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Abstract

We consider the coupling of two non-identical dynamical systems using an adaptive feed-

back linearization controller to achieve partial synchronization between the two systems. In

addition we consider the case where an additional feedback signal exists between the two

systems, which leads to bidirectional coupling. We demonstrate the stability of the adaptive

controller, and use the example of coupling a Chua system with a Lorenz system, both ex-

hibiting chaotic motion, as an example of the coupling technique. A feedback linearization

controller is used to show the difference between unidirectional and bidirectional coupling.

We observe that the adaptive controller converges to the feedback linearization controller

in the steady state for the Chua-Lorenz example. Finally we comment on how this type of

partial synchronization technique can be applied to modeling systems of coupled nonlinear

subsystems. We show how such modeling can be achieved where the dynamics of one system

is known only via experimental time series measurements.

Running title:Partial synchronization of non-identical systems
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1 Introduction

The problem of synchronizing two identical dynamical systems has been studied by many

authors, for example: Ashwin et al. (1994); Kozlov & Shalfeev (1996), Ashwin (1998) and Yang

& Duan (1998), following the work of Pecora & Carroll (1990). When this is achieved using

adaptive control type methods, the process is referred to as adaptive synchronization (John &

Amritkar 1994; Boccaletti, Farini & Arecchi 1997; Fradkov & Markov 1997; Dedieu & Ogorzalek

1997). More recently the concept of partial synchronization between two or more similar chaotic

systems has been studied (Hasler 1998; Yanchuk, Maistrenko & Mosekilde 2001). In this paper

we consider coupling two non-identical dynamical systems via partial synchronization using an

adaptive synchronization technique.

A case of particular interest is when an additional feedback signal exists between the two

systems such that the coupling is bidirectional and the two systems interact dynamically, giving

rise to a complex dynamical behavior. This has applications to dynamic substructuring, where

systems are modeled by coupling a set of interacting substructures together (Ohayon et al. 1997;

Wagg & Stoten 2001). We demonstrate this concept using both a feedback linearization controller

and an adaptive feedback linearization controller.

In addition, we demonstrate how the adaptive controller can be designed when coupling single

and multiple variables from each of the non-identical nonlinear systems. We show that this type

of adaptive controller is stable for such a coupled system. This is demonstrated using the example

of coupling a Lorenz system with a Chua system; for similar examples see Di Benardo (1996).

In this example, we observe that the steady state adaptive controller converges to the feedback

linearization controller.

Finally we discuss applications to modeling dynamical systems composed of a set of coupled

nonlinear dynamical systems. We discuss how partial synchronization can be used to achieve this

type of modeling. We also discuss how the concepts of synchronizing dynamical systems, (Ashwin

1998) can be used to monitor the performance of the controller producing the coupling and hence

the modeling process itself, using the Lorenz Chua system as an example.
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2 Partial synchronization for non-identical systems

We consider two non-identical dynamical systems, one with state variable x ∈ Rp, and the

second, with state variable y ∈ Rq, with governing equations of the general form

ẋ(t) = f1(x, t),

ẏ(t) = f2(y, t).
(1)

In general, we consider that the dynamics of the two systems are nonlinear and that there is no

cross coupling between the two sets of state variables. We define a coordinate subset of x, xs ∈ Rn,

and similarly ys ∈ Rn, which represent the coordinates which require synchronization to achieve

coupling between the two systems. So, we will consider the class of systems for which equation 1

can be expressed as

ẋn(t) = f11(xn, xs, t)

ẋs(t) = f12(xn, xs, t)

ẏs(t) = f21(yn, ys, t)

ẏn(t) = f22(yn, ys, t)

(2)

where xn = {xi ∈ x : xi /∈ xs} and xi denotes the ith element of x, and likewise yn = {yi ∈ y :

yi /∈ ys}. Then if xs → ys as t → ∞ we say that the systems is partially synchronized. When such

partial synchronization occurs a coupled system is formed which is shown schematically in figure

1. The case where xs = x and ys = y is the standard synchronization problem (Pecora & Carroll

1990).

To achieve partial synchronization, we need to synchronize the dynamics of f12 and f21. Thus

we add a controller, to the coupled system, such that equation 2 can be written as

ẋn(t) = f11(xn, xs, t)

ẋs(t) = f12(xn, xs, t) + g(u, t)

ẏs(t) = f21(yn, ys, t)

ẏn(t) = f22(yn, ys, t)

(3)

where u is the control signal, and g(·) represents the controller function. In this form, the dynamics

of f21 can be thought of as the reference model (Landau 1979), which we want f12 + g(u, t) to

replicate and f12 represents the plant.

So, in the formulation of equation 3, a part of system 1 will be forced to behave like part of

system 2. However, for bidirectional coupling, system 1 will also have an influence on the behavior
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of systems 2. In this case, an additional feedback signal between f1 and f2 can be used to represent

the coupling. We represent it by adding a coupling function to f21, such that

ẋn(t) = f11(xn, xs, t)

ẋs(t) = f12(xn, xs, t) + g(u, t)

ẏs(t) = f21(yn, ys, t) + c(xn, xs, t)

ẏn(t) = f22(yn, ys, t)

(4)

In the case where f1 is a physical system and f2 is an analytical model the dynamics of f11 can be

assumed to be unknown, and c(xn, xs, t) would typically be a recorded time series from f11. The

functions f22 and f21 must be known explicitly, so that they can be computed numerically, and

the structure of the f12 must be known. Knowledge of specific parameter values is not required,

as the adaptive controller can be applied without this information. If c = 0 the coupling between

the two systems (via partial synchronization) is effectively unidirectional, whereas if c 6= 0 the

coupling is bidirectional; examples will be discussed in section 3.1, 4.1 and 5.1. We note also that

the analysis in this section is for autonomous systems, however it is possible to apply this analysis

to some non-autonomous systems (Wagg & Stoten 2001) which we briefly discuss in section 5.1.

2.1 Controller design

To design a controller for the system we first reduce equation 4 to the form

ẋs(t) = f12(d1(t), xs, t) + g(u, t)

ẏs(t) = f21(d2(t), ys, t) + c(t)
(5)

where the dynamics of xn and yn are now represented by the functions d1 and d2 respectively,

which we assume act as disturbances. Then we can formulate the error dynamics for the system

such that

ė(t) = f21(d2(t), ys, t) − f12(d1(t), xs, t) + c(t) − g(u, t) . (6)

where the error, e = ys − xs. This can then be expressed as

ė(t) = ∆f(t) + c(t) − g(u, t) . (7)

where ∆f(t) = f21 − f12. For effective performance of the controller, we require that the equi-

librium, e = 0 is stable. From equation 7 we see that the controller has to compensate for the

difference between f12 and f21, ∆f(t) and the addition feedback signal c(t).
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In this formulation there are two additional disturbances, d1, d2. These functions are not

external disturbances in the ordinary sense, but signals from some other part of the coupled

system. As a result, the controller must compensate for the influence of these additional signals.

3 Single variable coupling

Let us first consider the case where only a single coordinate of f1 and f2 is to be synchronized,

and therefore e is scalar in this case. Then we can write the error dynamics as

ė(t) = −λe + L − g(u, t), (8)

where L = ∆f + λe + c, and λ > 0. This type of formulation is possible with a wide variety of

both linear and nonlinear systems (Di Benardo 1996), and this requirement is therefore not overly

restrictive. It is clear from equation 8 that (L−g1(u, t)) → 0, and λ > 0 will stabilize the required

equilibrium, e = 0. Therefore L is the feedback linearization controller for the system (Di Benardo

1996).

For the class of systems considered in this work, L can be expressed as L = k∗ξ, where k∗

represents a set of (constant) parameters, and ξ the vector of coupling variables. For such systems

we use an adaptive controller which has essentially the same form as L, g(u, t) = u = k(t)ξ, where

k(t) is the adaptive gain. Using these definitions enables us to express equation 8 as

ė(t) = −λe + φ(t)ξ(t), (9)

where φ(t) = k∗ − k(t) is the parameter error. We then need to find an expression for k(t) which

stabilizes the system such that φ(t) → 0 as t → ∞. This we can achieve by choosing a Lyapunov

function of the form

V (t) =
e2

2
+

φφT

2γ
, (10)

where γ is the controller gain. Then the derivative of V with respect to time is

V̇ (t) = e(−λe + φ(t)ξ(t)) +
1

γ
φφ̇T , (11)

such that choosing φ̇T = −γeξ, results in V̇ = −λe2 which implies that the controller is globally

asymptotically stable for λ > 0. As k∗ is constant, φ̇T = −k̇T = −γeξ, such that the adaptive

gain becomes

kT = γ

∫ t

t=t0

eξdt (12)
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(Sastry & Bodson 1989). Thus k(t) → k∗ as φ → 0 and e → 0. Note: providing φ → 0, the final

adaptive gain values correspond to the unknown set of system parameters k∗. In general k(t) → k∗

providing the adaptive controller has a persistently exciting signal (see for example Sastry (1999).

From qualitative examination of our numerical simulations in this paper this is nearly always the

case.

Finally, there is an extra effect on the stability of the partially synchronized systems due to

the signals d1, d2 and c. For global asymptotic stability that these signals must remain bounded.

As they are dependent on state variables, they can only become unbounded if the system becomes

unstable. Therefore providing the system reaches a stable state with d1, d2 and c bounded the

system will remain stable.

3.1 Example coupling the Chua and Lorenz systems

We now consider an example of coupling a Chua system with a Lorenz system. In this example

(for an example of adaptive control using similar systems see Stoten & Di Bernardo (1996)), we

use a Chua system defined as

ẋ1 = α1(x2 − x1) + α2x1 − α3(|x1 + 1| − |x1 − 1|)

ẋ2 = x1 − x2 + x3

ẋ3 = −δx2

(13)

and a Lorenz system

ẏ1 = −σ(y1 − y2)

ẏ2 = ry1 − y2 − y1y3

ẏ3 = y1y2 − by3

(14)

To ensure that both systems are chaotic, we select the parameter values: α1 = 10, α2 = 0.68,

α3 = 0.59, δ = −14.87, σ = 10, r = 28 and b = 8/3. Initial conditions for the system were selected

as x1(0) = 1.1, x2(0) = 1.0, x3(0) = 7.0, y1(0) = −1.1, y2(0) = −1.0 and y1(0) = −5.0. This choice

of parameters and initial conditions is arbitrary: control can be applied for any parameter values.

Now let us consider the case when we wish to couple (i.e. synchronize) x3 and y1. Thus, we

define xn = [x1, x2]
T , xs = x3, ys = y1 and yn = [y2, y3]. Then

f11 =





α1(x2 − x1) + α2x1 − α3(|x1 + 1| − |x1 − 1|)

x1 − x2 + x3



 (15)
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and

f22 =





ry1 − y2 − y1y3

y1y2 − by3



 . (16)

The reference model is f21, and therefore the control signal must be applied to f12 such that

f12 = −δx2 + u. (17)

Thus we are coupling the two systems by controlling f12 to follow f21. So in this case we can

think of the Lorenz system as the master or forcing system and the Chua as a slaved system, such

that the coupling is unidirectional. We can introduce bidirectional coupling by adding a coupling

function, c(t), to the Lorenz system, such that the reference f21 can be written as

f21 = −σ(y1 − y2) + c(t) (18)

where c is set to zero in the unidirectional case.

3.1.1 Feedback linearization controller

To demonstrate the difference between unidirectional, and bidirectional coupling, we first use

a controller based on feedback linearization (see for example Di Benardo (1996)). To design such

a controller we need to know ∆f explicitly, which in this example is

∆f = f21 − f12 = −σy1 + σy2 + c + δx2 − u. (19)

The error variable e = ys − xs = y1 − x3, so that equation 19 can be expressed as

∆f = f21 − f12 = −λe + σ(y2 − x3) + c + δx2 − u, (20)

where λ = σ in this case. So, in this example as σ > 0, we can write

∆f = f21 − f12 = −σe + L − u, (21)

which is equivalent to the right hand side of equation 9. Thus for feedback linearization we set

u = L = σ(y2 − x3) + c + δx2.

A numerical simulation of the unidirectional (master-slave) system, c = 0, is shown in figure

2. Here the response of x3 from the Chua system is shown as a solid line, while the response y1

of the Lorenz system is shown as a dashed line. The controller is initially turned off u = 0, and

the responses of the two systems are unsynchronized. Then at t = 12 the feedback linearization
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controller is turned on. The two selected coordinates from the systems quickly synchronize, with

the Chua x3 coordinate slaved to the Lorenz y1 coordinate.

In figure 3 we show a simulation for the bidirectional case, when c = x3. Here the response

of x3 from the Chua system is shown as a solid line, while the response y1 of the Lorenz system

is shown as a chain dotted line. In addition we have plotted the output from the Lorenz system

(dashed line) for the c = 0 case as a comparison. Again the control is turned on at t = 12, and

the two systems quickly become synchronized. This time however the dynamics are not slaved

to the Lorenz system. The bidirectional coupling produces interaction between the two systems,

such that the dynamical behavior is not the same as the master slave example. This can be seen

in figure 3 from the deviation of the synchronized system from the Lorenz system after t = 12.

3.1.2 Adaptive feedback linearization control

Now we consider the same synchronization problem using an adaptive controller. To achieve this

we have to express L, the feedback linearization controller, as a product of a unknown parameter

vector, k∗ and a coupling variable vector, ξ. Thus

L = σ(y2 − x3) + δx2 + c = {σ, δ, β}



















y2 − x3

x2

c



















(22)

so that the coupling variable vector is ξ = {(y2 − x3), x2, c}
T and the parameter vector is k∗ =

{σ, δ, β = 1}, and β is a dummy parameter variable.

The response of the system is shown in figure 4, where again the controller was initiated at

time t = 12. The evolution of the adaptive gains k = {k1, k2, k3}
T which were all initiated at

zero, is shown in figure 5 where a controller gain of γ = 100 in equation 12 was found sufficient to

achieve fast adaption. We can see from figure 5 that during the first 8 seconds of adaption gains

vary significantly. However, at time t = 1000, the adaptive gains are approximately constant with

values close to k = {k1 ≈ 10, k2 ≈ 15, k3 ≈ 1}T . Thus we see that k1 → σ, k2 → δ and k3 → β.

Thus via the relation u = k(t)ξ(t) we see that the steady state adaptive controller is the same as

the feedback linearization controller, and that in effect we have identified the system parameters.

8
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4 Multi-variable coupling

For multi-variable coupling between nonlinear systems controller design is more difficult. Here,

we take the approach of analyzing the stability of the system in a partially decentralized form.

This means that the linear error coordinates are decoupled, but nonlinear coupling exists.

Thus for a system of N error equations, the ith equation can be written in a similar form to

equation 9 as

ėi(t) = −λiei + φi(t)ξ(t), (23)

where φi(t) is an (1× m) parameter error vector, and ξ is the (m× 1) coordinate coupling vector

for all N error states. We choose a Lyapunov function of the form

V (t) =
N

∑

i=1

(
e2

i

2
+

φiφ
T
i

2γi

), (24)

where γi is the controller gain. Then the derivative of V with respect to time is

V̇ (t) =

N
∑

1

(ei(−λiei + φi(t)ξ(t)) +
1

γi

φiφ̇
T
i ), (25)

such that choosing φ̇T
i = −γieiξ, results in V̇ =

∑N

1
−λie

2

i which implies that the controller is

globally asymptotically stable. Therefore φ̇T
i = −k̇T = −γieiξ.

4.1 Example of multi-variable coupling

We now discuss an example of coupling more than a single variable again using the Chua

and Lorenz systems as an example. In this example, two variables from each system are coupled

simultaneously.

To demonstrate this, we select x2 and y1 as the first pair of variables, and x3 and y2 as the

second pair of variables for coupling. This means that we now have two error variables, e1 = y1−x2

and e2 = y2 − x3. Unidirectional coupling only is considered, such that c = 0. In this case the

coupling functions are

f12 =





x1 − x2 + x3

−δx2



 (26)

and

f21 =





−σ(y1 − y2)

ry1 − y2 − y1y3



 . (27)

9



International Journal of Bifurcation and Chaos, Vol. 12, No. 3 (2002) 561–570

Therefore

∆f = f21 − f12 =





−σ(y1 − y2) − x1 + x2 − x3 − u1

ry1 − y2 − y1y3 + δx2 − u2



 , (28)

which can be expressed as

∆f = f21 − f12 =





−σe1 + σy2 + (1 − σ)x2 − x3 − x1 − u1

−e2 + ry1 + δx2 − x3 − y1y3 − u2



 , (29)

such that we can write

ė1(t) = −σe1 + L1 − u1,

ė2(t) = −e2 + L2 − u2

(30)

Where the feedback linearization controllers are

L1 = σy2 + (1 − σ)x2 − x3 − x1

L2 = ry1 + δx2 − x3 − y1y3

(31)

For adaptive feedback linearization we write each Li = k∗

i ξ such that in this case

k∗

1
= [0, σ, (1 − σ),−1,−1, 0]

k∗

2
= [r, 0, δ,−1, 0,−1]

(32)

and ξ = [y1, y2, x2, x3, x1, y1y2]
T . Then finally we can express equation 30 in the required format

of equation 23 by substituting ui = ki(t)ξ, giving

ė1(t) = −σe1 + φ1(t)ξ(t),

ė2(t) = −e2 + φ2(t)ξ(t)
(33)

Then for this system stabilizing controllers can be applied using the gain vectors given by kT
i =

γi

∫ t

t=t0
eiξdt. The results of simulating this example are shown in figure 6. As with the previous

examples, the control is started at time t = 12. From figure 6 (a) we see that x2 become syn-

chronized with y1 very quickly after the control starts. However, the x3, y2 synchronization takes

significantly longer; approximately 2 seconds. We also find that after 1000 seconds k1 ≈ k∗

1
, but

that k2 has not completely converged to k∗

2
. This behavior occurs because of our choice of the

λi values in this example; equation 30. For the x2, y1 synchronization λ1 = σ = 10, but for the

x3, y2 synchronization λ1 = 1. Considering the convergence when L1 − u1 = 0 and L2 − u2 = 0,

e1 = exp(−10t) while e2 = exp(−t). Therefore the error convergence of e1 will be greater than

that of e2.

10
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5 Applications to modeling coupled dynamical systems

Many real life dynamical systems are composed of two or more coupled systems giving rise

to highly complex dynamics. Partial synchronization techniques can be applied to modeling such

systems in two main ways:

1. To model systems composed of a set of coupled nonlinear subsystems, where the structure

of the individual component systems is known, but the nature of the coupling is unknown.

2. To model systems composed of a set of coupled nonlinear subsystems, where information

from one (or more) of the subsystems is known only in the form of a recorded time series.

The first approach can be used to synchronize two variables from the subsystems to effect

coupling, without having to have explicit knowledge of the form of the coupling itself. The second

method has potential uses for systems where time series data is taken from an experimental source.

For example in techniques which have a numerical and experimental component to the modeling

(Oomens et al. 1993; Donea et al. 1996; Wagg & Stoten 2001) These two modeling methods can

be approached using the coupling techniques described in section 2.

5.1 Example: modeling a system of two coupled nonlinear dynamical systems

Consider the problem of modeling the dynamics of a complex dynamical system governed by

the state equation

ż(t) = f(z, t), (34)

where we have only partial knowledge of the form of f(z, t). We will consider the problem where

f(z, t) is composed of two parts, one for which the dynamics is known explicitly, f2, and the other,

f1 where the dynamics can be divided into; a part where the structure is known, f12, and a part

where the dynamics are known only via time series measurements f11. This is the situation in some

numerical-experimental applications, where a physical system is acted upon by some experimental

apparatus and this is coupled with a numerical model (Wagg & Stoten 2001). So in this case the

coordinates of the apparatus would correspond to xs, and the dynamics of xn would be known

only implicitly from experimental measurements of the physical system.

To create a model of f(z, t) the coordinates xs and ys need to be synchronized such that e → 0.

Thus if partial synchronization can be achieved then equation 34 can be written (using equation

11
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2) as

ż(t) =



















ẋn(t)

ẋs(t)

ẏn(t)



















=



















f11(xn, xs, t)

f12(xn, xs, t)

f22(yn, ys, t)



















= f(z, t). (35)

As before, this is achieved by using an adaptive control algorithm to ensure that f12 tracks f21

i.e. f12 → f21. Thus the coupled systems form a single combined model of the overall system. In

this process we will effectively reconstruct the dynamics of the experimental system (Broomhead

& King 1986; Maybhate & Amritkar 1999), while simulating the dynamics known explicitly, and

thus reconstruct the overall dynamics of the system f(z, t).

Let us consider the case where the dynamics of xn, represented by f11 are unknown in a explicit

form but are known implicitly from a set of experimental measurements in the form of time series

v(t) and w(t) such that xn = h1(v(t)) and ẋn = h2(w(t)). Here hj(·) are correlation functions

which provide a relationship between the experimental measurements and state variables. In this

case equation 3, can be written as

ẋn(t) = h2(w(t))

ẋs(t) = f12(h1(v(t)), xs, t) + g(u, t)

ẏs(t) = f21(yn, ys, t)

ẏn(t) = f22(yn, ys, t)

(36)

This set of equations can be used to form a coupled model for the overall system, by substituting

h1 = d1 and yn = d2, we obtain equation 5, and for v(t), w(t) bounded, the stability proof follows.

In addition, when f12 and f21 are synchronized, equation 36 can be reduced to the form of equation

35 to provide a combined system model.

5.1.1 Numerical-experimental example

Wagg & Stoten (2001) consider a numerical-experimental example where f11 and f12 are physi-

cal systems but f12 is (approximately) linear. A force signal, F (t), between f11 and f12 is recorded

experimentally which represents the coupling between the two functions. For this system equation

36 can be written in the form

ẋn(t) = f11

ẋs(t) = Axs + Bu

ẏs(t) = Amys + Bmyn + CmF (t)

ẏn(t) = Azyn + Bzys + Czr(t)

(37)

12
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where A, B, Am, Bm, Cm, Az, Bz and Cz are constant matrices and f11 is an unknown nonlinear

function. In this example only part of the system is nonlinear, but the development of the combined

model for the system uses a similar approach to that described here for nonlinear systems. We

note also that this system has bidirectional coupling from the application of F (t) and is non-

autonomous via the forcing signal r(t). Further details of this can be found in Wagg & Stoten

(2001).

5.2 How effective is this modeling process?

In order to measure the degree of synchronization between the coordinates xs and ys, we

monitor the error vector e = ys − xs. For effective modeling we require that the synchronization

occurs within a certain time limitation e → ǫ as t → ts, where ǫ is small. The effectiveness

of the synchronization process can be viewed geometrically by considering the phase space for

the coupled system E = {(x, y) ∈ Rp×q}. Then Σ = {(x, y) ∈ Rp×q : e = 0} represents the

synchronized subspace (Ashwin 1998) for the coupled system. The dynamics which are restricted

to the manifold Σ correspond to that of the coupled system, equation 34. Furthermore, out of

subspace dynamics correspond to failure in the synchronization (control) process. Thus we can

use the synchronization subspace to monitor the performance of the controller, and hence the

effectiveness or accuracy of the modeling process.

If we define the phase space of the overall system we are trying to model as G = {z ∈ Rk},

then the combined model is a close approximation of the overall system if dim Σ ≈ dim G. In

other words the combined system, f1 and f2, has higher dimensional dynamics than the modeled

system, f(z, t), but by synchronizing the required set of coordinates we reduce the dynamics to

the subspace Σ which is an approximation of the overall dynamics in G. Thus we can qualitatively

identify the dynamics of the overall system by examining the dynamics in the hypersurface Σ.

5.2.1 Chua-Lorenz example

This can be demonstrated using the example from section 3.1. Let E = {(x3, y1, y3) ∈ R
3} be a

subset of the complete phase space, which we can use as a visualization aid. The evolution of the

feedback coupled system in this space is shown in figure 7. In this example feedback linearization

control was used from time t = 0, and the figure shows trajectories computed from t = 40 to

t = 50. Lorenz-like dynamics can be observed, however these dynamics are in fact restricted to the

synchronization subspace, which can be seen from viewing the x3, y1 plane; figure 8. Qualitatively,

13
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we observe no out of subspace dynamics, indicating a high level of accuracy in the coupling and

hence modeling process, which can be expected from feedback linearization control. Similar results

can be obtained using adaptive feedback linearization, however in this case some out of subspace

dynamics will occur during the transient adaption phase when t > ts.

6 Conclusions

We have considered how non-identical nonlinear dynamical systems can be coupled using partial

synchronization with the inclusion of additional feedback coupling. For applications where two

different dynamical system require coupling, a partial synchronization method can be used where

one part of the system is included using only a recorded time series. We have demonstrated how

both unidirectional and bidirectional coupling can be simulated in such a modeling process using a

feedback linearization controller. We have also demonstrated using the example of a Chua system

coupled with a Lorenz system, how an adaptive feedback linearization controller can be used to

effect such coupling. The use of an adaptive controller is significant, in that it can be used to couple

systems without explicit knowledge of the plant parameters, although a knowledge of the structure

of the plant is required. In the steady state, we observed that the adaptive controller converged

to the exact formulation of the feedback linearization controller. Finally we have discussed how

the coupling techniques can be applied to modeling numerical-experimental and other coupled

systems.

14
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Figure Captions

• Figure 1. Schematic representation of a system formed by partial synchronization.

• Figure 2. Output from master slave system. Solid line x3, dashed line y1. Initial conditions

x1(0) = −1.1, x2(0) = −1.0, x3(0) = 1.1, y1(0) = 1.1, y2(0) = 1.0 and y3(0) = 7.0. Control

started at t = 12 seconds.

• Figure 3. Output from system with bidirectional coupling c = x3. Solid line x3, dashed

line y1, chained dotted line y1 for the unidirectional c = 0 case: Note before t = 12 the

dashed and chain dotted lines are identical. Initial conditions x1(0) = −1.1, x2(0) = −1.0,

x3(0) = 1.1, y1(0) = 1.1, y2(0) = 1.0 and y3(0) = 7.0. Control started at t = 12 seconds.

• Figure 4. Output from adaptive control system. Solid line x3, dashed line y1. Initial

conditions x1(0) = −1.1, x2(0) = −1.0, x3(0) = 1.1, y1(0) = 1.1, y2(0) = 1.0 and y3(0) = 7.0.

Control gain γ = 100. Control started at t = 12 seconds.

• Figure 5. Output from adaptive control system. Solid line x3, dashed line y1. Initial

conditions x1(0) = −1.1, x2(0) = −1.0, x3(0) = 1.1, y1(0) = 1.1, y2(0) = 1.0 and y3(0) = 7.0.

Control gain γ = 100. Control started at t = 12 seconds.

• Figure 6. Multivariable coupling (synchronization) for Chua-Lorenz system using feedback

linearization. (a) x2 solid and y1 dashed, (b) x3 solid and y2 dashed. Control started at

t = 12 seconds.

• Figure 7. Output from feedback coupled system plotted in the space E. Data from t = 40

to t = 50 shown. Initial conditions x1(0) = −1.1, x2(0) = −1.0, x3(0) = 1.1, y1(0) = 1.1,

y2(0) = 1.0 and y3(0) = 7.0

• Figure 8. Synchronization subspace from feedback coupled system g = x3. Data from t = 40

to t = 50 shown. Initial conditions x1(0) = −1.1, x2(0) = −1.0, x3(0) = 1.1, y1(0) = 1.1,

y2(0) = 1.0 and y3(0) = 7.0
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