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Abstract

We consider the dynamics of a vibro-impacting cantilever beam experiment using an impact

load cell. The signal recorded from the cell produces spike train type data. We consider the

issues related to the analysis of such data, particularly the sampling rate and threshold values.

For vibro-impact motion of the beam, we consider the duration of impacts using a time of contact

measure. We then discuss the implications for vibro-impact systems mathematically modelled using

instantaneous impact assumptions (coefficient of restitution). In addition we consider using the

load cell to measure impact forces for the beam system. Then we consider a delay reconstruction

of the dynamics of the system using interspike intervals. We demonstrate how this process is

effected by the influence of noise and the data acquisition process using numerical simulations of

the experimental data. We show how simple periodic motions can be identified using a probability

density approach and we highlight possible future research.

1 Introduction

We consider the dynamics of a steel cantilever beam subject to harmonic forcing with a motion

limiting constraint on one side. For a range of forcing frequency values, impacts between the beam

and the constraint can occur, resulting in vibro-impact motion of the beam. The dynamics of a

vibro-impacting cantilever beam have been studied experimentally by several authors as an example

of a simple nonlinear dynamical system [1, 2, 3, 4]. For systems which are linear away from the

constraint, such as the beam system vibrating with small amplitude displacements, the nonlinearity

in the system is induced by the nonsmooth nature of the impact.
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In the present study we focus our attention on the dynamics of the beam via an experimentally

recorded signal from the constraint (or impact stop). The aim being to interpret and predict

dynamical behaviour using this information alone. We have used the same experimental apparatus

as that used by [4], with the addition of a specially constructed impact load cell to measure the

force imparted to the stop by the beam at each contact. The load cell was constructed using strain

gauges mounted on a thin wall aluminium tube, such that the longitudinal displacement of the

tube is measured (as strain) and then related to the force of impact. This technique has similarities

with the sensing block method [5], for measuring an impact force using strain gauges mounted on a

“block”. Measurement of impact forces has important applications in the design of machine parts

or structural components which are subject to impact loading.

Also of importance for design of engineering systems is accurate mathematical modelling of

the global dynamics of the system. Many of the theoretical and numerical studies of vibro-impact

dynamics have been carried out using an instantaneous impact rule [6, 7, 8, 9, 10]. This impact rule

takes the form of a coefficient of restitution rule, where the coefficient is assumed to be a constant

value related to the ratio of velocities before and after impact. Assuming that this change in velocity

is instantaneous simplifies the analysis of the global dynamics of the system considerably, but in

real systems the contact duration will always be of a finite duration. [4] demonstrated that the use

of such an impact law in a simple mathematical model could capture all the qualitative dynamics

of the cantilever beam system. This was based on the premise that the time of contact was “short”

compared to the time between impacts. Thus a second purpose of this study was to quantify this

assumption for the cantilever beam system, therefore giving an indication of possible use for this

type of model for other similar engineering systems. In order to achieve this we define a contact

time measure and consider typical values from the cantilever beam system.

The recorded experimental signal from the load cell consisted of a series of impulsive spikes,

often referred to as spike trains [11, 12]. We consider briefly the issues associated with acquiring and

processing this type of data such as sampling rate and spike identification using threshold values.

The analysis of spike data also has applications in the analysis of biomedical data [12]. These issues

are significant when attempting to reconstruct the dynamics of a noisy (i.e. experimental) system

using interspike intervals [13]. We apply the interspike interval technique to the experimental data

recorded from the cantilever beam system. Then we explain how disturbance effects are introduced

by the data acquisition process and the subsequent limitations of the interspike interval approach.
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2 Experimental apparatus

A schematic representation of the specially constructed impact load cell used for this study is

shown in figure 1. The aim was to design a load cell capable of detecting longitudinal impacts with

forces as low as 1 Newton. In order to achieve this the strain gauges were mounted on a aluminium

tube with a wall thickness of 0.23mm. To detect a force of 1 Newton the gauges need to detect

strain values down to approximately 3 × 10−6, assuming Young’s modulus E, for aluminium to be

E ≈ 7.05 × 1010 N/m2.

The load cell is made up of three distinct parts. A solid 9.53 mm diameter aluminium rod

threaded at the fixed end (right hand side in figure 1) which is used to attach the cell to the

experimental rig held in place with the clamp nut. The load sensing cell consists of a thin wall

aluminium tube which is screwed into the free end of the solid rod. Four SHOWA N11-FA-2-120-

23 electronic resistance strain gauges (ERSG) are bonded onto the outside of the tube wall, two

primary gauges mounted longitudinally, and two secondary gauges circumferentially to form an

active four arm bridge. A PTFE (plastic) sleeve which slides over the cell protects the ERSG from

external effects. The final part of the assembly is a mild steel rounded tip screwed into the free end

of the tubular cell to take the impact force.

The ERSG bridge is supplied with a stabilised 7 volts supply from a conditioning unit which also

contains a high gain stable amplifier. The gain may be varied and, for this particular application

has been adjusted to ×770. A high gain is necessary since at a load of 1 Newton, the bridge output

is of the order of only 20 µV. The load cell was calibrated, and found to have a linear sensitivity of

21.8 mV/N over a range of 0-3.14 Newtons.

The beam itself has dimensions 332 × 25 × 3 mm. Assuming a Young’s Modulus for mild steel

of 205 × 109 N/m2, and a density of 8500 kg/m3, we calculate that the first and second natural

frequencies of the beam are approximately 22 Hz and 135 Hz respectively. The load cell is mounted

perpendicular to the beam at a point close to the tip, this can be seen in the photograph shown in

figure 2. The output from the load cell was recorded using an SGA800 strain gauge monitor, linked

to a personal computer. An initial gap was set between the beam and the load cell, and this is

referred to as the stop distance. This distance was fixed at a value which corresponds approximately

to 0.092 volts from the beam displacement transducer. The beam was forced harmonically using

a magnetic forcing transducer, which had a fixed forcing amplitude of approximately 0.15 volts.

The forcing frequency can be varied as required. For this particular configuration of the load cell

and beam vibro-impact motion (only) occurs for forcing frequency values close to the first natural

frequency in the range (of approximately) 19.0 < f < 24.5 Hz, where f = 1/T and T is the period

of forcing.
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3 Recording spike data

In this section we describe the techniques used to record the impulse spike data from the load cell.

The voltage signal b(τ), where τ is time, from the strain gauge monitor was digitally sampled and

recorded using a National Instruments LabPC+ data acquisition board and Labview 4.0 software

installed on a personal computer. The maximum sample rate R, we were able to achieve using

this configuration was R = 60000 samples/second. Figure 3a shows a data sample (or time series)

recorded using this sample rate, where b(τ), strain is plotted against time τ . Similar data from

a mechanical experiment has been shown in [14]. At this rate of sampling, recording N = 5000

samples corresponds to 0.08seconds of data. The sample contains one impulse spike, the remaining

data being noise generated in the electronic circuitry used for instrumentation and from external

disturbance/vibration of the system.

3.1 Sample rate

A close up of the impulse spike is shown in figure 3b (where we have shown the individual

sample values as diamonds). The spike rises very quickly to a peak, and has a more gradual decay

which contains additional oscillatory components, possibly caused by reflected waves in the load cell

and/or relaxation of the strain gauges. The number of samples S ≈ 90 recorded while the beam is

in contact with the constraint may be determined from figure 3b. It follows that the time of contact

τc is related to the sample rate by the relation τc = S/R. Thus we can choose an appropriate sample

rate R from the time of contact τc, such that we can achieve a desired number of samples per spike.

Setting R ≤ 1/τc means that the interval between samples ∆τ is large enough for whole spikes to

be missed. Therefore, the minimum sample rate must be higher than this value, at least double,

and the ideal rate, significantly higher, depending on the application. However, sampling at very

high sampling rates has the disadvantage that large amounts of data are recorded for relatively

short time spans. In addition for spike data, most of the signal is noise, the spikes constitute only

a small part, and therefore most of the data recorded is actually unwanted. For example, the data

shown in figure 3, N = 5000 and S = 90, therefore approximately 4910 points or 98.2% of the data

is noise. We can overcome this problem by using thresholds, which we discuss in section 3.2.

The sampling rate also has a significant effect on the peak value of the impulse spike. Because

the spikes rise and fall so quickly, it is quite easy for the peak recorded value to be some way from

the actual peak value. Therefore an attempt to balance the need for accuracy and using excessive

computing power must be made. For data which is to be used for quantitative analysis, such as the

calculation of impact forces, we have used a sampling rate of R = 50000, for qualitative data lower

sampling rates have been used.
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3.2 Threshold values

To avoid recording excessive quantities of unwanted data we can define a threshold value H to

distinguish between unwanted data (noise) and wanted data (impulse spikes). Such that b(τ) > H

is recorded, and b(τ) < H is disregarded. For example, for the data shown in figure 3, a threshold

value of H = 0.005 could be chosen to distinguish between noise and spike data. This choice is

arbitrary, and can lead to the following scenarios

1. Threshold value too high; low velocity impacts will be missed.

2. Threshold value too low; noise peaks may be mistaken for impulse spikes.

Experimentally another problem encountered is that of zero offset drift, where the strain gauge

monitor zero offset changes slowly during an experiment, causing the threshold value to effectively

change. We define these problems collectively as spike identification. Other possible methods of

identifying spikes are, averaging type processes [13], or the imposition of an additional threshold

value on S, such that a S must be greater than a certain minimum threshold value before b(τ) > H

constitutes a spike. However these processes are just different ways of choosing arbitrary threshold

values, so which method is used again depends on the application. The effect of choosing threshold

values will be discussed further in section 5.

4 Experimental results

4.1 The beam-stop system

From previous experimental observations [4] for the cantilever beam system, we know that

periodic vibro-impact motion where one impact occurs in one period of the forcing, is predominant

for this cantilever beam system. We refer to such motion as period(1, 1) motion and show a typical

time series of the beam motion and the impact load cell response, figure 4, as voltage output from

respective transducers/gauges. In general periodic impacting motion is denoted period(p, q) where

p impacts occur in q forcing periods.

The impulse spikes can be seen to coincide with the minima of the displacement curve (dashed

line figure 4), where impacts occur. The amplitude of these displacement minima correspond ap-

proximately with the stop distance, 0.092 volts. Figure 4 demonstrates qualitatively the connection

between the motion of the beam and the response of the load cell. In the remainder of this work

we consider the dynamics of the system using the signal from the load cell (impact stop) alone,

although we assume that we know the forcing frequency f of the system.
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We now consider a set of spike trains, or time series, recorded in the frequency range 21.5 <

f < 24.5. Four of these recorded time series are shown in figure 5. All the motions recorded here

are period(1, 1) motions which can be seen from the regular spacing of the spikes. Although other

periodic and non-periodic motions can occur for this beam, [4], they occur in a very small frequency

range, approximately 19.0 < f < 20.5, just after grazing has occurred. Impacts which occur just

after grazing are, by their nature, of low velocity, and as a result the impulse spikes recorded with

the load cell are very difficult to distinguish from the background noise. An example of a motion

from this frequency range is discussed in section 5.

We can see from figure 5 that, in general terms, the magnitude of the impulse spikes increases

as f increases. The problem of spike identification can be clearly seen in the time series in figure

5 (a), which is recorded at the lowest frequency level of 21.5Hz. For the other time series shown

in figure 5, the impulse spikes have greater amplitudes which makes it easier to choose suitable

threshold values.

We observe that the maximum amplitude of the spikes varies significantly throughout all the

time series. This may be a result of the limitations of digital sampling, mentioned in section 3.1, or

modal behaviour of the beam, or a combination of both. The maximum value of the spikes appear

qualitatively to rise and fall as if within some envelop frequency, similar to the beating phenomenon.

As we are forcing the beam close to it’s first natural frequency, beating may explain this behaviour,

but equally it could be an aliasing type of behaviour, the effect of noise, or simply a modal beam

behaviour.

In general, the cantilever beam is an infinite dimensional dynamical system. Usually however,

the dynamics of such systems reduce onto a finite dimensional manifold within an infinite dimen-

sional phase space. Thus the finite dimensional dynamics of the (beam) system can be described

by the a dynamical system of the form ẋτ = f(xτ ), where xτ = x(τ), is the state vector in a finite,

k dimensional, phase space x ∈ Rk.

4.2 Time at impact

The introduction of a threshold provides a means of experimentally determining the time of

impact and the time interval between impacts. Theoretically, we can assume there is a limit such

that, as the time the beam stays in contact with the stop, τc → 0 an instantaneous impact occurs.

This is a theoretical concept only, as any physical impact will be of some finite duration. However,

assuming τc ≈ 0, simplifies the mathematical modelling of the beam system considerably.

Using the statistical properties of the data recorded from the system we can compute the pro-

portion of the time which the beam spends in contact with the stop: Let B denote the region of
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phase space corresponding to the impact stop, and let µ be an ergodic invariant probability mea-

sure describing the evolution of the physical system [15]. Then, by ergodicity, µ(B) is the long-term

proportion of the time that the beam spends in contact with the stop. An invariant measure value

close to zero, µ(B) ≪ 1 corresponds to the system spending a small amount of time in B (i.e.

at the impact stop). Thus, we can quantify the assumption made in the study by [4] using the

instantaneous model, that the physical contact time τc is “short” compared to the time between

impacts.

Let {xτ} denote the evolution of the (beam) system in phase space, so that the voltage stream

(recorded at the stop) is given by b(τ) ≡ b(xτ ). We consider the time series from the load cell to have

a sequence of firing times T0, T1, T2, ...Tn corresponding to the discrete voltage signal b(τk) crossing

the threshold H with positive slope, such that b(τk) > H , b(τk−1) < H . Thus, B = {x : b(x) ≥ H}.

We assume that time is scaled such that T0 = 0, then Tn is the total time of the signal. After

each firing time, Tj , an impulse spike occurs with duration above the threshold b(τ) > H , sj , (i.e.

sj ≈ τc for spike j). The contact time measure µH can be defined as

µH = µ(B) = lim
t→∞

1

t

∫ t

t=0

χB(xτ )dτ ≈
1

Tn

∫ Tn

t=0

χB(xτ )dτ , (1)

where

χB(x) =







1 if x ∈ B

0 if x /∈ B.
(2)

Clearly x ∈ B ⇔ b(x) ≥ H , so that χB(xτ ) = χ[H,∞)(b(τ)). Thus

µH ≈
1

Tn

∫ Tn

t=0

χ[H,∞)(b(τ))dτ =
1

Tn

n−1
∑

j=0

sj . (3)

The smaller the µH value, the closer the real system is to a short duration impact.

The time of contact measure computed for the cantilever beam system for the frequency range

21.5 < f < 24.0 is shown in figure 6. At each frequency setting an impulse spike time series was

recorded (data shown in figure 5), and µH computed. The maximum standard error for these

computation was less than 0.00025 for all time series. From figure 6, we see that µH increases

approximately linearly with frequency. The linear increase in figure 6 is due to the hardening

spring behaviour of the vibro-impact beam system [4]. A saddle node bifurcation occurs soon

after f = 24Hz, and impacting motion no longer exists. For this data all the values fall below

approximately 0.025, which implies that for all motions the time spent in contact with the stop is

less than 2.5%. In view of the conclusion from [4] that the instantaneous impact rule models the

dynamics of the system adequately, we can postulate that for systems with an contact time invariant

measure µH ≤ 0.025 an instantaneous impact rule is a valid approximation when modelling the

system. In addition we conclude that systems where µH ≤ 0.025 have short impacts.
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We also note that this approximation is better for lower frequency values, presumably because

the impact forces (discussed in section 4.4) are lower. The relation between the beam system dynam-

ics xτ and the voltage signal b(τ) is discussed further in section 5 where we consider reconstructing

the dynamics of the beam xτ using the signal b(τ).

4.3 Multiple impact spikes

An interesting phenomenon observed from the data is the occurrence of multiple impact spikes.

By this we mean two or more spikes which occur very close together, such that on the scale shown

in figure 5 they may appear as a single spike. For period(1, 1) motion where the beam is forced at

a frequency f , the time between impacts is approximately the period of the forcing such that the

interspike interval I ≈ 1/f . As impacting motions only exist around the first natural frequency of

the beam, all motions are dominated by the response of the first mode and are hence predominately

period(1, 1). However, the occurrence of impacts induces contributions to the response from higher

modes of vibration. As a result, multiple spikes will occur close to the periodic time of impact,

mod (τi) ≈ constant, i = 0, 1, 2, 3...n for periodic motions. Thus a group of individual spikes forming

a multiple spike lies within some small time perturbation ǫ, ǫ ≪ 1 of τi, τi ± ǫ. Other spikes which

occur in the remaining interval (τi + ǫ, τi+1 − ǫ) are referred to as spurious spikes, whether caused

by an impact or noise.

As an example of multiple spikes, we consider the time series shown in figure 5 (d). The forcing

frequency for this test was f = 24 Hz, so the period of forcing is 1/f ≈ 0.04167 seconds, which we

expect to be approximately equal to the period of the response and hence the interspike interval I,

such that I ≈ 1/f . In figure 7 we plot τc against I for the data shown in figure 5 (d). From this

figure we can see that there is a group of points around I ≈ 0.04167, τc ≈ 0.0005, corresponding to

the period of forcing. In addition four points grouped together have a much smaller I value, these

correspond to the additional spikes which form the multiple spikes. In fact there are four double

spikes in this time series, only one of which is clearly visible in figure 5 (d). For this particular

example ǫ = 0.005 would be a suitable value to define the multiple spikes. We note also that a

greater number of multiple spikes occur for higher forcing frequencies. This is a direct result of the

increase in higher modal activity for greater impact forces, discussed in section 4.4.

4.4 Measurement of impact force

The measurement of impact forces has important applications in engineering systems where

components are subject to impact loading. We can obtain discrete values of the impact force, F (τ),

directly from the voltage signal b(τ) by using the calibration constant b(τ)/F (τ) = 21.8mV/N. In

8



Journal of Sound and Vibration (1999) 228(2), 243–264

figure 8 (a) we have computed the average peak impact force over each of the time series shown in

figure 5. We have computed this by recording the maximum value for each spike in the time series,

and then computing the mean value. The peak impact forces for the recorded time series are in the

range 0.2 − 1.0 Newtons and appear to increase approximately linearly with increasing frequency.

As with the time of contact, the linear increase is due to the hardening spring behaviour of the

impacting beam system [4].

In addition to computing the peak impact force, we can compute the change in momentum for

each impact using the impulse momentum law [16],

mvi(τi−) − mvi(τi+) =

∫ τi+

τi−

F (τ)dt, (4)

where m is the (lumped) mass (of the beam), vi(τi−) is the velocity at the start of the impact

at time τi−, vi(τi+) is the velocity at the end of the contact time τi+ = τi− + τc, where τc is the

duration of the contact interval. F (τ), for τi− < τ < τi+, represents the force applied by the mass

to the impact stop. Thus by computing the integral on the right hand side of equation 4 (as a

discrete approximation) we can estimate the change in momentum during impact. We have carried

out this computation for the time series shown in figure 5, and the results are shown in figure 8

(b), where we have plotted the average value of impulse for each time series. As with peak impact

force there is an approximately linear increase of impulse with frequency value.

For impacting systems, the change in momentum during impact can be related to the coefficient

of restitution via the coefficient of restitution rule

vi(τi+) = −rvi(τi−), (5)

where r is the coefficient of restitution with a value in the range r ∈ [0, 1] depending on the material

properties of the system. Combining equations 4 and 5 we obtain the relation

m(1 + r)vi(τi−) =

∫ τi+

τi−

F (τ)dt. (6)

This expression represents analytically the relationship between the beam and stop because the

velocity of the beam tip vi ∈ x, and b(τ) is a function of the impact force F (τ). Assuming that the

impact law is instantaneous, as in section 4.2, implies that F (τ) is a Dirac delta function, with an

amplitude related to the peak force of the impact. This assumption can be made when considering

the global dynamics of the system, such that the contact time measure µH ≪ 1 as discussed in

section 4.2. For single impact analysis, for example figure 3 (b) where µH ≈ 1, alternative functional

forms for F (τ) will be more suitable. If additional experimental measurements are available from

the system, equation 6 can be used to obtain an estimate of either the impact velocity or coefficient

of restitution for the beam system.
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5 Reconstructing dynamics using interspike intervals

We now consider reconstructing the dynamics of the system by using interspike intervals. The

concept of reconstructing the dynamics of a system using time series data was first introduced

by [17], and a general review of the subject is given by [18]. The application of these techniques

to interspike intervals was carried out by [13]. Essentially we assume that the time series signal is

generated by an underlying dynamical system. For our beam system we assume that this dynamical

system is deterministic with an additional noise component. As a result the time signal can be

rewritten b(τ) = b̂(τ) + ξ, where b̂(τ) is the deterministic part of the signal, and ξ corresponds to

noise [18]. For this type of data, the method of delays [17] or singular systems analysis [18] can be

implemented to reconstruct the underlying dynamics of the system. By underlying dynamics, we

mean reconstructing the attractor A, on which the trajectories of the dynamical system converge

for a particular set of parameter values.

5.1 Interspike intervals

When using interspike intervals to reconstruct the dynamics of the system, we assume that the

only information is the sequence of firing times Ti, i = 0, 1, 2...n, and from this we can construct

a sequence of interspike intervals Ii, i = 0, 1, 2...n. The firing times can be obtained either by

integrate and fire [13] or by threshold crossing, as for our data. [13] demonstrated (numerically,

without noise) that the reconstruction of the dynamics can be achieved for a deterministic nonlinear

system using the method of delays applied to interspike intervals obtained using the integrate and

fire technique. The firing times for our system are obtained via the threshold crossing method

indirectly i.e. no direct measurements of the beam system are required.

As mentioned in section 4.1, the cantilever beam is an infinite dimensional dynamical system

with dynamics which reduce onto a finite dimensional manifold in phase space. In fact, [4] concluded

that a single degree of freedom model was sufficient to model qualitative dynamics of the system.

Thus the finite dimensional dynamics of the (beam) system xτ , x ∈ Rk, are related to the voltage

measurements at the load cell such that, b(τ) = F(xτ ), where F : Rk 7→ R, is the measurement

function [19].

Having computed the firing times for a particular time series, we can depict them as a spike

train. Two spike trains computed from load cell data are shown in figure 9. This gives a qualitative

representation of the signal which we will now use to reconstruct the dynamics. We note also that,

this type data could be recorded directly from a system, for example by using an electrical contact,

in which case the interspike interval method would be the only way of gaining insight into the

system behaviour.
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5.2 Delay reconstruction

We reconstruct the dynamics using the method of delays [17, 18, 13] by introducing a delay vector

of inter spike intervals {Ii, Ii−1, ...Ii−m+1}, where m is the embedding dimension. [20] demonstrated

that the correlation dimension d of the attractor A, can be found using interspike intervals (integrate

and fire). In addition the authors postulated that estimating the dimension when using threshold

generated intervals would give the dimension of the attractor in a d − 1 dimensional space. This

is true when recording the times trajectories intersect with a threshold, which is qualitatively the

same as taking a d−1 Poincaré section through the flow. For impacting systems, recording the time

of impact is qualitatively the same as recording the times of intersection of the system trajectories

with a hypersurface Σ denoting the position of the impact stop. The mapping Σ 7→ Σ is now known

as the impact map, following the work of [6]. Essentially we are recording these times via the load

cell signal b(τ). Thus if we reconstruct the dynamics of the system, it will be the dynamics in Σ,

essentially that of the impact map.

We have recorded two samples of interspike interval data from the load cell, shown in figure 10

(a) and (b) (which correspond to the spike train data shown in figure 9). A clear banded structure

can be seen in both these plots, corresponding to multiples of the forcing interval, which we define

as I = 1/f . The correlation dimension d can be estimated using the method proposed by [21].

Figures 10 (c) and (d) show a ln− ln plot of the correlation dimension vs the ǫ radius used to

compute it. Three sets of data are shown corresponding to m = 1 diamonds, m = 2 crosses, m = 3

boxes. In figure 10 (a) we see that most of the data is concentrated at the value I = 0.0452 ≈ 1/22.1

Hence in figure 10 (c), there is near complete correlation ln(d) = 0, until ǫ reduces below this value

(another threshold type effect, which occurs at − ln(ǫ) ≈ 3.09), after which the correlation becomes

approximately constant with zero slope, before a final sharp upturn. This final upturn is due to

the band of data very close to zero, caused by multiple spikes. The data in figure 10 (b) occurs

at banded intervals of, I = 0.0498 ≈ 1/20.1, but many more bands are apparent than the data in

10 (a). Thus, the correlation dimension for this data, figure 10 (d), has a more gradual transition

between complete correlation and constant correlation with zero slope. There is no final upturn in

this data due to a much smaller proportion of the data being close to zero. Thus for a fixed point

attractor, we would expect d = 0, which appears to be the case for both sets of data.

The correlation dimension for the attractor A is taken to be the slope of the linear part of the

ln− ln plot. This is open to some interpretation, as can be seen in figures 10 (e) and (f) where the

slope is plotted against − ln ǫ. From these plots we can see that as the radius becomes small ǫ → 0,

the correlation dimension for both sets of data d → 0. The data we have analysed comes from

periodic vibro-impact solutions of the beam, which will have fixed point attractors in the impact

11



Journal of Sound and Vibration (1999) 228(2), 243–264

map, Σ, of dimension zero.

From embedding theory, the dynamics of the sequence of intervals can be reconstructed in Rm,

where m ≥ 2d + 1. So for our data, d ≈ 0, so m ≥ 1, and we reconstruct the dynamics using a

simple delay plot in R2.

The delay plots from the load cell data are shown in figure 11. The data in figure 11 (a)

was recorded at f = 22.1 where period(1, 1) motion exists, so that all the intervals should be

approximately equal. However, we see that instead of a single (fixed) point the data is distributed

over a lattice of squares with size approximately I. Similar data has been shown by [22] in connection

with neural firing events. The lattice structure is caused by a combination of disturbance effects.

Noise recorded as part of the signal combined with limitations in the spike identification process

(section 3), results in some spikes being missed completely, and some spurious spikes recorded.

In addition the multiple spike phenomena discussed section 4.3 contributes to the distribution of

points in the figure.

We can understand these effects by considering an undisturbed (ideal) period one motion with

all intervals exactly equal, Ii = I for all i. Thus with no disturbance effects, there will be a single

point in the delay plot at (I, I). The effect of missing a spike is to produce a point at (I, 2I), and

on the subsequent iteration at (2I, I). Similarly for p missing spikes points occur at (I, pI), and

(pI, I). Thus, points are reflected in the line Ii+1 = Ii giving rise to the lattice type data structure.

The probability of missing k consecutive spikes decreases exponentially with k, thus less points

accumulate at intervals greater than I. [22] refer to the spike missing process as skipping.

The effect of spurious spikes is that an interval aI occurs, where 0 < a < 1. Due to the reflective

properties of the delay plot, this causes bands of point forming a triangle in the first lattice square

(0, 0), (0, I), (I, I), (I, 0). Multiple spikes correspond to points close to I = 0 which can be seen

clearly in figure10 (a) and (b) (or the origin in figure 11).

5.3 Numerical simulation

We can further understand these effects by considering a numerical simulation of the experi-

mental data. This can be done by simulating the motion of the beam by integrating the equation

of motion for a single degree of freedom impact oscillator [6]. First, (white) noise is added to the

numerically generated signal, and the effects of missing spikes and spurious spikes included using

random probability. Using the beam equations with added noise, we show the delay plot in figure

12 (a). The effect of missing spikes was simulated by randomly deleting firing times using a 5%

probability, the effect of this can be seen in figure 12 (b). Here, apart from the main concentration

seen before, there are some other, smaller ones, evenly spaced at multiples of I. The effect of
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spurious spikes, is demonstrated in figure 12 (c), times between actual impacts have been added

using a 1% probability. The result in the plot is the horizontal, vertical and diagonal of bands of

point dots visible in the figure. Finally, in figure 12 (d) we show the experimentally recorded data,

which closely match the numerical simulation. The effect of multiple spikes, can be seen as a series

of points with small interspike interval values ≪ I, close to the axes of the plot. Thus we see that

using the method of delays on such data results in a highly complex plot due to a combination of

noise in the system, and the data acquisition process.

5.4 Probability densities

An alternative method for analysing interspike data, is to consider the probability density of the

interspike intervals ρ(I). To illustrate this we plot the probability density for the examples shown

in figure 11, in figure 13. From figure 13 (a) it is clear that for the data shown in figure 11 (a) the

majority of the points occur around the I ≈ 0.0452 interval, and that the underlying dynamical

motion is period(1, 1).

We can use this method to interpret period(1, q) motions, i.e the motion is still period one with

respect to the number of impacts, but period q with respect to the forcing period. Thus we would

expect an interspike interval of approximately q/f , which can be recognised from the probability

density plot which will be qualitatively similar to figure 13 (a). Period(p, q) motions where p impacts

occur in q forcing periods can also be recognised, if the interval between impacts is not equal. For

example, a period two motion will have two intervals (and two impacts) in two forcing periods, and

thus two main values (peaks) of ρ(I). A numerical example of such a period(2,2) motion is shown

in figure 14 (a). However, if the intervals are equal (or close to being equal) this motion will appear

as period one (one peak ρ(I)) with an interval q/f .

We now consider the motion shown in figure 11 (b). The probability density for this data is

shown in figure 13 (b). From this we can see that there are several concentrations of data. These are

separated by (approximately) the forcing interval I = 1/f ≈ 0.0498. This motion was recorded in

the frequency range where it is possible for motions other than period(1, 1) to exist. However, as the

concentrations are evenly spaced across the probability spectrum, we can deduce that this motion

is in fact period(1, 1). Any other period(p, q) motion would produce either a series of differing

intervals, or a single interval at an integer multiple of the forcing interval I. Non-periodic motions,

such as deterministic chaos, would produce a broad band distribution of intervals. A numerical

example of the probability density of interspike interval data from a chaotic signal is shown in

figure 14 (b).

It is interesting to note that the motions shown in figure 13 (a) and (b) represent the same
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type of periodic motion, although they appear to be qualitatively different. The reason is the first

spike identification problem discussed in section 3.2, namely that the threshold value is too high,

such that low velocity impact spikes are missed. This can be deduced from figure 13 (b) by noting

that the greatest ρ(I) = 3I, indicating that the threshold has been set such that it is most likely

that only every third spike will be recorded. In fact, for a frequency of 20.1 Hz all the spikes are

difficult to distinguish above the background noise level. Thus in this example we are operating at

the limits of these spike identification techniques, which in practical applications is often the area

of most interest.

This example clearly demonstrates the difficulties in the correct interpretation of such spike

data. For systems with low amplitude spikes (corresponding to low velocity impacts for the beam

system) the interspike interval technique is limited by the need to threshold the data, although

with careful analysis information can be gained. If the spikes are well defined, we can characterise

the dynamics of the system using interspike intervals and probability densities.

6 Conclusions

We have considered the experimental measurement of the impulse response of a vibro-impact

cantilever beam system. Recordings were taken using a specially constructed impact load cell. We

have discussed the issues related to sampling impulse spike data, particularly the effects of sampling

rate and threshold values.

We have used a measure of the time the beam stays in contact with the stop, to demonstrate

that the instantaneous coefficient of restitution rule is a valid approximation for systems such as

the beam system, also providing a measure of validity which may be used elsewhere. In addition we

have considered the impact forces in the system, and highlighted the possibility of a functional link

between instantaneous impact rules, and using a Dirac delta function to approximate the impact

force.

In line with computational studies carried out by other authors, we have considered recon-

structing the underlying dynamics using interspike intervals from experimental data. We have

demonstrated for our data, that the dynamics can be reconstructed using a simple one dimensional

delay plot. The effects of noise, and the acquisition process have been simulated, demonstrating

the limitations of analysing this type of data.

Finally, we have considered determining periodicity (or lack of) for different motions using

probability densities. We have shown how this is possible even for data where thresholding effects

have been significant during data acquisition. In addition we have indicated how such thresholding

effects can be identified using the probability density spectrum.
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This paper has presented analysis of data from an engineering system using statistical and

probabilistic methods. We envisage many future applications of these type of methods to other

engineering applications.
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Figure Captions

• Figure 1: Schematic representation of the impact load cell apparatus. Dimensions are given

in millimetres.

• Figure 2: Impact load cell positioned in cantilever beam experimental apparatus.

• Figure 3: Time series of a vibro-impact motion showing response of impact load cell b(τ) as

strain in volts using a sample rate of 60000 samples/second: (a) 5000 samples, (b) 120 sample

close up of impulse spike, individual samples shown as diamonds.

• Figure 4: Time series of a vibro-impact motion showing the displacement of the beam tip

(dotted line) and response at the impact load cell (solid line).

• Figure 5: Time series data recorded from impact load cell: (a) f=21.5, (b) f=22.5, (c) f=23.1,

(d) f=24.0.

• Figure 6: The time of contact measure µH for the cantilever beam system.

• Figure 7: Contact time τc vs interspike interval I.

• Figure 8: Computation of impact forces using the time series data shown in figure 5: (a)

average peak impact force value, (b) average impulse value for each time series.

• Figure 9: Schematic representation of a spike train computed from a load cell signal: (a)

f = 22.1, (b) f = 20.1.

• Figure 10: Interspike interval data: (a) f = 22.1 and (b) f = 20.1. Estimation of correlation

dimension (c) and (e) for data in (a), (d) and (f) for data in (b). Data sets; m = 1 diamonds,

m = 2 crosses, m = 3 boxes.

• Figure 11: Experimental interspike interval delay plot: (a) f = 22.1, (b) f = 20.1

• Figure 12: The effects of the data acquisition process on experimental results. Numerical

signal; (a) with added noise; (b) with noise and missed spikes; (c) with noise, missed and

spurious spikes. (d) experimental data. Numerical data obtained by integrating ẍ + 0.14ẋ +

x = 0.26 cos(0.9822t) for x < 1.0, and ẋ(t+) = −0.2ẋ(t−) at x = 1.0. All quantities are

nondimensional; t = 141.37τ , and an overdot represents differentiation with respect to t.

• Figure 13: Probability density (histogram) of interspike interval: (a) f = 22.1, (b) f = 20.1

17



Journal of Sound and Vibration (1999) 228(2), 243–264

• Figure 14: Numerically generated probability density (histogram) of interspike interval data.

Numerical data obtained by integrating ẍ + 2ζẋ + x = F cos(ωt) for x < 1.0, and ẋ(t+) =

−rẋ(t−) at x = 1.0. All quantities are nondimensional, and an overdot represents differentia-

tion with respect to t . (a) period(2, 2) motion r = 0.7, ζ = 0.05, F = 0.5, a = 1 ω = 0.838687,

(b) chaotic motion r = 0.8, ζ = 0.0, F = 1.0, a = 0.0 ω = 2.8.
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