

φ1(s2) φ2(s2) . . . φN(s2)

φ1(s3) φ2(s3) . . . φN(s3)
...

... . . .
...

φ1(sN) φ2(sN) . . . φN(sN)























. (20)

and [R] = diag[1, 1, ...,−r, ..., 1, 1], with the coefficient of restitution positioned to

coincide with the position of the impact stop.

4 Experimental results

The experimental results were recorded from a steel cantilever beam apparatus

constructed specifically for this work. A schematic representation of the experimental

apparatus is shown in figure 3. The cantilever beam has dimensions length 300mm

width 25.5mm and thickness 0.49mm. The beam is clamped vertically into a steel

base, to which a steel frame is attached which provides a housing for the impact
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stop, displacement and forcing transducers. The impact stop is a 3mm diameter steel

rod, with a rounded tip, fixed to the frame with a lock nut. The magnetic forcing

transducer consists of an electro magnet capable of producing a variable magnetic

field from an input analogue voltage signal which is provided via a LabPC+ data

acquisition card installed in a personal computer. The capacitative displacement

transducer works in conjunction with a Wayne Kerr TE 100 Mk II feedback amplifier.

The transducer is calibrated to read displacements in the range of ±1.25mm. The

signal from the Wayne Kerr is recorded using the LabPC+ card.

Using equation 6 the first four natural frequencies for the beam have been com-

puted using the following parameter values, Young’s Modulus E=205×109N/m2,

second moment of area I=24.4×10−14m4, density ρ=8500kg/m3, cross sectional area

A=12.4×10−6m2 and length L=0.3m. The results are f1 = 4.3, f2 = 26.84, f3 = 75.1,

f4 = 147.3, where fj = ωnj/2π Hz. These compare with measured frequencies (see

figure 4 and 5 (b)) of f1 ≈ 3.8Hz, f2 ≈ 21.5Hz, f3 ≈ 106Hz and f4 ≈ 210Hz. From

these measurements it can be seen that the analytically computed frequency is a

reasonably close approximation for f1, but the accuracy of the predicted frequency

decreases with increasing mode number.

A frequency response diagram for the beam is shown in 4. For this and all

subsequent figures, the convention of [36] is followed where the amplitude of response

is shown in voltage units. From figure 4 the shape of the resonance peaks indicate that

the beam is lightly damped. The damping for the flexible beam was estimated using

a half power bandwidth on the first two resonance peaks to occur in the response

spectrum corresponding to the first two natural frequencies of the beam. Using this

frequency response data gives a value of η (including data from some free vibration

tests) in the range 0.01−0.005(Ns/m)/m. The value η = 0.005 was subsequently used

for all modes in the numerical simulations. If data could be obtained for more than

the first two modes, we anticipate that the accuracy of the model could be improved

by including individual damping values for each mode. Each experimental test was
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started from the static state, so determining initial conditions for the experimental

beam, was straight forward because u(s, 0) = u̇(s, 0) = 0, ∀s.

In figure 5 (a) one second of a typical non-impacting time series sampled at a

rate of 1000 samples per second from the flexible beam forced at f = 21Hz, (close to

the second natural frequency) is shown. The power spectrum of this signal is shown

in figure 5 (b). From the power spectrum it can be seen that for the non-impacting

response the most significant modal components are the first four, f1, f2, f3 and f4,

and as the system is being forced close to f2, this is the largest component in the

response. In fact it is not possible to distinguish any other modal contribution from

noise above f4 (approximately 210Hz). Thus by viewing the power spectrum for

this particular beam time series the number of modes which contribute to the overall

motion can be estimated, by the appearance of the associated modal frequency in the

spectrum. This gives us a basis for choosing N in the Galerkin approach developed

in section 2.2.

Two other approaches have been discussed for estimating the number of modes

to include in modelling continuous vibro-impacting systems. Cusamano et al. used

a correlation dimension approach [26] and Azeez & Vakakis have demonstrated a

method based on proper orthogonal decomposition [27].

5 Numerical simulation of flexible beam

Having chosen N , and estimated the parameters and initial conditions for the

beam a numerical time series of the beam motion can be computed. This is achieved

by computing the exact solution to equation 8 in small time steps ∆t such that tn+1 =

tn+∆t, for each mode included in the model. This is assuming that initially the beam

starts away from the impact stop. At each time step the condition φ(b)q(tn) < a

is checked. When φ(b)q(tn) > a, the values q(tn−1) and q(tn) are on either side of

the impact discontinuity, and a secant type root finding method is used to compute

the exact time of crossing ti from which the modal values at impact q(ti) are found.
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Then the impact law, equation 19 is applied and the time stepping of the exact

solutions continues.

5.1 Sticking motions

For some parameter values the beam undergoes a succession of low velocity im-

pacts in quick succession. In impacting systems, this phenomenon is referred to as

“chatter” [37]. If the sequence of low velocity impacts continues, the beam can be-

come stuck to the stop, in a similar way that a bouncing ball eventually comes to

rest on a horizontal surface. For the beams considered in this work, the regions of

chatter were very small, and periods of sticking behaviour were very short in com-

parison to the forcing periods. As a result this behaviour could not be qualitatively

observed experimentally due to limitations in the experimental sampling rate, but

was observed in the numerical simulations of the beam.

A sticking motion typical of those observed during numerical simulation is shown

in figure 6. In figure 6 (a) a two second sample of a vibro-impact time series is shown,

and in (b) a close up around the sticking region, which in this case occurs close to

t = 22.76. Here a succession of low velocity impacts forming a chatter sequence

followed by a short sticking period can be observed.

To deal with sticking motions numerically the approach proposed by Cusumano et

al. [22] is adopted, which is based on recording the time interval between subsequent

impacts. When this time interval falls below a certain threshold, as it can after a

chatter sequence, the beam is assumed to be stuck to the stop. The method proposed

by Cusumano et al. [22] was for a lumped mass system with a single mass subject

to a motion limiting constraint. Once sticking had been detected the force holding

the constrained mass against the stop could be computed from the motion of the

remaining masses. When this force passed through zero the mass will no longer be

held against the stop and so the sticking motion ends.

For continuous systems this approach cannot be so easily applied, and for this
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work a different method has been applied. The onset of sticking is computed in the

same way, by monitoring the time interval between successive impacts. Then during

the sticking phase, a root finding method is used to compute the required force,

applied at the point of impact, to keep the beam displacement equal to the stop

distance i.e. u(b, ti) = a. When this force passes through zero the sticking motion is

deemed to have ended.

To model sticking motion, the approach of assuming the beam is clamped-pinned

during sticking [7, 8] was also considered. However for systems where N > 1 this

means that at impact

u(b, t) =

N
∑

j=1

φj(s)qj =

N
∑

j=1

ψj(s)qj = a (21)

where ψj(s) are the modes for a clamped-pinned beam. In general this relation

cannot hold as
N

∑

j=1

φj(s)qj 6=

N
∑

j=1

ψj(s)qj. (22)

An alternative would be to use the relationship

u(b, t) =
N

∑

j=1

φj(s)qj =
N

∑

j=1

ψj(s)q̂j = a (23)

where q̂j are the modal coordinates for a clamped-pinned beam. However this leaves

the problem of the relating the two sets of modal coordinates qj and q̂j at the point of

discontinuity. Therefore clamped-free modes were used during simulations of sticking

motion.

5.2 Comparison between numerical and experimental results

For comparison between numerical and experimental results, figure 5 (c) shows a

simulation of the non-impact motion shown in figure 5 (a). This simulation (using a

four degree of freedom model) has been computed using the Galerkin method, with

N = 4, and using a harmonic forcing function of the form f(t) = F cos(Ωt). It can be
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seen from figures 5 (c) and 5 (a) that there is good qualitative correlation, indicating

that the modelling method works for the non-impacting case, a fact which is already

well known from the general literature on classic vibration theory [1, 2, 3].

In figure 7 (a) a typical vibro-impact time series recorded from the flexible beam

experiment at a forcing frequency of Ω = 20.8Hz close to the second natural frequency

is shown. The power spectrum of this motion is shown in figure 7 (c), here vertical

lines represent the theoretically computed natural frequencies of the non-impacting

beam. It is interesting to compare this power spectrum with the non-impact ex-

ample in figure 5 (b). The vibro-impacting power spectrum has a much greater

high frequency content. In addition there are several significant power spikes in the

spectrum, and it is not obvious whether these are due to a modal contribution or

could be attributed to the nonlinearity in the system. For the first two computed

natural frequencies there does seem to be a reasonable correlation with a nearby

power spike in the spectrum. The power spike at approximately 60Hz may be due

to the third mode, but from the three remaining spikes at approximately 120Hz, ap-

proximately 160Hz and approximately 195Hz it is not possible to distinguish which

correlates to the fourth and fifth modal contributions. However, in common with

the non-impacting case there is no significant modal contribution above 250Hz. By

comparison with figure 5 it can be observed that the additional power spikes in the

spectrum are due to the nonlinearity caused by impacts, and therefore it is assumed

that a four mode model is sufficient to model the beam dynamics.

Thus, in figure 7 (b) a numerical simulation of the motion in figure 7 (a) is shown,

using the nonsmooth Galerkin approach, with N = 4. As with the non-impact result

this simulation appears to give a good qualitative agreement with the experimental

recorded time series in figure 7 (a). The power spectrum of the numerical simulation

is shown in figure 7 (d). As would be expected, the main frequency components of

this signal correspond to the first four computed natural frequencies. One significant

additional frequency component occurs close to the second natural frequency, this
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can also be seen in the experimental spectrum, and is due to the forcing frequency

at 20.8Hz.

5.3 Dimensionality of the model

In order to chose the number of modes to include in our modelling of the beam, the

qualitative technique of examining the power spectrum of a recorded experimental

time series has been used. By examining the spectrum, individual power spikes can be

attributed to a particular modal contribution, and hence the number of modes for a

model estimated. It is interesting, therefore to consider the effect of underestimating

the number of modes which contribute to the beam response.

In figure 8, numerical simulations for both the non-impacting case (a) and the

vibro-impacting case (b) are presented with simulations using N = 1, 2, 3 and 4.

For the non-impacting case, figure 8 (a), it can be seen that using a single mode

N = 1, the amplitude of response is significantly underestimated by the model. This

is due to the fact that in this example the system is being forced close to the second

natural frequency f2 ≈ 21.5Hz, and thus for a single mode model with a resonance

at f1 ≈ 3.8Hz the response to excitation at f2 will be low amplitude. When the

second mode is added, N = 2, as would be expected, the response becomes much

closer to the experimental values, in fact, a slight overestimate. Finally there is very

little difference between the solutions for N = 3 and N = 4, which gives a close

qualitative agreement with experimental results.

For the vibro-impacting model, figure 8 (b), the single mode solution N = 1

predicts a periodic vibro-impact solution. It is interesting to note that in this case

the system is also being forced away from the first natural frequency but unlike

the non-impact case the amplitude of response of the single mode model is in good

agreement with experimentally data, figure 7 (a). The main difference is that the

model is only capable of simulating periodic type motion for a single harmonic forcing

term, whereas the experimental system appears to qualitatively exhibit a quasi-
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periodic type response. Thus when additional modes are included in the model,

N = 2, 3, 4 the quasi-periodic nature of the motion is represented in the response

of the model. Note also that although each of the solutions N = 2, 3, 4 produces a

qualitatively different response, the time of impact and maximum amplitudes are all

approximately similar.

The power spectral densities for the numerical simulations in figure 7 are shown

in figure 9. In figure 9 (a), a large number of harmonics are visible in the spectrum

due to the sharply defined nonsmooth discontinuity in the time series. In figure 9 (b)-

(d) the harmonics are substantially reduced and the additional modal contributions,

modes 2,3 and 4 respectively can be seen in the spectra.

5.4 Bifurcation diagrams

Using the four mode model for the beam a measure of the beam displacement

can be computed for a range of frequency values: for this analysis the maximum

minus the minimum displacement per forcing period is used. In this study, only

frequency values close to the first resonance peak in the spectrum are considered

which for the experimental system f1 ≈ 3.2 Hz. Figure 10 (a), shows an experi-

mentally recorded bifurcation diagram for the beam. In figure 10 (a) approximately

ten steady state readings from the beam tip at each frequency value were recorded,

having first allowed the transients to decay. In this example, the impact stop was

positioned at a displacement equivalent to approximately -1.05 volts. Therefore as

the maximum minus minimum displacement is being plotted, the first grazing will

occur at approximately 2.1 volts. During these experiments forcing amplitude was

significantly reduced so that non-impacting resonance curves could also be recorded

without excessively large beam vibrations.

In figure 10 (b), a numerically computed bifurcation diagram is shown of the

first resonance peak in the four mode model for which f1 ≈ 4.3Hz. It can be seen

that the qualitative appearance of the two plots is similar, with a non-impacting
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behaviour below Max-Min=2.1 and hysteresis loop behaviour for frequencies greater

that the non-impacting natural frequency indicating, as expected, hardening spring

type behaviour [7, 9]. Quantitatively, the numerical solution gives good agreement for

Max-Min amplitude but is less accurate for the frequency values even after accounting

for the approximately 1Hz frequency shift between experiment and simulation. It

appears that both the frequency scale and range have significant differences between

experiment and simulation.

6 Conclusions

In this paper nonsmooth modelling techniques have been applied to continuous

systems such as beams. Numerically computed simulations have been presented of

flexible cantilever beam vibro-impact motion using this technique, which provide

reasonable qualitative comparisons with experimentally recorded results within the

parameter range studied.

The formation of the numerical model depends, in its current form, on the num-

ber of modes chosen being equal to the number of points considered on the beam. A

further condition is that the point of impact must be included. This is a generalisa-

tion of previous studies, where for a beam with a single point of impact the system

was reduced to a single degree of freedom.

The impact process has been modelled using an instantaneous coefficient of resti-

tution rule. The main limitation with this approach is that the impact time for flex-

ible beams may not always be small, although allowance has been made for chatter

and sticking motions. In systems where impact times are not short the assumption

of an instantaneous impact would not be valid and a different modelling approach

would be required.

For engineering structures with high flexibility subject to nonsmooth effects such

as impact and friction, multi-modal behaviour is a significant part of the dynamical

behaviour. Single degree of freedom models, although useful, do not fully capture
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this behaviour. The modelling process presented here, provides a means of modelling

the dynamics of continuous systems, with the inclusion of the higher dimensional

dynamics.

References

1. R. E. D. Bishop and D. C. Johnson. 1960 The mechanics of vibration.

Cambridge University Press.

2. L. Meirovitch. 1967 Analytical methods in vibration. McGraw-Hill: New York.

3. S. P. Timoshenko, D.H. Young, and W. Weaver Jr. 1974 Vibration

problems in engineering. Van Nostrand USA.

4. A. Fathi and N. Popplewell. 1994 Journal of Sound and Vibration 170(3)

365–375. Improved approximations for a beam impacting a stop.

5. J. Wang and J. Kim. 1996 Journal of Sound and Vibration 191(5) 809–823.

New analysis method for a thin beam impacting against a stop based on the full

continuous model.

6. F. C. Moon and P. J. Holmes. 1979 Journal of Sound and Vibration 65(2)

275–296. A magnetoelastic strange attractor.

7. F. C. Moon and S. W. Shaw. 1983 International Journal of Non-Linear Me-

chanics 18(6) 465–477. Chaotic vibrations of a beam with non-linear boundary

conditions.

8. S. W. Shaw. 1985 Journal of Sound and Vibration 99(2) 199–212. Forced

vibrations of a beam with one-sided amplitude constraint: Theory and experi-

ment.

19



9. S. R. Bishop, M. G. Thompson, and S. Foale. 1996 Proceedings of the

Royal Society of London A 452 2579–2592. Prediction of period-1 impacts in a

driven beam.

10. S. R. Bishop, D. J. Wagg, and D. Xu. 1998 Chaos, Solitons and Frac-

tals 9(1/2) 261–269. Use of control to maintain period-1 motions during wind-up

or wind-down operations of an impacting driven beam.

11. T. Watanabe. 1978 Journal of Mechanical Design 100 487–491. Forced vibra-

tion of continuous system with nonlinear boundary condition.

12. S. W. Shaw and P. J. Holmes. 1983 Journal of Sound and Vibration 90(1)

129–155. A periodically forced piecewise linear oscillator.

13. J. M. T. Thompson and R. Ghaffari. 1982 Physics Letters A 91 5–8. Chaos

after period doubling bifurcations in the resonance of an impact oscillator.

14. S. W. Shaw and P. J. Holmes. 1983 ASME Journal of Applied Mechanics 50

849–857. A periodically forced impact oscillator with large dissipation.

15. A. B. Nordmark. 1991 Journal Of Sound and Vibration 145(2) 275–297.

Non-periodic motion caused by grazing incidence in an impact oscillator.

16. S. R. Bishop. 1994 Philosophical Transactions the Royal Society of London

A 347 347–351. Impact oscillators.

17. W. Chin, E. Ott, H. E. Nusse, and C. Grebogi. 1994 Physical Review

E 50(6) 4427–4444. Grazing bifurcations in impact oscillators.

18. C. J. Budd, F. Dux, and A. Cliffe. 1995 Journal of Sound and Vibra-

tion 184(3) 475–502. The effect of frequency and clearance variations on single

degree of freedom impact oscillators.

20



19. M. H. Fredriksson and A. B. Nordmark. 1997 Proceedings of the Royal

Society of London A 453 1261–1276. Bifurcations caused by grazing incidence

in many degrees of freedom impact oscillators.

20. R. H. B. Fey, E. L. B. van de Vorst, D. H. van Campden,

A. de Kraker, G. J. Meijer, and F. H. Assinck. Chaos and bifurca-

tions in a multi-dof beam system with nonlinear support. In Nonlinearity and

chaos in engineering dynamics, J. M. T. Thompson and S. R. Bishop, Eds. John

Wiley: Chichester 1994 ch. 9, pp. 125–139.

21. J. Shaw and S. W. Shaw. 1989 Journal of Applied Mechanics 56 168–174.

The onset of chaos in a two-degree of freedom impacting system.

22. J. P. Cusumano and B-Y. Bai. 1993 Chaos, Solitons and Fractals 3 515–536.

Period-infinity periodic motions, chaos and spatial coherence in a 10 degree of

freedom impact oscillator.

23. R. D. Neilson and D. H. Gonsalves. Chaotic motion of a rotor system with

a bearing clearance. In Applications of fractals and chaos, A. J. Crilly, R. A.

Earnshaw, and H. Jones, Eds. Springer-Verlag 1993 pp. 285–303.

24. D. J. Wagg and S. R. Bishop. 2001 International Journal of Bifurcation

and Chaos 11(1) 57–71. Chatter, sticking and chaotic impacting motion in a

two-degree of freedom impact oscillator.

25. M. Wiercigroch and B. de Kraker, Eds. 2000 Applied nonlinear dynamics

and chaos of mechanical systems with discontinuities. World Scientific Publish-

ing.

26. J. P. Cusumano, M. T. Sharkady, and B. W. Kimble. 1994 Philosoph-

ical Transactions of the Royal Society of London A 347 421–438. Experimen-

tal measurements of dimensionality and spatial coherence in the dynamics of a

flexible-beam impact oscillator.

21



27. M. F. A. Azeez and A. F. Vakakis. 2001 Journal of Sound and Vibra-

tion 240(5) 859–889. Proper orthogonal decomposition (pod) of a class of vi-

broimpact oscillations.

28. P. Metallidis and S. Natsiavas. 2000 International Journal of Non-linear

Mechanics 35 675–690. Vibration of a continuous system with clearance and

motion constraints.

29. Y. V. Mikhlin and A. M. Volok. 2000 International Journal of Solids and

Structures 37 3403–3420. Solitary transversal waves and vibro-impact motions

in infinite chains and rods.

30. E. Emaci, T. A. Nayfey, and A. F. Vakakis. 1997 Zeitschrift fur Ange-

wandte Mathematik und Mechanik (ZAMM) 77(7) 527–541. Numerical and

experimental study of nonlinear localization in a flexible structure with vibro-

impacts.

31. M. F. A. Azeez and A. F. Vakakis. 1999 International Journal of Non-linear

Mechanics 34 415–435. Numerical and experimental analysis of a continuous

overhung rotor undergoing vibro-impacts.

32. V. I. Babitsky. 1998 Theory of vibro-impact systems and applications.

Springer-Verlag: Berlin Heidelberg.

33. D. J. Wagg, G. Karpodinis, and S. R. Bishop. 1999 Journal of Sound and

Vibration 228(2) 243–264. An experimental study of the impulse response of a

vibro-impacting cantilever beam.

34. C. A. J. Fletcher. 1984 Computational Galerkin Methods. Springer-Verlag:

New York.

35. R. D. Blevins. 1979 Formulas for natural frequency and mode shape. Van

Nostrand Reinhold: New York.

22



36. S. Foale and S. R. Bishop. 1994 Nonlinear Dynamics 6 285–299. Transient

response of a constrained beam subjected to narrow-band random excitation.

37. C. J. Budd and F. Dux. 1994 Philosophical Transactions of the Royal So-

ciety of London A 347 365–389. Chattering and related behaviour in impact

oscillators.

38. F. Pfeiffer and C. Glocker. 1996 Multibody dynamics with unilateral con-

tacts. John Wiley.

23



Figure Captions

• Figure 1: Schematic representation of a continuous vibro-impact cantilever

beam system.

• Figure 2: Schematic representation of a continuous cantilever beam.(a) before

impact, (b) at time t = t
−
, (c) at time t = t+, (d) after impact. Note: for

simplicity a = 0 in this figure.

• Figure 3: Schematic representation of the beam apparatus

• Figure 4: Experimentally recorded frequency-response diagram for the beam,

showing first two resonance peaks. Maximum minus minimum displacement vs

forcing frequency.

• Figure 5: Experimentally recorded signal for the beam with a forcing frequency

of f = 21.0Hz. (a) non-impacting time series sample rate 1000 samples/second,

(b) power spectrum, (c) numerical simulation of non-impact motion in (a),

parameter values; F = 0.6(volts), Ω = 144, N = 4, η = 0.005.

• Figure 6: Numerical simulation of a typical sticking motion. Parameter values

a = −1.05, r = 0.8, F = 0.1, N = 4, ρ = 8500, E = 2.05 × 1011, Ω = 27.21

and η = 0.005.(a) Time series of motion with sticking close to t = 22.76. (b)

Close up around the sticking region.

• Figure 7: Impacting beam simulation; (a) Experimentally recorded signal for

the beam and power spectrum sample rate 1000 sample/second. (b) power

spectrum of signal shown in (a), vertical lines represent natural frequencies

computed using classical beam theory. (c) Numerical simulation, parameter

values us = −0.7, N = 4, F = 0.6, Ω = 28.3, η = 0.005, r = 0.8.

• Figure 8: Numerical simulation using modal models with N = 1 solid line,

N = 2 dashed line, N = 3 short dashes and N = 4 dotted line. Parameter
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values us = −0.6, A = 0.6, c = 0.005, r = 0.8. (a) non-impacting Ω = 21.0 (b)

vibro-impacting Ω = 28.3.

• Figure 9 Power spectrum of the numerical simulations shown in figure 8. (a)

N=1, (b) N=2, (c) N=3, (d) N=4.

• Figure 10 Flexible beam; (a) Experimentally recorded bifurcation diagram (c).

(b) Numerical simulation.: parameter values us = −1.05, N = 4, A = 0.1,

c = 0.0.005, r = 0.6.
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