The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Jackson JSD Process, OOP Objects and Implementation of
Inheritance in JSD.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79666/

Monograph:

Rodriguez-Girones, M.A. and Bennett, S. (1994) Jackson JSD Process, OOP Objects and
Implementation of Inheritance in JSD. Research Report. ACSE Research Report 511 .
Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

@29 8(s)

Jackson JSD processes, OOP objects and
implementation of inheritance in JSD

by
M. A. Rodriguez-Gironés * and S. Bennett *

* Department of Automatic Control and Systems Engineering
University of Sheffield
Mappin Street
Sheffield S1 4DU

Research Report No. 511
March 1994

Abstract

This research report shows how the same software entity can be implemented either as
a Jackson System Development (JSD) process or as an Object Oriented Programming
(OOP) object, and how a CASE tool that generates the OOP code from its equivalent
Jackson process structure diagram ‘can be designed. The tool is designed to be used
when a system specification is available in JSD terms and it is desired to implement it
by means of OOP languages and techniques; a particular case in which this can be
convenient is indicated.

Since CASE tools that convert structure diagrams into code already exist, the shorter
approach of transforming process diagrams into object diagrams is also studied and
described. It is then shown how the reverse graphical transformation -- from object
diagrams to process diagrams -- is equally possible, this permitting systems specified in
terms of OOP to be implemented using the JSD methods.

Finally, it is seen how, by successive application of both transformations to its
diagrams, the services belonging to a process can be modified (by addition, deletion or
change), thus allowing implementation of inheritance and reuse in JSD based software
development.

Keywords: Jackson, Structure Diagrams, Jackson System Development, JSD, Object
Oriented Programming, OOP, Process, Object, Conversion, Transformation,
Inheritance, Reuse.

Table of contents

I 7T 1 LT S ———————————————————————————————
STt T TR T R L e R ——————————————————————
2L TBILY DOOEEBSRS crouvsssassessumsssets s S S S A AR Y s
2.2 OOP OBJECS oo _
2.3. Possible concurrent execution of an object's SErvices..........cocoovevivivinrnnnn....
2:4. Btatedtransition GIBEIAINS ommminimims s SR 5 smmae s e
2.5. Equivalence between processes and objects..............ccoocoeeeeieiiiieiieien.
3. Generating OOP code from Jackson structure diagramscocoooveieieeieeon
ORIy
3.1.1. Structure of the process execution sequences
3.1.2. Writing the code of an object from its constituent
PROCESSING SOTUOTIEES o sy s s i S R et mriss 1 O
3.1.3. Finding processing sequences in a structure diagram...................... 21
3.1.4. Derivation of the code of an object from a process
Sfiiktare:didgram; pacallel appressl v cnupunuasssrmrasamsens 23
3.1.5. Avoiding duplicate code in the object text...............coeveviiierennennns 23
3.1.6. Staleveotor INSPEOION . T R S S g 29
8.2. Time erdedng conmideraliony «owsmms s st s 30
3.2.1. Insufficiently identified input records....................ccooviiivciieiee. 30
3:2.2, Weed for Dullering: ... vousmimmsimissidiims e mmnsses e amsmss s e asanmmes 31
3.2.3. Processes with multiple data streams..........................cocooviii, 31
4. Automatic drawing of the process/object state transition diagram................................. 32
5. Deriving object diagrams from process diagramscccoeevveevemrvoiiveeieeeeeeeereien. 33
6. Deriving process diagrams from object diagrams...................cc.oocooeevii 37
6.1; Conversion PrOCBIUNE ..o s s somms s ————. 37
6.2, Proceture OVAIIAHION ;. mummimiiit viammmmnsrs soxspsmssontns ssss s s s sxsasss s anrsmmmryenss 43
7. Implementation of inheritance in JSD ..o 43
B, COMCIUSIONS ..ottt 44
9. Appendix. EXamples...........cooiiiiiiiiiii e, 46
Example 1. "process files Aand B"...............ccocoiiiiii 46
Example 2. "process file ABC" ..., 50

Example 3. "second process file ABC" and its transformation into an

ODJECE ..ottt

Example 4. Transformation of an OOP object into a JSD process

1. Introduction

In the JSD' software development method a system is specified as a set of
interconnected, sequential, concurrently running processes, called specification
processes. Each process can communicate with other processes in the system, and with
the external world, through a series of messages (data streams, in JSD terminology).
They can also read the variables of other processes and of external entities (state
vector inspections). Each process either models an external entity or cooperates with
other processes in providing some system functions. Figure 1.1 shows a System
Specification Diagram (SSD), where

rectangles represent specification processes
circles represent data streams
rhombuses represent state vector inspections

triangles represent rough merges; this means that the reading process will take
records from the various input streams in the approximate order in which they

arrive.

),

i t-o1

C

t-0-0

Figure 1.1 -- System Specification Diagram (SSD)

1JSD was described in in 1983 in "System Development" (Prentice Hall International), written by
Michael A. Jackson on the basis of the work performed by himself and J. R. Cameron. It makes
extensive used of programing techniques previously established by Jackson in his "Principles of
Program Design" (Academic Press, 1975). Throughout this study we will use the acronysm JSD to
refer to either the book or the method.

Processes are specified by means of Jackson structure diagrams, which represent the
structure of a process on the basis of the time order of its incoming records; the
diagrams also include the actions that the processes perform in reaction to each record.
Computer tools are used then to convert the process diagrams into source programs,
which will be used to implement the system. Jackson Structure Diagrams can be seen
in figures A.1.1 through A.1.3, in the Appendix.

Basically, system implementation takes place by integrating sets of concurrent
specification processes into larger sequential implementation processes, which will run
as independent tasks. This reduces the number of required processors. Each task
includes an intra-task scheduler process (specifically designed for implementation
purposes) and several specification processes; the intra-task scheduler reads all of the
task inputs and decides which of the task specification processes has to run at any
time, on the basis of which of them are required to handle each input message; within
the task, the specification processes are inverted with respect their input or output data
streams and made subroutines of the intra-task scheduler process or of other
specification processes in the task. When the system is implemented on several
processors, either real or virtual, or through multitasking, there will be an intra-task
scheduler for each of the processors (real or virtual) or tasks. Figure 1.2 shows a
System Implementation Diagram where a system has been mapped into a single task;
program inversion is represented by a double straight line going from a calling process’
down to the inverted program. Other transformations, such as state vector separation
and process dismembering, also play important roles in JSD system implementation.
(See ISD chapter 11, "The implementation step", from where figure 1.2. is taken.)

U
SCHEDULER
| cusT-1

SVFILE
ENQ ALLP12
FROD-1 SYFILE
ORD-1 ALLOCR,
ORD-2

LISTER ——>@

Figure 1.2 -- System Implementation Diagram (SID)

A piece of software implemented as a JSD process can also be implemented as an
object, in the meaning given to this term in Object Oriented Programming (OOP), as
we will see in section 2.5. And, in certain cases, we may choose, or need, to implement
a system specified in JSD by means of objects using OOP techniques and languages,
rather than by means of the JSD sequential inverted processes (for instance, when the
OOP implementation makes possible a higher degree of parallelism -- see section 2.3).

In such cases, a computer tool which is able to generate OOP source code for the
objects directly from the structure diagrams of their related specification processes,
would be highly convenient. Section 3 describes how such a tool might work.
Throughout the discussion frequent reference is made to a process named process file
ABC whose description is in the Appendix "Example 2", and may be worth reading
first. (As a sub product of this procedure, the State Transition Diagram (STD) of the
process/object can be drawn, and it is shown in section 4.)

Also, taking into account the fact that there are CASE tools that generate code from
Jackson structure diagrams, a tool that takes a process structure diagram and produces
the diagrams of the equivalent object, which can then be converted into code by one of
the existing tools, would be useful. Section 5 describes how to convert process
diagrams into object diagrams.

Conversely, it may be convenient, or necessary, to transform a set of OOP objects into
JSD processes, and in section 6 we study how to do it in an automatic way. This
transformation would allow us to implement certain OOD specified systems with the
JSD implementation techniques, though we do not discuss the conditions required in
the OOD specified system to make this JSD implementation possible.

By means of the combined application of these two diagram transformations -- from
processes to objects and back from objects to processes -- it is possible to automate
the transformation of process diagrams to add, modify or delete the process's services.
This offers the basis for implementing inheritance in JSD processes and, in turn, it
paves the way for effective and intensive reuse in JSD based software development.

2. JSD processes and OOP objects

A piece of program code, which models a real world entity or provides certain
functionality, can be structured as a JSD process (a process, from now on in this
report) or as an object, in the sense given to this term in OOP (an object). Let us see
first what each of these software entities is, how they are similar and in what they
differ.

2.1. JSD processes

JSD processes are purely sequential and long-lasting, and they read records (messages
sent to them by other processes or by external entities) by means of read operations
placed at different points in their program texts. The program text following each of
these read operations determines

— which types of message can be accepted at that point

— which actions the process will take upon receiving messages of a certain type, and

- which new read operation in the text will the process execute after finishing this
message's processing, or if the process should end at this point.

The last two items will also depend, possibly, on the contents of the message and/or on
the current value of the process's internal values. The actions taken by the process may
result in changes to its internal variables (its attributes).

All this can also be expressed saying that:

- at each read operation the process is in a different state, identified by the value of
its text pointer at that point and further defined by the values of its internal
variables

- that only a pre-defined set of messages are valid at each state

— and that the actions taken by the process following each message -- as well as the
state in which the process will remain after processing it -- are determined by the
current state of the process and by the nature (and may be the contents) of the
message.

The state vector of a process consists of its text pointer and its attributes, and we have
seen it may change when an incoming message is processed. Otherwise, state vectors
can be inspected (read), but not directly modified (written) by other processes; this
inspection can take place only when they are in a consistent state, this is, when their
owner processes have updated them -- after receiving and processing a message -- and
are waiting for another message. 2

It is important to highlight that:

- each Jackson specification process is a single main one, that must be thought of as
running in its own processor

— specification processes do not use (call) and are not used by other processes in the
system, but all of them run in parallel and communicate with each other as
indicated before

— they are permanently running and, once started, they will continue until they finish;
they will only suspend its activity on read operations, to wait for the messages to
arrive

- input buffers have infinite capacity, so that no incoming message is lost

2In System Development, M. A. Jackson indicates that state vector inspection can also take place
when the owner process is inspecting another process's state vector or writing to a data stream. But in
fact, where parallelism exists, the inspection must take place through an inquiry to the owner process,
to avoid simultaneous attempts to inspect and update the state vector, the owner process will accept
and service the inquiry only when it has finished processing an incoming message and it is waiting
for another, so that its state vector is necessarily consistent. The only fact that the owner is writing or
inspecting a state vector does not imply its own state vector's consistency. For instance, after receiving
a message, and when it has updated only some of its attributes, it may need to write to another process
or to read its state vector; if its own state vector is inspected then, it will be found in an inconsistent
state. So, the owner must always be waiting for a new message, stopped at a read operation, when its
vector is inspected by means of an inquiry. Another obvious way of maintaining consistency is that
the owner writes its state vector to an external buffer every time it completes its update, and other
processes read it from the buffer, which takes care of mutual exclusion.

- the segments of code dealing with each specific type of message are scattered
around the process text, each one at the point where it must be executed; for
instance, process file ABC (figures A.2.1.1 and A.2.1.2) deals with message A
by executing A1_actions or A2_actions, depending on its state when message
A is received, and A1_actions and A2_actions appear in different places in the
process text.

As seen above, specification processes can not be called; they can be sent messages,
but they will take the initiative to read them. In this way, we could say they are
"active".

As seen in the Introduction, when several processes are implemented on the same
processor, they are integrated into larger sequential implementation processes, which
will run as tasks in the common processor. Each task includes an intra-task scheduler
process and several specification processes; the scheduler reads all of the task inputs
and gives control to the task specification process (or processes) required to deal with
them; within the task, the specification processes are inverted and become subroutines
of the task's scheduler process or of other specification processes in the task. They can
be called, as subroutines, by more than one process (for instance, in figure 1.2, which
shows one of these implementation tasks, ORD-2 is a subroutine of ORD-1 and of
ALLOCR). But, when a specification process has to be integrated in several
concurrent tasks, it cannot be called at the same time by two processes from different
tasks, as a second call would destroy the return address of the first one (JSD section
11.2, "Channels", page 276); the second call will have to wait until the first one is
completed, even if it is made within an execution thread with higher priority.

Figures A.2.1 (made up of A.2.1.1 and A.2.1.2) and A.2.3 show the structure diagram
of a process called process file ABC, and its text written in Jackson structured
notation; its detailed description can be seen in the appendix.

2.2, OOP objects

An object is implemented as a set of procedures or functions (called operations or
services), each of them designed to process only one of the several types of message
that the object can be sent. The object also encompasses a set of internal variables
(attributes) which are global to all of its operations. There is another object global
variable, the state variable, which plays a role parallel to that of the text pointer in
Jackson processes: it must be tested by the services, when they receive messages, to
check that they are valid at that time and to choose the text to process them. In
objects, as in Jackson processes, the state is identified by the state variable and further
defined by the attributes. The state variable and the attributes constitute the object's
state vector.

Though the state of a software entity is precisely defined by its state vector,
throughout the rest of our discussion we will use the term "state" with the meaning
"set of states corresponding to a single value of the state variable or text pointer".

The actions to be taken when a message is received -- and the state in which the object
will remain when its processing is finished -- are determined by the program text of the
service dealing with it, and by the value of the state variable when it is received; the
text may also take different paths, depending on circumstances occurring during its
execution, which in turn depend on the contents of the message and on the current

values of the object's attributes. The text of the service can then be seen as having the
standard structure of a multi-branch fork, with as many branches as states in which the
object is ready to process the message and another branch to be executed when the
message arrives at any other state, that is, when the message is not valid. This can be
seen in figure 2.2.1, where S1 to Sn are the states in which the message is valid, and
text_error deals with it when it arrives in any of the remaining states. Figure 2.2.2
shows the structure diagram of this service.

S1
A text-1 > set new state & return —>
S2
text-2 set new state & return —>
entry state —
variable
test '_%
Sn
> textn set new state & return ——>

Serror
%‘ text-error return ——>

Figure 2.2.1 -- Fork structure of a service

Objects communicate with other objects through message passing. Messages request
an invocation of a service provided by an object, the data in the message forms the
parameters of the actual invocation. When a service ends processing a message, it
returns control to the calling object, and remains stopped, ready to be called again,
during its life in the system, a service will remain in this stopped position most of the
time.

Objects cannot inspect other object's state vectors by directly reading their internal
variables. If they need to know them, they have to call a service whose function is to
provide their values.

10

SERVICE-X

51 o 52 0 Sn o Sewor O
process process Pprocess process
state | state 2 state n state ervor
I T 1

text-1 text-2 text-n texdt-

error
set new state set new state set new state
& return & return & return return

Figure 2.2.2 -- Structure diagram of the service in figure 2.2.1

In contrast with Jackson processes -- where each external or functional entity is
implemented by a single long-lasting process, and where the segments of code dealing
with each type of message are scattered around that process --, an OOP object consists
of a number of procedures or functions which never take the initiative to read their
incoming messages, and which run only for the time required to process a message
every time they are called. We can see the services as short-running "passive mini-
processes". All the code required to deal with each type of message is not scattered
around the object, but put together within the same service, the code to be executed at
each object state being placed in each of the branches of the procedure or function.

As an example we include in figure A.2.5 the program text of the service message_A
of the object implementation of our process file ABC. The object will not issue any
read file ABC operations; instead, it will be called by other objects with messages of
types A or B or C.

2.3. Possible concurrent execution of an object's services

In certain circumstances, since the services of an object are coded as independent
procedures, several of them can be concurrently executed within different parallel
execution threads. The required condition is that the subsets of object variables
accessed by the different concurrent services do not have common elements (figure
2.3.1) or that, if they do, none of the commonly accessed variables is modified by the
concurrent services (figure 2.3.2). In figures 2.3.1 and 2.3.2 the services P and R can
belong to two concurrent threads, i and j, but Q can not be entered when P or R are
executing (nor vice versa).

11

Obviously, the state variable can neither be changed, which implies that either the
object has a single state, or that none of the concurrent services alters the object's

state.
thread i thread j
A "
service P service Q service R
entry entry
retum VAT
Bl readfwrite readiwrite
! — e
state b !]
ek subset-p ! subset-g :subset,-r
[J

Figure 2.3.1 -- Parallel execution of the services of an object (first case)

This is the reason why, in these circumstances, OOP objects can provide a higher

degree of parallelism than Jackson inverted processes. Figure 2.3.3 shows how, when

the entities in figures 2.3.1 and 2.3.2 are implemented as Jackson processes, they can

belong to only one thread at a time (there are as many possible logical entry points to

the inverted process as states, but only one is active at a time, and only one return

address is kept).

12

thread i thread j
A
service P service Q service R
entry T B entry
return St
readfwrite
readfwrite readhvrite
Tead read
tat n i Z .
jeac‘f" SOSESLY ¢ | BMkeRtg subset-s Subset-r
l J

Figure 2.3 .2 -- Parallel execution of the services of an object (second case)

thread 1

thread 2

thread n

logical entry 1

—

<= - 1 retum 2
L —— — —
logical entry n
€T— — — —
l 1 n
retum
(N

retumn 1

logicel entry 2
—

attributes

Figure 2.3.3 -- A process can only belong to a thread at a time

13

2.4. State transition diagrams

Both, JSD processes and OOP objects, can be regarded as implementing state
machines, which can be represented by state transition diagrams. These show

- all the states the machine can be in

— the set of message types that can arrive in each state

- the possible actions taken when each type of message arrives (the word "action"
includes here "logical actions", like tests and conditional branches required to
process the message) '

- and the possible states to which the machine may change after each message is
processed.

Figure A.2.4 shows the state transition diagram of process file ABC. A state machine
is completely defined by its attributes and its state transition diagram.

2.5. Equivalence between processes and objects

A given state machine can be implemented in two different ways, as a process and as
an object, and each of them must consist of the same defining elements: state transition
diagram and attributes. If we know the process implementation, we may try to derive
the object implementation from it.

The different pieces of the text of a service can be found in its equivalent process, and
every piece of the process text must map into one of the services. Consequently, an
object can be seen as the result of dismembering a process in a number of "mini-
processes" (its services or operations) which share the process's variables; they also
share a state variable which takes the role played by the process's text pointer.

The branches of the fork structures that form the text of the object's services are, as we
have seen, scattered around the process. For each state of the process a number of
different messages can arrive. There must be a piece of text in the process to deal with
each of these messages; execution of such a piece of text will finish with another read
operation representing the next process state. But, for a given state and message, there
may be several possible next states, and which one will actually be taken will depend
on conditions found while processing the message; the corresponding branch of the
service may be, in turn, another fork structure.

If we identify in the process diagram the piece of text (or, which is the same, the
sequences of actions and conditional branches) executed for each message at each
state, we can write each service program text as a single case structure: it tests the
object's state variable and, for each of its possible values, it executes precisely the same
piece of text as the process.

The service message_A has been built in this way. Some minor changes to the
process text were needed, as figures 2.5.1 and 2.5.2 illustrate

- the read operations ending the different execution segments have been replaced by
a sentence which assigns to the state variable the value corresponding to that read
operation and a return sentence; this can be seen in service line 1 and service
line 2, both of them derived from process line 1

- any Jackson structure (sequence, selection or iteration) starting within the service
text and interrupted by a return has been immediately closed after the return

14

statement, to have a meaningful text, and any text appearing in the process after
the read operation corresponding to this return and before the end of the structure
has not been included in the service text, for it would never execute; this is the case
of the structures process_A_and_B_and_read and read_two_records (which
start within the service, at open process structure 2 and open process
structure 3, and finish after the return placed at state VIl next, at close process
structure 2 and close process structure 3) and the group of lines marked as
process line set 1, which do not appear in the service text

closing statements corresponding to structures opened in the process text at a point
which precedes the read operation where a segment of the service text starts, have
been transformed into informative labels by addition of a colon; process structures
1 through 4 have been changed into service labels 1 through 4, for, in the process,
they are opened before the read operations corresponding to states IX and X
(marked as process line 2 and process line 3).

. process_ABC_file:

process_current_key alt(ka=kb)
ka=kb:
process_A_and_B_and_read seq
second_process_A:
A2_actions;
second_process_B:
B2_actions;
read_two_records seq
read_first_record:
read(A/B/C); --state VII--
N:=N+1;
read_second_record sel(A read)
A_read:
read(B/C); --state VIII—-
read_second_record alt(B read)
B_read:
read(A/C); --state 1X--
read_second_record alt(C read)
C_read:
read(A/B/eof); —state X—
read_second_record end
N:=N+1;
. read_two_records end
process_A_and_B_and_read end
process_current_key alt(ka>kb)
ka>kb:
process_only_B_and_read seq
first_process_B:
B1_actions;
read_after_process_B sel(A available)
A_available:
read(B/C), —state X|-
read_after_process_B alt(C available)
C_available:
read(B/eof), --state XlI—-
read_after_process_B end
N:i=N+1,
process_only_B_and_read end
pracess_current_key end
take_new_keys sel(A available & B available)

Figure 2.5.1 -- process file ABC text

process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1

process structure 1

open process structure 2

open process structure 3
process line 1

open process structure 4
process structure 4
process structure 4

close process structure 4

close process structure 3
close process structure 2

close process structure 1

As can be seen in figure A 2.5, in the cases where processing of message A was
exactly the same for several states (more precisely, for III /IV, for V/VI, and for IX/X)
a single common branch has been written. There are other segments of code
duplicated, which correspond to actions that are taken in several states within the same
service. We will deal with this duplication of code in a further section, and we will try
to find how to avoid it.

message_A:

" process_current_key at(ka=kb)

ka=kb:
process_A_and_B_and_read seq open process structure 2
second_process_A:
A2_actions;
second_process_B:
B2_actions;
read_two_records seq open process structure 3
read_first_record:
status:=VII; service line 1
return; -VII next-- service line 2
read_two_records end close process structure 3
process_A_and_B_and_read end close process structure 2

process_current_key alt(ka>kb)

message_A alt(status=IX or status=X)

read_second_record end: service label 4
N:=N+1;
read_two_records end: service label 3
process_A_and_B_and_read end: service label 2
process_current_key end: service label 1

take_new_keys sel(A available & B available)

Figure 2.5.2 -- message_A text

3. Generating OOP code from Jackson structure
diagrams |

The purpose of this section is to describe the internal workings of an automated tool
which generates object oriented code from Jackson structure diagrams.

In the first part of this section we will study the basic case of processes reading from a
single data stream (or, which is equivalent, performing a rough merge on several
incoming streams). Then, in the second part, we will consider some problems related
to the time order in which messages arrive at objects, and we will look at processes
that read several streams and perform on them a fixed or data merge.

3.1. Basic procedure

The general process to write code for object services, taking as input its equivalent
process structure diagram, consists of two logical stages: first the process must be
dismembered into pieces corresponding to the different messages and states; then
pieces corresponding to a same message must be put together to build up the
message's service and, within it, every piece of code must be associated with the state

16

in which it is executed. Before studying these stages, we will look into the structure of
the elementary process execution sequences, that is, the pieces of text executed for a
given state and message.

3.1.1. Structure of the process execution sequences

Let us consider a process with / states, named S(7) (where i=1/...J), which handles J
different messages named M(j) (where j=1...J). In the process structure diagram, there
will be / different boxes containing read operations, which we assume to have been
identified and labelled as S(7); M(j) are the names of all the messages, J, appearing in at
least one of the read operations, equally identified and numbered. Execution sequences
start at the read operations, and can be identified as explained in section 3.1.3. They fit
the pattern

S(0).M()-A(3)-CS(i)-Ckyp). A'(jkip). Sy,
where

— S8(i) is the read operation (defining a State) on which the Message M(j) arrives;
none of them, S(i) or M(j), are really part of the execution, we use them here as
identifying headers

— A(ij) is the sequence of Actions immediately performed by the process when it is in
State S(7) and Message M(j) arrives; it may be followed by CS(ij);

- (CS(ij) is a possible Conditional Statement (a computed selection or iteration) found
after A(ij) in the processing of the Message M(j) when it arrives in State S(7)

- Cﬂ(,y (where k,;j=1...Kﬁ])) are the K{(ij) different possible conditions for the
computed selection or iteration CS(ij); in other words, C(kj;) are the K{(ij) values
that the expression controlling the selection or iteration can take (obviously, there
is a single value of K(ij) for each pair of ij values; this value is 2 when the
Computed Statement is an iteration and, then, C(7) is "iferation_condition true"
and C(2) is "iteration condition false");, this means that there are K(ij) iij- sub
sequences springing off each ij root sequence

- A'(zjky) are the K(ij) sequences of actions that constitute each of the branches
where each C(k;;) are placed -- in other words, they are the actions performed
when each of the K(ij) C (k,‘J) conditions are met;

~ S(ijkjy) are the K(ij) (possibly different) states which are next to each of the K(7j)
CS(U).Cﬂry).A'ﬁjkij) branches; the read operation in S(ljkl'}) is the closing
statement In the sequence .'jky-.

It is clear that some of the sequences 7j may not exist.

A(ij), CS(ij), C(kiy) and A'(ljky) may or may not be present in a given sequence. C(kj;)
and 4 (ijk;;) only make sense if CS(ij) is present.

Figure 3.1.1.1 shows one of the execution sequences in process file ABC.

17

sousnbes uoTINOSeXe ue - [T ¢ Td - 8T

(o/¥)pe=sa suoryoe” Y

0 slqe(ieae q

v

sseooad
ssaooad
1ey3w

33 4s113
pwai

pes1
pue v
Ajluo
sssooad

[e] qi=ey

Aoy
JUSIIND
ssasoad

sjodAs (g)u=:9q
Asy (v)na=:ey

(o/¥)peax

- @1
(jos % 3)uou = ejre . ejle O A% 8 1 dlAv V o puer A

5.8
pue sAsy
S,¥ 1[% wyey

sssooad

piocosa
L+N=N puocoas
pPwayw pwai

EQm&a.UUKN ue
L¥d-4DNEND3S

souanbas : "1"1°1L°€ @2anbtrg

3.1.2. Writing the code of an object from its constituent processing
sequences

With all the preceding considerations in mind, we can look at the way objects can be
derived from structure diagrams by means of an algorithm susceptible of being
implemented in an automatic tool.

To write the service corresponding to a given type of message, M(j), we first identify
and select all the execution sequences in which j appears; we will see in a later section
how this can be done. Next, in the language of our choice, we build a multiple
branched structure, one branch for each value of i present in these selected sequences;
in others words, a branch for each of the states in which the message can arrive; this
stage is the subject of this section.

There may be more than one execution sequence for a given pair of values #j -- this
happens when selections or iterations are found in the diagram within the process of
the message M(j) in the state S(i) --, but all the sequences /f must start with the same
partial sequence -- A(7j) --, for it is uniquely defined by the pair #j. So if it exists, A(i})
must be placed at the beginning of the 7 branch.

Then, if there is more than one sequence for the current pair of / and j values, due to
the existence of a Conditional Statement CS(7j), a language structure implementing
CS(ij) must be placed after A(7j) in the i branch; this structure will have an internal
branch for each of the possible conditions C(k,'j), which will consist of the text of
A '(l'jk,-}) followed by a statement changing the state to S(7jk;;) and a return (these last
two operation being equivalent to the read operation in S(ij i/)). Only the conditional
statement's branches whose corresponding conditions are possible when a message
M(j) has just been received are to be included in the state 7 branch, for they are the
only ones that can be executed in that state.

This procedure, applied to all the ij sequences will result in the following service text,
expressed in Jackson structured notation:

19

M) sel(state= S(1))
M(j) alt(state=S(p))
A@i):
CS(p) sel (C(1))
A'pi1);
§=S(pj1);
return;
CS(pj) sel (C(2))
CS(py) alt (C(K(ij)))
A'(pKap);
S=S(piK(ij);
return,
CS(pj) end

M) alt(state=S(p’)

Apj):

CS(plj) iter (while C(1))
C(l):
A'pil);
S=S(pjl);
return;

CS(pj) end
Cr2):
A'(pi2);
S5=S(pj2);
return,

M) alt(state=others)
INVALID MESSAGE
return;

M() end

where p=p'=1...P are the P values of i for which there is at least a sequence Jj or, in
other words, the P states in which the message j is valid.

In the text above, the structure for state=S(p) has been written assuming that CS(pj) is
a selection, while CS(p’j) has been supposed to be an iteration.

In the branches corresponding to states where there are no CS elements, a state
assignment sentence and a return (equivalent to the read operation) must be placed
after a possible 4 element.

In the external selection there will be as many branches as states in which the message
can arrive, and another branch for all the invalid states; this implies that the service
disregards any message that arrives at a time when it can not be processed. But
messages could be buffered, instead of disregarded, and we will come to this point
later.

In fact, the A’ elements need not be pure actions. They can have a complex structure of
the type Action_ConditionalStatement_Action. This would simply lead to longer and

20

more numerous chains, the procedures to apply to each Action or Conditional
Statement element would be the same as the ones applied to 4 and CS.

3.1.3. Finding processing sequences in a structure diagram

In the following discussion the order of a structure diagram means the order in which it
would be sequentially executed, according to the semantics of Jackson notation. In this
context the meaning of preceding element and following element is obvious, and we
say that two elements are immediately connected, or that an element is immediately
preceding or following other, when there are no other elements between them except,
possibly, labels.

To identify all the execution sequences in the process, every identified state S(i) must
be taken in turn as the first link of a sequence or of a set of sequences. There may be
sets of sequences, instead of a single sequence, starting at S(i) for two reasons: first,
several M(j) messages can be valid in that state, each generating a different sequence;
then, in the process of each message, conditional elements can be found, in the form of
computed selections or iterations, and each possible condition will define a different
sequence.

To identify the execution sequences starting at S(7),

S(1).M(). A(if).CS(i)). C). A '(iikip)-S(ijkip),

we inspect the structure diagram in its logical order, starting at the element where the
state is S(i). Every diagram element is inspected and incorporated into the sequence, as
explained below in more detail. Then we look for the following element in the diagram
and operate on it in the same way; if there is more than one following element, the
partially built sequence will have to be continued in several ways, one for each of the
following elements found; we will call them sub-sequences. This is iterated until a next
state S(ijk;;) is found for the sequence, or for each sub-sequence. When several sub-
sequences are derived from a sequence, because of the presence of a conditional
element, we have to take them in turn, one at a time, working on it until it is complete;
we must then shift to the next sub-sequence, until all of them are complete.

When all the sequences starting at S(i) have been completed, the process of the
preceding paragraph is repeated, taking, as new origins for the sequences, each the
newly found states S(iij). This is now iterated until the diagram is finished and there
are no more possible origin states left.

There are well defined algorithms to look for the following elements, as we will see
below.

Inspection of the diagram elements requires that the notation used in the chart should
unequivocally identify the contents of each box as belonging to one of the types
mentioned above -- messages, actions, conditions and labels -- and that this type is
recorded in the diagram data base under inspection. For example, a message will be
identified by its type name written in upper case as a parameter of a read operation, no
actions or labels being written in the same box as the read operation; labels will be
written in lower case, and nothing else, except perhaps a process condition, will be
written in their boxes; process conditions will be written in a special area, on the top
part of the selection and iteration boxes; actions will be represented by numbers, with

21

their corresponding texts included in a separately accessible list (conditions can be
indicated in the same way if needed).

When this identification process is automated, the node information recorded must
allow the automated tool to determine the kind of node (sequence, selection or
iteration), its parent, its graphical position among its brothers (first, second, etc.), and
its children and their relative positions (again: first, second, etc.).

To start the identification of sequences we give the value S(0) to the state preceding
the execution of the process, represented by a point just on the left of its top box. S(0)
is taken as the first element of a sequence. This will be the process initialisation
sequence; it will not have M(j) nor CS(ij) links -- as no message has been received and
no different conditions can arise while its actions are being performed. The
initialisation sequence finishes when the first state S(/) is found in the diagram; this
sequence will be the only text of the object's initialisation service.

To inspect the diagram sequentially we must be able to identify the element, or
elements, following the current one. Precise rules for this have been given by Barry
Dwyer and can be found in JSD, section 12.6, page 345. As we must include in the
execution sequences the contents of all the nodes in the tree, we need to visit all of
them during our inspection, and we have to take into account that:

- nodes that are not leaves, which may only contain labels, precede all their children
- acondition on a box precedes the content of that box.

When building up the sequences starting at S(7) we take the box carrying this label as
the first element in the sequence, and look for the element following it in the diagram.
When we find it, we operate as follows:

— if it is an origin state, S(i), it contains a read operation, and we have to start as
many S(i).M(j) sequences as M(j) messages that are read by the operation;
construction of each of them will continue by searching for the following diagram
element

- if it contains an action the current sequence or sub-sequence is appended with it,
and we search for the following diagram element

- if it contains a selection or an iteration controlled by a computed condition, the
current sequence or sub-sequence is appended with it; but now there will be several
following elements in the diagram, as many as the possible C(k,'}) conditions, K(ij),
and subsequent exploration of the diagram must follow all those paths, which
means that the current sequence may give birth to up to K(ij) sub-sequences

— if it is a box with a condition which is part of a conditional statement, and if the
condition it shows is possible when a message M(j) has just been read and is being
processed, the current sequence is appended with it, and it becomes a new sub
sequences; otherwise, the box is neglected?

30bviously, this implies that the machine on which this procedure is implemented can perform logical
analysis of the selection and iteration conditions; we do not enter into this problem here. It is also
necessary that the conditions are expresed directly in terms of types of records, not in terms of
variables related to them. For instance, in the structure diagrams of process file ABC and process
files A and B, the condition alfa must be expressed in terms of C and eof, not as a function of ka
and kb, if the tool has to find out if it is compatible or not with the records available at that time

22

- if 1t is another state, S(i)=Sﬁij) it completes the current sequence or sub-
sequence

The first thing to do every time a sequence is completed is to complete any other
possible partially built sequences, one at a time. When a sequence is finished and there
are no more of them requiring completion, the process is repeated taking as origin a
new state S(7’), until none of them is left.

3.1.4. Derivation of the code of an object from a process structure
diagram; parallel approach

Up to now, and to achieve a clear explanation, we have built up the object operating in
two stages, first we identified all the process execution sequences, then we built up
each of the services, translating into text and putting into its code all the sequences
dealing with the related message, each in its right place.

In practice, this it is not necessary. When a sequence is identified, its text can be
directly added to the corresponding service, so that all of them are built in parallel, and
the two activities alternate.

3.1.5. Avoiding duplicate code in the object text

Though the code developed using the method explained above is well structured and
performs as efficiently as the equivalent process -- for it does not include calls to other
functions or procedures --, it includes a lot of duplicated code, and something must be
done to avoid this.

In coding the service message_A of the example, figure A.2.5, we have already
avoided some duplication by writing a single branch for the states III and IV, another
single branch for states V and VI, and also for states IX and X. And yet the three of
them contain an identical segment of code, the one comprised between lines *1begin*
and *1end” in each branch. The segment between lines *2begin* and *2end®, in
branches V/VI and IX/X is also duplicated.

To discuss this subject we will use as an example a process called second process
file ABC, that can be seen in figures A.3.1.1 and A.3.1.2, in the appendix. It is similar
to the process file ABC that we have used before, but the operations N=N+1, which
appear in many places in the latter, have been changed into different operations named
M, O, P, Q, etc., and a new one, N, has been added.

We observe that these duplications may have three different causes:

1. A certain piece of code is executed in the process when one of several messages
arrives, as it is the case of O in our example. That piece of code will be present in
the text of the object services that correspond to those messages. This duplication
is due to the structure of objects, not to the method used to get the object's code,
and cannot be avoided.

2. There are segments of the process code which are duplicated because of the
structure of the process, as it is the case of take keys and take new keys which
execute the same function. In principle, they do not need to appear more than once
in the text of the same service, and they should be avoided, whenever possible.

23

51
text-1
text-142
52
text-2 _I
i St?tzl E > set new state & return —>
—— variable
test =y
Sn
> textn set new state & return ——
Serror
text-error return |——

Figure 3.1.5.1 -- Code structure of a service with common trails in its branches

3.a When, in a service, the outer branches that correspond to several different states
start in different branches of a same process selection, as it happens with those
starting at states V and IX, each of their texts will have an initial part which is
private to that service branch, P for V and R for IX, and corresponds to the
actions taken within the process selection branch where it starts. This initial part is
followed by a second part constituted by the part of the diagram that follows the
selection, take new keys in this case, which will be, of course, common to the
text of all the branches of this service that start in branches of a same process
selection. This means that the general structure of a service, which is a fork, has
the particular characteristic that some of the trails of several branches can be
common, and the structure can be depicted as in figure 3.1.5.1 better than as in
figure 2.2.1, and that its structure diagram has the general form of figure 3.1.5.2,
better than that of figure 2.2.2. These duplications should be avoided.

24

SERVICE-X
s1)s2 © Sn © Sewor ©
process process Process
states 1 | 2 staten state enror
|
|]
“uncommon "eommon
pmn pmu texl'n te)d'
error
[0 0 set new state
51 52 text-1/2 & return
process process return J
state] state 2
[| set new state
text-1 text-2 & return

Figure 3.1.5.2 -- Structure diagram of the service in figure 3.1.5.1

3.b Similarly, when an outer service branch starts within an iteration, as for the one
starting at state X, its initial part (this is, the code comprised between the beginning
of the service branch and the end of the process iteration where it starts, R
followed by take new keys, in this case) is followed by the first part of the
iteration (since the beginning of process all A's and B's until the set state and
return service operations corresponding to each read process operation placed
within the iteration). But this first part of the iteration happens to be also the trail
of any other service branches starting before the iteration and going into it; for
example, it is the trail of the branch starting at state IV. As for the duplication of
trails considered in the precedent paragraph, these have also to be avoided.

An observation to make here, relative to paragraphs 1 and 2 above, is that a same
software entity may be coded more efficiently -- in terms of code length -- either as a
process or as an object, depending on its logical structure. This point may be worth of
further study.

It is clear that, in our effort to identify the execution sequences, we have broken the
process diagram selections in whose branches there were read operations, and
produced as many outer branches of service code as branches had in the process
selection; in so doing, we have included duplicated pieces of code at some of the
branch trails. We have produced code with the structure of figure 3.1.5.3, instead of
the more economical of figure 3.1.5.1.

25

state
variable
test

entry

ngt new state & return —

sl

1

Figure 3.1.5.3 -- Code of the service in figure 3.1.5.1 with the segment text-1/2

duplicated

Also, for each process iteration within which there are state changes, we have
produced at several threads of separate code, duplicating the segment corresponding

7

set new state & return ——>

set new state & return ——>

text-1 > text-1/2
S2

text-2 S text-142
—
—>
Sn

text-n
Serror

text-error

to the beginning of the iteration.

We have to restructure the code to avoid the duplications, and we can do it after
observing that, when two branches of a selection of a structure diagram have a
common ending part (its trail) preceded by different starting parts, as it is the case of
part 1 and part 2 in a process (figure 3.1.5.4), the diagram can be redrawn in an

equivalent form shown in figure 3.1.5.5.

26

return +——>

ssaooad

B - 9§°9°T°¢ T4

ssenoxd ayj
Jo 3aed
PITY3 ®

€2

axed g a3aed T
1xed jxed
uouwmod uouuwo s
UouuIoDun uowuoouUn
sseanoaxd sseooxd
2y3 3Jjo 2y3 3o
z 3aed T axed
‘e 6] T2

ssaopoaxd e

S T ¢ ®aInbT4a
LYd " TNOWHOD

Le

ssanoxd ay3
jo 3xed
pPaItTya ®©

£

ssgoold ©® - §°G°T°¢€ Td - 8¢

Z T
Jxed 3xed
uowuIoDUN uouuIoDun
(6] Z0 O RS
jaxed «3xed
UOUIuIo D UOoUIIo DU,
ssanoxd ayj
Jo 7 pue
T s3aed
0 zo | 1D

ssanoxd e

"G°S°T°€ =aInbtd
LVYd " ZNOWWOD

This equivalence, expressed in Jackson structured text, is shown in figures 3.1.5.6 and
3.1.5.7.

a_process sel(C1)
part_1_of_the_process seq
uncommon_part_1
commen_part
part_1_of _the_process end
a_process alt(C2)
part_2_of_the_process seq
uncommon_part_2
common_part
part_2_of_the_process end
a_process alt(C3)
a_third_part_of_the_process
a_process end

Figure 3.1.5.6 -- Text of a selection with common trails in its branches

a_process sel(C1 | C2)
parts_1_and_2_of_the_process seq
uncommon_part sel(C1)
uncommon_part_1
uncommon_part alt(C2)
uncommon_part_2
uncommon_part end
common_part
parts_1_and_2_of_the_process end
a_process alt(C3)
a_third_part_of_the_process
a_process end

Figure 3.1.5.7 -- Text of the selection in figure 3.1.5.6 without duplicated code

So, in order to achieve code without duplications, before generating it, the automatic
tool must inspect all the execution sequences to detect all their possible common trails,
using the text structure in figure 3.1.5.7 when required.

Finally, duplications imposed by the structure of processes can be avoided:

- first, when two, or more, logically identical sets of elements are found in more than
one sequence preceding a common trail -- such as take keys and take new keys,
which are preceding the common trail process all A's and B's --, they can be
considered to be the same set, and take it as the beginning of the common trail

- second, if the several sets of elements are identical, but they are not placed in that
way -- as it is the case of several of the N=N+1 elements in process file ABC --
they can be made a subroutine to be called from the different sequences, as we
would do while transforming a process diagram into code.

3.1.6. State vector inspection

Our tool should also generate services to answer to requests for information on the
current values of objects's attributes. The requesting messages would be accepted in
any state, and their text would be standard. The tool should be instructed on the
attributes for which it should include these services.

29

3.2. Time ordering considerations

We have pointed out the "passive"4 nature of an object. It never takes the initiative to
read messages coming from other objects, its services are just called with the
parameters of the messages, and these calls can come from any object at any time. The
object can in no way influence the order in which messages are received and
processed. When a message arrives, the object can process it, if its state allows for
that, or it must disregard it.

Jackson processes, on the contrary, are "active", they read data streams from their
input buffers, and they decide in which order to read from them. But when a process
reads a single data stream with different kinds of records, or it rough merges several
data streams, it must take the records in the order they appear, the same as it happens
to an object.

Because of that coincidence of behaviour between object and process in that particular
case, it is possible to implement a software entity which reads a single file either as a
process or as an object. The conversion of process file ABC into an object, that we
have carried out, relies on the assumption that the object will receive a series of A, B
and C records that are in exactly the same order (and, of course, are the same) as in
the file ABC read by the process.

Nevertheless, it is most likely the object will receive the sub-streams A and B from
different objects and, even if the internal order within each of them is the same as in
file ABC, the relative order of A's with respect to B's is no longer kept.

Several problems, that we review in the following paragraphs, stem from that lack of
synchronism between A and B in the object implementation.

3.2.1. Insufficiently identified input records

The structure of the file ABC clearly determines that, when a first record of type A has
been read by process ABC and a second record is read which happens to be C, as, for
example, when state=l|, it means that there are no more B records in the file, and
when C is the second record in a pair whose first one is of type B it means that no
more A are available. So, for process file ABC, C can represent the end of file
condition for either the sub-file A or for the sub-file B; its meaning is not contained in
itself, but depends on its order in the file ABC.

But, when we change a process into an object, it can not know the actual meaning of a
C message until the next one is received. For instance, when the object is in state=lI,
after A has been read, if C arrives, it can mean the end of the B stream, but it may also
happen to be the end of the A stream, which arrives before the first B.

This means that a process like process file ABC which processes input files with
records whose meaning is not absolute, but depends on their position in a file, can not
be transformed into an object; if we do it, the object is flawed, as it may mistake the
meaning of C. For the conversion to be possible, all the input records must have a

4The words "active" and "passive" are used here in a way different from the one they are used at other
times, for instance, in HOOD, where they indicate the presence or not of a control thread in the
object; in this report they only aim at pointing out the way in which processes and objects receive
messages.

30

precise meaning, independent of their position in their respective files. In our example
there should be a record Cg signalling the end of the A stream and another Cp, for the
end of B, and process file ABC should react to each of them in a different way.

3.2.2. Need for buffering

Leaving apart the problem posed by the insufficiently identified record C, we have also
the problem that this conversion of process file ABC into an object assumes that
messages will arrive at the object in the same order as the equivalent records have in
file AB, which is not necessarily true: many A messages, for example, may arrive at the
object before a first B arrives, while it needs to read a B (or, in any case, its eof
condition) before it can process an A, and vice versa. The object as implemented
disregards any messages arriving when its state does not allow for their processing
what, in the case of our example, will probably make the object completely unuseful,
although, in other cases, it may be just what is intended.

This situation is parallel to the one we have when a process like process file ABC
reads a stream ABC that is the result of rough merging two separate data streams A
and B, since they will not be synchronised: If we do not want to lose all the messages
which arrive at a state not right for their processing, then, either process file ABC
must have buffering capability, or there must be a pre-process, with buffering
capability, which reads and rough-merges the files A and B and produces a file ABC
with the right order, which will be read by process file ABC. The same has to be
done when working with objects, and, when buffering is needed we will be either
converting into an object a process with buffering, or converting a process like
process file ABC and its rough-merging, buffering, pre-process. In any case, we will
carry on the transformation with the techniques seen in the preceding sections, but we
do not need to put in the object(s) anything that is not in the process(es); buffering
devices will already be present in these, if needed.

Obviously, this need for buffering only arises when the process/object has several
possible states. When there is only one possible state, and all types of
records/messages can be read at any time, there is no need to buffer any of them.

3.2.3. Processes with multiple data streams

So far we have used process file ABC in order to avoid dealing with processes that
read separate data streams. Now we examine processes with multiple data streams and
use process files A and B.

Processes of this kind read from one or other of their several input data streams in an
order determined by the process itself (may be on the basis of the record data), not in
the order they arrive: for example, if the process wants to read a record A and there is
none available, it will wait for one to arrive, ignoring any number of B that can be
ready to be read. As this is completely different to the behaviour of an object, we have
worked on another process able to read a single file ABC, whose records are in the
same order in which process files A and B would have read them.

However, the main difference between these two processes is that the one reading
separate streams does not need any other buffering than that supplied by the data
streams (which are infinite capacity buffers), while the other needs either an internal

31

buffer or a merging pre-processor with buffering capability. When the second one is
transformed into an object, this will need to incorporate that capability as well.

Nevertheless, when a process reading separate streams is converted into an object, we
must incorporate the appropriate buffers and buffer manager into it, though they are
not present in the process, because messages from the several streams can arrive in an
order different of the one in which the object wants to process them. Otherwise, we
operate the transformation as explained in the preceding sections.

These buffers and buffer manager can be generated in a standard way, and it must be
possible to instruct the automatic tool about which record types need to be buffered.
Every message arriving "out of state" will be buffered and, after every message is
processed and a new state entered, the buffer manager will check if there is any
buffered message that can be processed now, before it returns control to the calling
object.

In retrospect, we see that it was not necessary, nor useful, to change the reading
operations from process files A and B into those of process file ABC to take into
account the possibility that a pair of records A and B starts by B. We could have
worked with a process with the same reading structure as process files A and B
which read a single file ABC exactly in the same order as this process would read the
records from the files A and B; the buffers would take care of any stream or pair AB
starting by B instead of by A.

4. Automatic drawing of the process/object state
transition diagram

Once all the states-and execution sequences have been identified, they can be used to
draw the state transition diagram, operating in the following way.

1. To start with, the states must be ordered according to their position in the structure
diagram, first those on the left side and, among them, first those on the upper side.

2. A list of states and execution sequences must be made keeping that order; every
state must be followed by all the sequences starting with it.

3. A check must be made to see if there are states in the list with exactly the same
sequences following them. If there are, they are the same state, even if it is
represented by more than one read operation in the structure diagram, and it needs
to appear only once in the STD. In figure A.2.4, we can see this is the case for
states III, V and IX in process file ABC (and also the case of II, VIII and XI and
that of I and VII and of IV and X).

4. Then we draw a box to represent §(/) in the sate transition diagram and put its
name within it.

5. On a vertical arrangement, at a certain distance on the right of the S(/) box, we
place all the boxes ending the sequences which start with S(1), and we draw
arrowhead lines from S(7) to each of them; the new boxes and lines are labelled.

6. The process is repeated for each of the newly represented states, but any state
already in the diagram is not drawn again.

32

7. This 1s repeated until the list is finished.

8. This procedure can be elaborated and extended to include states in which there are
messages hold in the buffers, to have state diagrams for objects with buffering
capability.

The above sketched algorithm is only intended as the core of a procedure; it needs to
be refined to produce graphic quality diagrams.

5. Deriving object diagrams from process diagrams

The contents of the preceding sections represents an analytical work useful to
thoroughly understand the relations and mappings between equivalent processes and
objects. Nevertheless, when we come to implementation, it may be more reasonable to
take advantage of the fact that there already are tools that generate code from a given
structure diagram, and all we need is to build a pre-processor to those tools that
transforms a given process diagram into the service diagrams of its equivalent object.

To do this, we keep the process diagram unbroken and we try to derive from it the
diagram of each of the object services, by selecting what is relevant to that service and
suppressing what is not. That is, when we are trying to create the diagram for a
service A which deals with message A, we have to suppress, from the process
diagram, all the elements which are not compatible with the fact that a message A,
has been read and is still available (not used up by the process). The elements to be
suppressed are all the read operations that do not read A messages and all the parts of
selections or iterations that are executed only when no message of type A has just been
read or is still available for processing.

It is not obvious that we can determine when a record of a certain type, say A, is still
available for processing just by inspecting a process diagram. There is no problem in
seeing when it is read but, how do we find if it has been processed and is no longer
available? We need to rely on some diagram labelling convention: there may be a rule
that after a sub-tree labelled process A is exited, A is no longer available, or that this
fact is indicated in some other way in the diagram.

Once we have the process diagram customised with these suppressions, its
transformation in the service diagram is immediate if we remember that every read
operation (where a state is defined) is at the same time the end of one (or several)
execution thread(s) and the beginning of other (or others), and if we have in mind the
more general structure of services shown in figures 3.1.5.1 and 3.1.5.2. All we have to
do is to "cut" the process diagram at all the points where a read operation is, and
"hang" all those read operations from the outer selection which is the top structure in
the service diagram; all these parallel branches of the service diagram will have an end
of process at each of the next first read operations found in them, that is: the read
operations will have not a follow element in the service diagram, and they will be
translated into set state plus return operations.

To avoid duplications of code, when we find execution sequences with a common trail
(that is, when the same element, and the sequence it starts, belong to more than one of
the service's outer selection branches), we have to combine them in the way shown in
figures 3.1.5.4and 3.1.5.5.

33

Before "cutting" the process diagram at the read operations, and because each of them
has a double role as closing and starting element in the service execution sequences,
we have to split each of the reading boxes in two, as figure 5.1 shows. The read
operation is no longer an operation but a label, as the service is a sub-process called by
other objects, and it does not execute any read operation on the incoming messages.

34

(W) avay
0 S=23e1]ls
_
_
|
[
I
|
_ NYNLAY
| S=23e3s
_
“ 0 o
!
L]
n AEV .ﬁu.mwh._-
0O s=8je3is | D

(W) peax

suotjeasado
Burpesx
butwiojsue1l

*1°G 2anb14g
LYJd " ASNYAL

suoTjeaado Burlpesi butwIiogysueiy - T-g 2anbtg

...m:

St

To maintain consistency with the Jackson diagram notation, the condition C has been
changed to C or (state=S); in fact, this box will not appear in the service diagram, and
it does not mean that if this box is reached when state=S the dotted line is followed.
The box with the state change and the return operations will be an end of process
box in the diagram service, what means that the part of the process diagram which
follows the return must not be taken into the service diagram. The dotted line from
which the label READ(M) hangs does not indicate any real link, as execution of the
branch starting at that state does not follow the previous state branch, but is initiated
by the arrival of a new message; it only indicates where the element hanging from it is
placed in the process diagram, so that its following element can be determined. In fact
we have to "cut" the process diagram precisely at the dotted lines. Obviously, the box
labelled READ(M) does not imply any read or any other kind of operation: it only
signals the beginning of execution when the object is called with a message of this type
and it is at state S.

Our first stage in obtaining service diagrams will be, then, to split all the read
operations in the process diagram in the way explained in the preceding paragraph; this
stage is common for all the services of a same object. Figures A.3.2.1 and A.3.2.2
show second process file ABC once this first transformation has been applied.

The second stage is specific to each service. It consists of suppressing, in the modified
process diagram, all the elements not relevant to the processing of the message dealt
with by this service. Figures A.3.3.1 and A.3.3.2 show second process file ABC
after this second transformation has been performed in order to get the structure
diagram of service A

(The elimination, in figure A.3.3.2, of the box containing the operation state=XII
again requires that it be possible to determine that the condition C available can not
happen at that point while processing A. The logic to do it is that only two records are
available to the process at any time; a B record has just been processed up, and an A
must have read -- as we are within service A --, so no room is left for C. This type of
logic, based on the records/messages read and still available, must be implemented in
the tool that converts diagrams, as we have already pointed out.)

In these two figures, and to show how the structure of service A diagram is already
implied in the process diagram, we have added arrows connecting each element to its
following element in the service (except when it is very obvious because one element is
a member of the first one's structure, as process current keys, which belongs to key
cycle), and arrows coming from the service's top selection to each of the service's
starting points that correspond to the different states; in this way, all the boxes in a
same chain of arrows represent an execution sequence, which ends at the first
RETURN found.

Now, we only have to draw the service diagram with the sequences indicated by the
arrows. When a certain element E is a following element for more than one preceding
element -- such as O, which is a following element for N and also for READ A when
state=Ill -- all the sequences preceding it are members of a selection whose follow
element is E -- O in this case --; this can be expressed correctly taking into account the
equivalence between figures 3.1.5.4 and 3.1.5.5.

Figure A.3.5 shows the final diagram for service A; the transformation involving
figures 3.1.5.4 and 3.1.5.5 has been applied recursively to avoid duplications of code.

36

In a similar way we obtain the diagrams of service INITIALISE, figure A.3 .4, service
B, figure A 3.6, service C, figure A.3.7, and service eof, figure A.3.8.

The iteration at key cycle is not present in the service diagrams, as it execution is
always interrupted before processing can reach its end, and either re-enter the iteration
or take its follow part.

Finally, duplications imposed by the structure of processes, can be avoided, in a way
parallel to the one followed to get the object's code:

- first, when two, or more, logically identical pieces, such as take keys and take
new keys are found in the process diagram -- once it has suffered the two
required transformations and it is ready to be "cut" -- and they are placed in the
same equivalent points -- immediately preceding process all A's and B's, in this
case -- only one of them is needed; the others can be eliminated and all of its links
connected to the one remaining

- second, if the several pieces are identical, but they are not placed at equivalent
points -- as it would be the case for M and N, if they happened to be identical --
they can be made a subroutine when, at a later stage, the object diagrams are
converted to code.

6. Deriving process diagrams from object diagrams

6.1. Conversion procedure

For the same reason that it is possible to extract the structure diagrams of an object's
services from the diagram of its equivalent JSD process -- this is, because both entities,
the process and the object, are made up of the same logical arrangements of
operations, though interleaved in the process and separate in the object -- it is also
possible to build up a process diagram if the service diagrams of its equivalent object
are known.

We will show this reconstruction for the modified second process file ABC, starting
our work from the services shown in figures A.3.4 to A.3.8.

A process may have an initialisation service or not, its general structure being as shown
in figure 6.1.1. If there is such a service, we first take its diagram as the first executable
part of the process diagram, as we have done in figure A 4.1 for the modified process
file ABC. It must be noticed that there is an indeterminacy about where to place the
element process A/B/C, which represents the remainder of the process diagram, as it
could equally have been placed as shown in figure A.4.2, or at an intermediate level;
we must come back to this point later.

37

sseooad utejiso - T°T1°9 nbtd - 8¢

suoT3oe
BUTSTTERTATUT

(x)ssaooaxd

(X)peax

Jxed
PUTSTTeTITUT

Apoq
ssaooad

jaed

butsTTeTATUT

aTqTssod

sgonoxd
utrejaad

179 21InbT4
LYA T

Then, the element process A/B/C when state=l is obviously a selection with the three
possible components when A read do process A, when B read do process B and
when C read do process C, as shown in figure A 4.3. The piece of diagram
describing each of these branches is the branch corresponding to state=l in each of the
diagrams service A, service B and service C respectively. Its addition to the process
diagram will, in general lead to the inclusion of new reading elements corresponding to
new states, in this case those corresponding to states II, III and IV.

It may happen that all or some of those branches have a common initial or ending part,
as is the case for the common initial elements M and read ahead second record in
our example; the diagram can then be simplified by transforming the selection in a
sequence made up of the common parts preceded, and/or followed, by a selection
whose branches will have the uncommon elements only. This transformation is shown,
for the general case, in figures 6.1.2 and 6.1.3; once the transformation is applied,
figure A.4.3 becomes figure A.4.4.

The precedent procedure must now be applied to each of the processing boxes
corresponding to the next states, II, III and IV. For instance, process A/Bl/eof at
state=IV will be the selection shown in figure A.4.5; each of its branches is the branch
for state=1V in the services for A, B and eof, respectively, and they are first separately
shown in figures A 4.6, A.4.7 and A.4.8.

As for the conversion from processes to objects, the automatic procedure must keep
track of which records/messages are read and available at any time, so that it "knows"
when it is time to process when A read and C read at the bottom of figure A.4.5,
for example, and, when it looks for the sub-diagram corresponding to state=1V in
service A diagram, it can pick up only that part of this sub-diagram compatible with
the current condition A read and C read. The reason why this selective pick up is
needed is given in the next paragraph.

39

gy 2In3joniis [euoT3jTpuod - g°'T°9 nbTtd - 0F

t8 3aed zd yied id
yied uUcwuwoo 3xed uouwwod yaed
UOWWODUR puooes uowwesun 3541] UOWWCDUn
g
youelq
0 2
£Y qied (A yaed 18 4
J1ed uouwwod jaed yowwoo 3aed
uowwosun pucoss uowwooun 38113 uowwooun
Y
youeaq

av
8anjondys
leuoc I3 IpUOD

“g1°9 #Anb14

Lva ve

gY¥ ®In3onijs TeuoTiTpuod - ¢°1°9 nbrd - T¥

£d £Y zd (A4 Td ¥
3aed j3aed jaed 3aed 3xed jaxed
uouwwosun uowwooun uouwwooun uowwooun UowWwooUuUn uouwooun
d 0 Y (6] g o] g o] Y
qaed 3aed jaed 3xed 3axed
uowwooun uowwoD uowwooun uowwod UOWWODUN
pPITY] pucoas puocoas 3s3IT3 3sat3F
s33ed uowwoOdUN pUE UOCWWOD av

Yyatm g pue Yy ssayosueaq

sinjonijs
[eUCT}IpPUOCD

“g 19 2anbrg
1L¥a- sz

In a structure diagram, parts which are common to several execution sequences are
drawn only once, but it is necessary to include appropriate control elements: this is the
case for states III, IV, V, VI, IX and X in service A, figure A.3.4. However, only the
parts of the service branch corresponding to state=IV, in service A, must be picked up
as pertaining to process A at state=IV in the process, which implies to select only the
parts of the diagram compatible with the condition A read and C read.

We can see in figure A.4.6 how only the parts where A and C are present have been
taken from the sub-tree process current keys in service A. Similarly, in extracting
from service B and service eof the process branches for B and eof at state=IV, only
the parts corresponding to B read and C read and to C read and eof read,
respectively, must be picked up, and we obtain the diagrams in figures A.4.7 and
A48

Next we reduce the three branches of the selection in figure A.4.5 (which are shown in
figures A 4.6, A4.7 and A4.8) to a simpler one, first realising that they have in
common the initial sequence M, N and we obtain figure A 4.9. This can be further
simplified by moving the selection down the process, what brings us to figure A.4.10.
In this figure, each branch of the process current keys selection is subject to a
double condition and it can be better represented by associating both conditions, as
shown in figure A 4.11.

In this last diagram, figure A.4.11, there are conditions, such as [(ka<kb)&(ABJAC)],
which are more complex than they were in the original process diagram of second
process file ABC. In fact, in this process, ka<kb is equivalent to AB|AC, as it implies
not(ka=max), this is: that an A message/record is available, for ka is set to max only
when all As have been processed. But it might be the case that both conditions were
incompatible, as it would happen if the left branch of process current keys in
service A, service B and service C had the condition ka=kb, for example, which is
not possible when A and C are present; the object diagrams would be inconsistent, and
so would the derived process diagram be. As it is not possible to detect this without
analysing the process operations, we will not attempt to simplify these combined
conditions when they arise.

In a similar way we complete the other branches of figure A 4.4, process B/C at
state=Il, figure A4.12, and process A/C at state=lll, figure A.4.13, that we can
incorporate into the process diagram. Then we obtain the diagram of figure A.4.14, in
which repeated branches of the selections are not included..

Now we find a new situation. When we try to complete the diagram in figure A 4.14
for some of the new states, more precisely, for states V, VI, XI and XII, taking them
from the appropriate service diagrams, we find that their trails comprise the compound
element that contains process all A's and B's, key cycle, process current keys
which, on the other hand, precedes all of them in the diagram in figure A.4.14. This
means that there is an iteration in the process controlled by the condition while alfa
and, after first incorporating into the diagram the processing for state=VIl and
simplifying, we obtain the diagram in figure A 4.15, in which there are no more new
states for which processing needs to be defined, and is, then, the final process diagram.

42

6.2. Procedure evaluation

As we mentioned in relation to figures A.4.1 and A 4.2, there were several graphical
points where we could attach the box for process A/B/C, but all of them were the
same logical point: whichever we choose, process A/B/C will always be the following
element to read A/B/C. This happens again with the diagram part following
state=VIIl, and cannot be easily avoided unless additional conventions regarding
diagrams are adopted, as the most adequate point to choose depends, otherwise, on
the meaning of textual information. It is of no consequence to the logical value of the
end diagram, but the labels can not be of any help in reading and understanding the
diagram or any program derived from it; on the contrary, they can be confusing and
misleading. Rules should then be adopted regarding diagram labelling that can help an
automatic tool to properly place boxes when there are several equivalent possibilities,
or labels should be ignored while converting objects to processes.

For the rest, the conditions controlling selections or iterations may be more complex
than in the object diagrams; they must be, in any case, equivalent, unless the latter is
wrongly designed

7. Implementation of inheritance in JSD

OOP concepts and techniques make it easy to modify classes by adding, deleting or
redefining the class services. This is allowed precisely by the fact that services are
coded as independent units, so that substituting one of them, for example, for a new
one does in no way affect the others.

JSD process diagram are, properly speaking, class diagrams. Though Jackson and
Cameron did not use the term class while describing JSD, a JSD process is defined as a
type of process, many instances of which may be present in a same system. For
instance, the process "customer" in a bank system will have as many instances as
customers. The "customer" process structure diagram defines the type, class,
"customer”.

Nevertheless, JSD does not offer the flexibility of OOP to modify the classes and
inheritance is a non existing concept in the method. Processes are each implemented as
a single program, and it is not possible to change the code of a service independently
of the rest of the program. Even if the change is done at structure diagram level,
instead of at code level, the burden will still be considerable.

However, the transformations presented in previous sections offer a practical method
to add, delete or redefine process services, and to implement inheritance, which allows
for reuse in JSD.

For example, let us suppose that we have a structure diagram depicting a process P (a
class) with services A, B,H. And let us try to derive a child class P' in which A is
redefined as A', B is not present and a new service, X, is added. All we have to do is
first to decompose the P structure diagram into its services, as we do to transform the
process into an OOP object; then we remove A and B from the set of service diagrams,
and we add A' and X to that set; finally we apply the reverse transformation,
recomposing the P' diagram as when we convert an OOP object into a JSD process
structure diagram.

43

(It seems obviously possible to transform the process diagram directly, without
recourse to its decomposition and re-composition; such direct transformation, which
we do not tackle here, should be based on the same principles used to convert
processes into objects and vice versa.)

Still it will be necessary to generate code for the full inherited class P', while in the
OOP implementation only A' and X code had to be produced. This may make the
implementation of inheritance somewhat more cumbersome in JSD, but offers the
opportunity to have reuse and keep the excellent specification characteristics of this
method.

Proper implementation of inheritance in JSD by means of these mechanisms implies
that we work with libraries of structure diagrams, and that all the programming is done
at this graphical level, leaving to automated tools the task of code generation. This
seems worth the cumbersomeness pointed out in the previous paragraph.

8. Conclusions

It seems possible to implement a JSD process, defined by its structure diagram, as an
OOP object, using an OOP language, in an automatic way. This implementation can be
performed by a computerised tool that derives the object's code from the process
diagram, and we have described how such a tool could work. The automatic procedure
is valid for processes reading a single (possibly rough-merged) data stream or several
fixed-merged or data-merged data streams. In the latter case the object will have to be
able to buffer input messages.

This tool would make possible to specify a system in JSD and implement it as a
hierarchy of OOP objects, instead of one of inverted processes. This can be desirable
for a number of reasons, for instance if a high degree of parallelism is needed and the
object implementation allows for it (section 2.2bis); in this case, techniques to manage
the allocation of services to different tasks or processors remain to be developed. The
tool generating OOP code could also draw the state transition diagram of the
process/object.

We have also shown how to convert process diagrams into object diagrams, and vice
versa; this avoids the conversion to code which can be carried out later by using
already existing tools.

When converting object diagrams into process diagrams, the object diagram must
show, through some notation convention, when an input message processing ends. We
have also seen that there is some indeterminacy in the aspect of the process diagram to
draw, as a given box can some times be placed in several physical points which are
logically the same. In fact, the aspect of the second process file ABC that we have
derived from the object service diagrams looks somewhat different from the original
we had used before, though its logic is the same. This may make the diagram labels not
useful, even confusing, and deserves further consideration. It could possibly be avoided
by enforcing additional notation rules.

The conversion of object diagrams into process diagrams would allow the
implementation of systems specified in terms of OOD by means of the JSD
implementation techniques, though we have not studied the conditions a specified
system must meet to make it possible.

44

Finally, we have seen how application of both diagram transformations -- from
processes to objects and vice versa -- permits to change the services of JSD processes
(classes) by adding, deleting or redefining some of them, thus permitting the
implementation of inheritance in JSD. This will permit the reuse of software while
working with the excellent specification techniques of JSD and handling exclusively
libraries that are made up classes graphically defined by the processes/objects structure
diagrams.

45

9. Appendix. Examples

The following examples have been derived from the collating problem, such as dealt
with by M. A. Jackson in "Principles of Program Design", section 4.2 "Collating".

Example 1. process files Aand B

Figure A.1.1 shows the Jackson structure diagram of a program intended to collate
two files, file A and file B, and figure A 1.2 shows the same structure with more
detail. file A structure is depicted in figure A.1.3, and the structure of file B is similar.

file A is made up of records of type A, and file B of records of type B, and both are
sorted in ascending order by a same key, k. If we call ka and kb the values of k in each
file, and if max is the lowest number higher than all the possible keys (max>k), then
the highest values of k present in each file will be kamax<max and kbmax<max. Not
all the possible values of k need to be present in either A or B. The end of the file
whose kmax is the lowest will be indicated by a record of a third type C; the end of
the other file will be signalled by and eof record. If kamax and kbmax are equal, or if
both files are empty, C is only present in file A.

process files A and B reads one record from A and another from B, and processes
whichever has the lowest value of K, or both if ka=kb. Then, it reads again from A or
B, or from both, the same type of record, or records, that it has just processed. When
it finds C, it detects that one type of record, A or B, is exhausted, and it processes all
the remaining records of the other type.

It is worth to notice that, after having read A and B, and processed that with the
lowest key, it will continue reading and processing records of that same type until it
finds one whose key equals or exceeds the key in the non-processed record.

Figure A.1.1 also shows the structure of process file ABC, described in the section
"Example 2" above.

46

DgY @1TF sseooad / € 3 ¥ soTTJ ssedoad - T°'T°Y nbTd - L¥

pesx pe21 peai1
pue g pue g pue ¢
KA1uo pue ¥ KATuo
ssanoad ssaooad ssapoxd
qx<ey 0] qy=ey 0 ax>exy
shay Koy
Mmau jusIano
aje) ssaooxd
a1oAo
Koy
ejre (Jo® ® D)aou = eJT®
=l spiooail
3 pue sAay ik
s = aye
sssooad ¥ TT ye3 R
ssaooiad

SSTTeT3ITUT

gy =113

sseooxd

/ 8 3 ¥
saTT3 sse2ooxd

T°1°VY 2Inb14
LYd NIWNSIY

g pue y soTT3 sseooiad - z'1°'V nbBTd - 87

£l ~IIIA.] - 1TA. v < IAs
ar1] 811l L18¥)
woij woij * woi1j
(jo8/d)pral (2/8)peal (2/¥) pral
o prad o) pral v
paooel piosed
T+H=N pucoss THN=N 18113
praa pead
a q wXIa §p10581 v he ¥ “Ala
ey11] LARF] . e - AR afr) -
suotade”1d oma suotade”rd suo13de” Y suoi13de” 1y
woij woxj s wolj woay
(Joe/d)peed {o/d)peal (Jos/v]prel (3/¥)pesa
5] siqrilear o 5] B|qE[1EAT V| 0 BIAC[LEAT D [2IGeITAT &
(]
ssasoid o s ¥ ssedoad X
T+N=N Seiie seadoxd ssad0ad ssedo1d T+N=H P sseo01d
i 28113 puosas ptiodas i asa1]
pral prai
pral prad pral
pue q pue a4 pue ¥
Afuo pur v Ajuo
&5 0201d s5ad01d ssadoxd
5 <] 5 EECLE] S AT
o q S111- 8 -1 ¥ -1.
xews:qy (a) A= AR Brtl er1y e11)
XEeWs T ¥ T L wo,
* x = ssasoad 01§ a3 wolj
(joa/g)pEal (o/a)pesd (2/4) peel
O nE joa 1 A€ O © AC O 3 GlAE ¥ O AT O 3 QIAT & © Av 4 3 AlAe ¥) BEad O o puel ¥
shay piod8a piooal
MmBU T+N=N puosas L+N=N 18a1]
exel pralye peal pEesyT peal
o124> xcus:qy xeus qy ta)nmran e
EECIEEL (308 7 D)3ou = eyyE L iR =
13 2 Aay XEWs= vy (¥)M=iey XEUW=EY ()~ ey aea Lot
R pesye peal
. I Xewaex) 30U = EI(E O At JOa % A€ D O At O 3 A€ ¥ © A€ O 7 dint A D At W T GLAC ¥
5. A
2 pue shay i —_—
sse501d s.¥ e axel FERE
ssadoxd
" -0
RUEY C Qg
s £ Iy einbid
sses01d o
va‘a™ry

joa

XeUgy<Xewey

pIoDaIx
2

0

Xeuqy=>Xeuwey

pus

°TT3

piodail
v

Apoq

o113

2113

¥ 9113 - €°1T°¥Y nb1td - 67

ey Agq sousnbss butrsesaourt
UT 9Ie SpIodax v

"€'1°Y 2aInbtg
IVa YaHTIA

Example 2. process file ABC

process file ABC, whose detailed structure diagram is in figures A.2.1.1 and A.2.1.2,
is a program which performs exactly the same function as process files A and B, but
reading from a single file, file ABC, in which the files A and B have been combined.
The high level view of its structure is also the summary diagram shown in figure A.1.1
for process files A and B.

The structure of file ABC can be seen in figure A.2.2. It can be thought as if it had
been written by process files A and B by sending each of its input records to file
ABC as soon as it read them, without waiting to process them. In this way, A, B, C
and eof records are in file ABC in the same order as they would have been read by
process files A and B, and both of our programs will read the same records in the
same order (but we could have designed process files A and B for it to start reading
from file B, instead of from file A, and process file ABC caters for this possibility as
well).

A reading operation like read A/B can never read a record different from A or B, as
the program and input file structures are in perfect match. If, when implementing the
program, we want to make sure that the input file has the assumed structure, then the
read operations must check that the records read are of the expected type, and reject
them otherwise.

Figure A.2.3 shows the text (code) of process file ABC in Jackson structured
notation, and figure A.2.4 its State Transition Diagram. Finally, figure A.2.5 shows the
" text of a service belonging to an OOP object that implements the same function as this
program. The discussions in the different sections of this study refer to all these figures
when appropriate.

50

o [F48 SF 40
—— xows:qy _uﬂznmnx _m”x”““x sanbyjy uy
xww= ey (W) A=y xew=iwy (¥)d=:ex weibeyp)
© A% JOB % A® O 0O A% D § qQlAvY ¥ 0 A% 3 3 qra® g 0 A® g § qlae ¥
shey
U116
ssedoad

l3oe 3 a)3ou = vI[w "

suUcyId®T D

ssesodd

Ta¥ 11%
see8doad

o"gvY o113 sseooad - T°T°2°'V¥Y Td - IS

=01

«Al. 111
(j09/a/¥)prai {a/y)pras la/g) peaas {ajasukpuna
=T o Feod o o Prel d i pred v
picasa Rdoana
L+N=N pucsas T+N=N IFITT
praye peot pRBlE pPRel
spi0301
o= qy xvw=:qy (ala=:qy (qa)d=:a% om3 0=N
xwwe: ey)= ey T ey)= ey preyw pwei
() A® Jo@ 9§ AV 1) AR O § qlAv ¥ 0O A® 1 § qIA® g AR 4 § qrav ¥

[

[

shay
ayea

esIIRIITU]

et

‘z'y eandig

1¥a-1d”o8v

1+N=N

sfkey juaxano sseooad - g°T°2°V¥ Td - 2§

«IIIA- ~1IA.
{108/9/¥)pEal (o/¥)peas (o/4a}pesa (o/a/v¥)peal
pred o] CEEENE] 5] peal v
paoosd picoadl
puooas 1+N=N 45313 suot3oeTzg suoj3oe”zY
pEal peax
spaooad = Y
om3 ssaocoad ssaooad
pEa. pucoas puocoas
peal
pur g
pue v
ssapoad
) Q=23
wIIXY LIX. L1, A
(jos/g)peasa (o/d)peaa sucrioe 18 {3oa/v)peat (2/¥) peaa suorioe” [V
[S[qQRIITAR D [F[ge|1RAR ¥ 0 @fae [1EA® O [5) aige[i=ae d
H v
ssapoad 9 ssanoad ¥
1 +N=N ssaooad 1+N=N ssaooad
ae33w 1a3)®
b FERS B bais FEERE]
pral peal
pue g pue ¥
Aluo Afuo
ssaooad ssaooad
[Q<= o qQA>ex
sAay
JUalInD
ssanoad ‘gr1izy e4nbid

iva-zd oav

ogY ©TTI - Z'2°V nbrd - €5

q Y Y A
[qy =< ey - qy =» ey
301 201
= ¥ av
4 ¥ q
0 a3 < &y o LE] ey [§] qy > =Y 2]
Apoq peoy
ysawgq yoaeq
yoieq
2 ¥ ¥ a8y
(8] O . O 0
5 peey Apogq 5 peey
11ed3 Tre13 11®a3
T1ea3 1yexy
| ¥
0
[SLEE] Apoq
8113 o113
oay
a3 *rrevY eanbid

1¥a-3nid oAy

process_ABC_file seq
initialise:

N:=0;
read_ahead_two_records seq
read_ahead_first_recard:

read(A/B/C):
N=N+1,
read_ahead_second_record sel(A read)
A_read:
read(B/C); —state |-
read_ahead_second_record alt(B read)
B_read:
read(A/C); --state Ill-
read_ahead_second_record alt(C read)
C_read:
read(A/Bleof);
read_ahead_second_record end
N:=N+1,;
read_ahead_two_records end
take_keys sel(A available & B available)
ka:=k(A);
kb:=k(B);
take_keys alt(B available & C available)
ka:=max;
kb:=k(B);
take_keys alt(A available & C available)
ka:=k(A);
kb:=max;
take_keys alt(C available & eof available)
ka:=max;
kb:=max;
take_keys end
process_all_A's_and_B's iter while(not(C & eof))
not(C & eof).
key_cycle seq
process_current_key sel(ka<kb)
ka<kb:
process_only_A_and_read seq
first_process_A:
A1_actions;
read_after_process_A sel(B available)
B_available:
read(A/C): --state V-
read_after_process_A alt(C available)
C_available:
read(A/eof);
read_after_process_A end
N:=N+1,
process_only_A_and_read end
process_current_key alt(ka=kb)
ka=kb:
process_A_and_B_and_read seq
second_process_A:
A2_actions; :
second_process_B:
B2_actions;
read_two_records seq
read_first_record:
read(A/B/C),
N:=N+1;
read_second_record sel(A read)
A_read:
read(B/C), --state Vlil—-
read_second_record alt(B read)
B_read:
read(A/C); --state IX—-
read_second_record alt(C read)
C_read:
read(A/B/eof);
read_second_record end
N:=N+1;
read_two_records end
process_A_and_B_and_read end
process_current_key alt(ka>kb)

--state O—-

--state |-

--state IV—-

--state VI-

--state VII—-

—state X—

54

process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1
process line set 1

open process structure 1

process structure 1

open process structure 2

open process structure 3
process line 1

open process structure 4
process structure 4
process structure 4

close process structure 4

close process structure 3

close process structure 2
process structure 1

ka>kb:
process_only_B_and_read seq
first_process_B:
B1_actions;
read_after_process_B sel(A available)
A_available:
read(B/C); --state XI-
read_after_process_B alt(C available)
C_available:
read(B/eaf); --state XlI—
read_after_process_B end
N:=N+1,
process_only_B_and_read end
process_current_key end
take_new_keys sel(A available & B available)
ka:=k(A);
kb:=k(B);
take_new_keys alt(B available & C available)
ka:=max;
kb:=k(B);
take_new_keys alt(A available & C available)
ka:=k(A);
kb:=max;
take_new_keys alt(C available & eof available)
ka:=max;
kb:=max;
take_new_keys end
key_cycle end
process_all_A's_and_B's end
C & eof:
process_C:
C_actions
process_ABC_file end

Figure A.2.3 -- process file ABC structured text

55

close process structure 1

D ssesoad

Jjoa

g ssaooad

d

d sseaooad

Ttea1l €
‘eTqerTeA®
D ‘IIX

dOdLS

e

D ssaooad

g ssoooad

<t— =

D ssedoad

joa

¥ ss@aooad

¥

afgeTTEAR D

weiberp @injoniys - p-z'y nbBrd - 95

¥ ssedoxd
A4

v

<}—————]

‘X/AI

¥ ssedoad

TTRI3 ¥
‘aTqerTEAR
> 'IA

Jjoa

A4

¥ sseaosoxd

< o

<3 ry
afqeTteae d
'XI/A/III g 3 ¢ sseosoad
¥
d mmmuou& N
Y
sTgeTTIERAR
= Butyiou
‘TIA/T
¥ ss@ooad 23e3s 3Ie3s
v £ g % v ssaooad
g
eTqeTIRAR Y
'IX/IIIA/II
< Y

d sseoooad
d

"$TZ Y 82anbtg
L¥d - dLs D9y

message_A sel(status=l)
N=N+1;
read_ahead_second_record sel(A read):
A_read:
status:=ll;
return, --state |l next--
read_ahead_second_record end:
message_A alt(status=Ill or status=IV)
read_ahead_second_record end:
N:=N+1,
read_ahead_two_records end:
take_keys sel(A available & B available)
ka:=k(A);
kb:=k(B),
take_keys alt(A available & C available)
ka:=k(A);
kb:=max;
take_keys end
process_all_A’'s_and_B's iter while(not(C & eof))
not(C & eof):
key_cycle seq
process_current_key sel(ka<kb)
ka<kb:
process_only_A_and_read seq
. first_process_A:
A1_actions;
read_after_process_A sel(B available)
B_available:
status:=V,
return; --state V next--
read_after_process_A alt(C available)
C_available:
status:=VI,
return; --state VI next--
read_after_process_A end
process_only_A_and_read end
process_current_key alt(ka=kb)
ka=kb:
process_A_and_B_and_read seq
second_process_A:
A2_actions;
second_process_B:
B2_actions;
read_two_records seq
read_first_record:
status:=Vil;
return; --state VIl next--
read_two_records end
. process_A_and_B_and_read end
process_current_key alt(ka>kb)
ka>kb:
process_only_B_and_read seq
first_process_B:

B1_actions;

read_after_process_B sel(A available):
A_available:
status:=X|,
return; --state X| next—~

read_after_process_B end:
process_only_B_and_read end
process_current_key end
key_cycle end
process_all_A's_and_B's end
process_ABC_file end:
message_A alt(status=V or status=Vl)
read_after_process_A:
N:=N+1,
_ process_only_A_and_read end:
take_new_keys sel(A available & B available)
ka:=k(A);
kb:=k(B);
take_new_keys alt(A available & C available)
ka:=k(A),
kb:=max;

57

1 begin

open process structure 2

open process structure 3
service line 1
service line 2

close process structure 3
close process structure 2

1 end

2 begin

take_new_keys end
key_cycle end:
process_all_A's_and_B's iter while(not(C & eof))
not(C & eof):
key_cycle seq
process_current_key sel(ka<kb)
ka<kb:
process_only_A_and_read seq
first_process_A:
A1_actions;
read_after_process_A sel(B available)
B_available:
status:=V,
return; --state V next--
read_after_process_A alt(C available)
C_available:
status:=VI,
return; —state VI next-—-
read_after_process_A end
process_only_A_and_read end
process_current_key alt(ka=kb)
ka=kb:
process_A_and_B_and_read seq
second_process_A:
A2_actions;
second_process_B:
B2_actions;
read_two_records seq
read_first_record:
status:=VIl;
return; --state VIl next--
read_two_records end
process_A_and_B_and_read end
process_current_key alt(ka>kb)
ka>kb:
process_only_B_and_read seq
first_process_B:

B1_actions;

read_after_process_B sel(A available):
A_available:
status:=XI;
return; --state XI next--

read_after_process_B end:
process_only_B_and_read end
process_current_key end
key_cycle end
process_all_A's_and_B's end
process_ABC_file end:
message_A alt(status=VII)
N:=N+1;
read_second_record sel(A read):
A_read:
status:=VIII;
return; --state VIII next--
read_second_record end:
message_A alt(status=IX or status=X)
read_second_record end:
N:=N+1,;
read_two_records end:
process_A_and_B_and_read end:
process_current_key end:
take_new_keys sel(A available & B available)
ka:=k(A);
kb:=k(B);
take_new_keys alt(A available & C available)
ka:=k(A);
kb:=max;
take_new_keys end
key_cycle end:
process_all_A's_and_B's iter while(not(C & eof))
not(C & eof):
key_cycle seq
process_current_key sel(ka<kb)
ka<kb:

58

2 end

1 begin

1 end

service label 4
service label 3
service label 2

service label 1
2 begin

2 end

1 begin

process_only_A_and_read seq
first_process_A!
A1_actions;
read_after_process_A sel(B available)
B_available:
status:=V,)
return; --state V next—-
read_after_process_A alt(C available)
C_available:
status:=VI;
return; —state VI next-
read_after_process_A end
process_only_A_and_read end
process_current_key alt(ka=kb)
ka=kb:
process_A_and_B_and_read seq
second_process_A:
A2_actions;
second_process_B:
B2_actions;
read_two_records seq
read_first_record:
status:=VIl;
return; --state VIl next—
read_two_records end
process_A_and_B_and_read end
process_current_key alt(ka>kb)
ka>kb:
process_only_B_and_read seq
first_process_B:
B1_actions;
read_after_process_B sel(A available):
A_available:
status:=XI,
return; --state X| next--
read_after_process_B end
process_only_B_and_read end
process_current_key end
key_cycle end
process_all_A's_and_B's end
process_ABC_file end:
message_A end

Figure A.2.5 -- message_A service structured text

59

1 end

Example 3. second process file ABC and its transformation into
an object

second process file ABC, that can be seen in figures A.3.1.1 and A.3.1.2, is similar
to process file ABC, but the operations N=N+1 -- which appear in many places in
the latter -- have been changed into different operations, named M, O, P, Q, etc., and
a new one, N, has been added.

Figure A.3.1.1 and A.3.1.2 are marked original diagram, for they are used to derive
the service diagrams of the equivalent OOP object.

Figures A.3.2.1 and A.3.2.2, marked diagram after first transformation, show the
result of applying the first transformation required to obtain the object service
diagrams; this first transformation is the same on the way to derive any of the different
services, so these two diagrams are further subjected to as many second
transformations as service diagrams are to be obtained.

Figures A.3.3.1 and A.3.3.2, marked diagram after second transformation, show
the precedent diagrams once the second transformation has been applied in order to
obtain service A.

Finally, figures A 3.4 through A.3.8 show the structure diagrams of the object service,
INITIALISE, service A, service B, service C and service eof.

60

DgY oTF sseooxad puodes - T'T°€'VY Td - T9

=1
Avw=:qy Xeuw=:qy (a)d=:q
Xwus: vy (¥} (o/8/Y) PRI
Q AR JOB ¥ AR 3 0 AR O % qTAR ¥ 0 A® D % qlae g 0 AR B % QAT ¥
- skey piooel
BUOy 2% D ELER]
8yl
pesye pesl
o AT
L (jea/a/y)peas N
ssesoid
s Aoy shey a P o
meu jueIIns 183]% (TR SR-LLE] (p/a)pvex
L3R ssadoad pveJs
o pERal 0 peas g o ¥
piosai
afoaka -
[+] pucoas suojlawT |
Aoy
prayv peal
[G
[jo® 3 Djiou = wiw _ F‘ _
s.4
s§pilosel
puw
5.¥ 11w o3 asyTRiItUY
ssedoad pvayv pwed

|

weibeip [RUIB]IC DHY
atvd
ssadoxd .
puocoas SLU1E°Y eanbyyg
1v¥d" [43ANOD

S,d pue s,Y TTe sseooad - Z'T'e'¥Y Td - Z9

xvwz:qy

(edo=:wy

0 AV O3 3 qA® ¥

O AW jom 3 A® D

[

aX. SX1. SI1IA. S1TA.
(3cm/a/v)pwea (a/¥)pwea (a/a)pres farasvipres
o]
E] o pEel @ o
proses pacoea
i pucoes 2 g1ty suorasezy
prex peod
sp1odes a v
ona sse301d sces0ad
pvod pucses pucoes
(22t NEN 1A,
(Jos/a)pusa to/a) peea tioe/ylpred (a/¥)puea cuotIow
ssoaoad
G eTaviivAv 5 T Slaviivav v 5 TR STaviivae 5 [c ~iaviteny 4
d a N ¥
CELEDET] ss0004d
s sso00ad sses0ad
aea;vw ae33v
asang asxt;
prss 1
la)a=:aqx) (@) a=ax puw ¥
xwwz ey (¥) %= wx Atuo
£co001d
O A¥ 5 3 dlAW § O A¥ 0 T QLAY ¥ o o CEELE]
shoy shuy
meu Aue3and
oaxva ssesod
LIELE]
Aoy
3 [EE] .2 (100 % 3)iou = ®wjqw
wabvip [wuifitdo F.d
puw
L ARl
ssu504d

‘T 1 g v oeanbiy

Ava THIANOD

sdey
Asu
EPLE]

shay

AUBIIND
ssedo1d

8124
Aey

wyLe

5,8
puw

s.¥ 11%

ss8204d

DY ®TT3 ssedoad puooes - T'Z°¢€'VY Td - €9

\/

[ﬁ?w_. .\t_ntmm L]

TR UE
A

shey
LT

o Al=03R018
I \ \ \
_ tEHL K...t.ﬂﬂmx (0/8) §wad Z.ZG:H‘NE esTTRyIIUT
— Al=8, s
£
/
(joe 3 n)ijou __) / LTS 7] 11[=81015 o IECELED 7 \
L_ZT N\ ! | m VAR
% e _ NHML _ NENLIY NYOL3Y
N S(1oasa/¥)peBa. | Fea N | flemivaE _ t=e1v1s
| [E L _ o pvel v _ o (1730uzeavis
[[4 I T L
— —i o i s
-}
1833w . l2/Y) prea. .(o/E)pwea, .(2/a/v)prel,
prarx
0 v OJ5 qije A 0 Al=3s | pd O G I11=36 | P4 A 0 11=38 | P ¥
piooal ELET T
Xou= 1 qy (8)i=:qax puoses 3sany
ivla=swy faya=ien preyr pvel preyw peer
AY D % qlA® ¥ 0 AW 4 3 AP ¥

[

spJooBl

om3y
preyw peal

UOTIPWIOjsURI]Y

1s11) 1@3je weabeip

a8Y
LR
s§sadoad
pucses TLTZCETY eInbid
LVd " CHIANOD

s,d pue s,y¥ TIe sseocoad - z'z2'€°'¥ Td - ¥9

xwua= 1 qy X (a)w=.qx u yﬂ..rmq.mﬁwm f..i":ﬁun nyﬁﬁ ava 4

)= wy () a=:wy

s——
[c 7% 5 3 qiav ¥ S Nzeamis B Yizeavnas B TIasAivaE
_ ! I
n LRI _ FETAE]
: SHiameavae DNgwavas Nviovas
. G pesy ¢ — 0 IIa =/ 8I¥iE —m\ IA 8116 0 A=®1¥IE
L |_ i ; ! |
MunIIy n¥0LIY
«{Jo8/a/¥) prel, «(o/v)pusa., ={o/a)pwea. ol 1pwel. _ _
1 e /) p /a}p s p Bppuiagsal it
o _was [pio G _wi=is | pr 9 O ilia=1c] i v _ ©__eiariivav o _ o siasiienv @
pacoes pacoes
pucsex] 8113 « 308 /¥)pwea. «(o/¥)prea.
prex pves
G _Ia=is [A€ 5 o nmie [v g
Y
- L i - sses01d -
-(jos/g)pwea, -(o/a)pwea. sucpIneTIg oAl suoraovTrd FUOTIDY LY - fUOTIIWT IV
puex pves
| T R TR R |
a
seasoud . 3 b ¥
kil £reo01d ecuooad sas01d rwwo0ad
Sl wxpg pucses pucoes gy
G ;
puv @
Awo
sreooud
o ELELE]
shoy
ELLERLE
ccoa01d
e10Ao
Rox
- TV {jos 3 oliou = wirw
.49
uojawaIo) UL
pur
@133 1833w weabeip
b e Tt €Y sanbrg
saes0
1va° yHIANOD

odv @173 ssedoad puodss - T'g €'Y Td - S9
e}
(d)da=:9%
(W) d=:ex
0 Ae g 3 qlae ¥
xeuw=:qy Y NdnL3d v
« [Joa wadl,
(v)A=:ey N t3e=/a/¥1P aviayd [[=23%3s avay
0 A% O T qAR ¥ 5] 111=83was 0 peal v 0 [=8393s
T T
_ _ | _ i
| i 1
shsy sAay shay 5]
mou JusIino w:_n. 1a33% . (osy¥)peaa, «(D/a)peal, «(D/8/¥)PRal.
ayen sseooad) peaa
[E] | p1 D O Il1l=345 [p1 1 o II=3s | p1 vy
paoaal piodaa
a[oA
MM . pucoss TN p— W Js113
L peRaye pesa pevaye peai
. vyl
{Joa 5 p)uou = wI[® —
Mh—m splonal
s,¥ (1= oMy
nﬂrﬂ@U—uhﬂ pealye prvsl
o8y
a1
uol3RIIo JSURIY
Uodas I8y3ie ——_maﬂ.—“ graonId
P) 3 ' pucoas
v
201A33S "1 e € ¥ =anbryg
= = LY¥a" SHEANOD

sS,d pue s,¥ TT1®e ssaooad - 2°E'E'Y T4 - 99

‘ .
R L] R EKITI
Shek .
S
v
dyey
CRTEET
_ L}
sday
v v wenzze . . v M
asu — -
o avaw avan Iitaesawar Lianearae avas ava
= =y B CTD S T _ TR T 3 TRSToTT T POz
T T _[T T
I 1 — —
i \ |
| axnize wanaaw
- - JAoswipesa, Llaeipesa, Slamyvipwsa,
fasiasns Asssan
5 via L B N T T AC el Pa Y _ 3 _ ST TAS IR
pem e xere
Lfessulpesa. . {o/uipesa. susyase e pusses R yservipess. _tarvipesa. sue)sanmiy
i M
T T T Ty T T e T es
.
ssm3vad nd ¥
Gess
iy
e unaie e
weda
L
vus u
FEh
iioieaa
a L - -
e
Pl
Sumirae
isis
Ay
- oo
epaemicgRuvaa e
pusses 1e3je messeip Py
T
sieseas

eajasen

E gy eanbia

4va puasNoD

w(D/49d/Y¥)peax,
I=23e3s

paooax
G it >
peaye peai1

spiooax
om3
peaye peaix

ASITVILINI ®2TAI®S - p g'¥ nb1d - L9

suotidoe I

SSTTRTITUT

HASTTIVILINI
20TAIDS

P ETY 2aInb1g
LVA ' THOIA¥ES

,4 80TAIBE ~ §'¢€°'Y nBTd - 89

<lorame
ITA=®I7IE
B
piossa
-{o/alprea. = = e -lice/vipwna. -lasvipwes, — - "
it suotIowTLE 18413 suotaawT2E sucyIaeT v faniha S kbad 13287 1Y
pvol
G __PelaviivAt ¥ C__wiaviivav 5 ©__siaviivav @ © Av 5 3 qQiav V) C_Av @ 3 alAv ¥|) T
D, T v ¥ ¥ PEETT
10281
s d Ae 54
anapo oma sces0ad ssmo0ad e sresoad wa o InALE
A801N %113 praa puocoes pucses A3LE 16313 AU
puss pros uoHBIOOUN ‘¥..

Teed :
o v xo ax (@ o i
tde e u=:oy (o) u= oy Sl
ssp30ad
o FEELL] © AV D 1 QLA ¥ G Av g 7 QIAV ¥
shoy cAey
aueiina po " B)
egon0ad oy
B X/NI=3% Tn/n=1¢]
PEFT
o134 iy ELE
nou
Ay i g aawd
Gl UouwoIun ‘¥.
£.d i
424 BREA i (X/X1/IAfA=e1waE) B
_— il =¥ s uousicoun “¥.
cs0501d
S Vv
pacaed N -
5 puoses W s
preuw pred ouwo: n
¥ ¥ (X/%1/IA/AIATSTID ¥
sees01d Liasald N riiaid
=¥"visq
[0 in=eawac] 0 Teawas]
v
eojntes e entrs

1va Y32 1AMAS

g 80Tades - 9°'¢°y¥Y nbrgd - 69
-a/a/v)pess.
1IA-93w3w H
{ o Treieaw
~3o8/a piooes
-lo/mipres. s 4 «lo/wIpees, [CIFTEEN]
pusa, wuor3ow-1a asayg TuoTIIeTZY Axeamas wu sy }
1IK-®3nIE pos
0 ®[QeLisAe | | RGO | —a AV 8 9 qlAv V]
1 M ~3awd
wseso1d senzoxd wlkay ° ...:.-n
Isarg Awaak qmarg b i Lo
pusa uoumsosun
[CIFTR]
(laes: oy
¢l _u Av O 8 qlaw .__ _u Av | ¥ q[as v
ahey
Aoy] "
w3
TIN/iR=av c W/TTTA=37|
aand
7
sioh e it
Awy ‘z yawd
i) Woumsoun
v i
(afvipues, ~(a/vipwea. pur CLIX/ X/ X/ T TEA=Rawam)
N1-eamw 111=e3mw v 11e o
wumsoad
pa paoses 3awd
pucses [puose: " B O
puss pueyw puez oo
o (TIATX/X/TTIA/AT /1T =®3938))
sras01d sses0ad
=aTvIeq
&) T1A-®3vas e [ELELEL] > CeED
L]
Thalew T9CY eandig

A¥G 8301 A¥BS

D 8@dTaJes - (€'Y nbBTA - 0L

«(JoB/g)pERL, = « (3oB/Y) PRI, i Xews=:qy ()d=:q
1I¥=21e1s wicgeh T IA=83"3S sdapaoe 1y (V)= ex xews= i ey
a BalqE[IRAR D 0 arqel [eAE D 0O A® D ¥ q[aE ¥ O ow 3 ¥ qlae d
3 q v
sseooad EFRLE sseooad e B
g 18111 as113 naEd
prea b
prea pral 7
pue g pue ¥ aaed
Aluo Atuo ;
uowgooun ‘d.,
ssaoord ssadoad
2] qA< ey 0 q3>Fy O IT11/11=38
shay
JuaiIno 3 o d
ssaoold
0 I¥=2383s [XI1/111a=13S 0 A=8381S
w
«ljoe/a/y)pees, «(Joa/a/yipeea, B10ko aaed (1X/XI/111A/8=93035]
zeseas Al=ejeas Aoy uotIeDUn ‘D). =
=3 eunres
0 D nmueb
d00e1 e
piooea piooe pux Lated
vcwumm i sM:Muun.. H s,¥ 11 uomodun ‘3,
pead pERHR pE 5 o01d
(1% /XI/ILIA/A/TITT/11=83R4S)
) b rn -]
sseoold ssenoad =g-Ryeq sseooxd
0 IIp=83%m3s O I=2385%S 0 2D BIBq

2

20fnles L'€Y exnbid

Lvd DEDIAMIS

joe °0TAI®S - 8°¢'Y NBTA - TL

Xeul= : wew=:
ot s d d et
Xeu=: ey Xeuws : ey
0 A® Jo2 3 a® D IIX=23e3s [X=23e3Ss [6) IA=®3®e3s 0 A® Jo2 % A® D
w3xed
shey
381t} shey
mau 5] N
'z 3xed aye)
axeq ,
uounwosun ‘3joa,
wl nT
- 3aed jaed
sSuoTjlDe D
uoumooun Uouno dun
'jJoa, 'joa,
o] IIX/X/IA=3S AI=23e3s
«37ed
= UOUMIo UM
ssaooad
‘3os,
218y
afqelTear ,joa pue .0, Foa
20TAISS

‘g gy SINBT
LVA " d3OINYES

Example 4. Transformation of an OOP object into a JSD
process

Figures A.4.1 through A.4.15 show, stage by stage, how a process diagram can be
build up starting from its equivalent object's service diagrams. The procedure to follow
is fully explained in section 6, "Deriving process diagrams from object diagrams".

72

(D2/49/¥) (D/4/Y¥)

ssadoad peazx
pIooax
35213

peaye peax

DdY ©TT3 ssoooad puodss - T'F°¥ nbrtgd - gL

suotjoe I

spxooax
omy
peaye peax

odvy
°STT3
sseooxd
puooss

"T'P°Y =2anbtg
LYA" 2

(D/4d/¥)
peax

DEY o711 sseooiad puooss - Z°§°¥ nbTd - 7L

pIooax
JBLE &
peaye pealx

suoTine I

(D/9d/%Y)
ssoooaxd

spiodaix
omj

peaye peax

SSTTeTITUT

0dY
°T1T3
ssaooxd
puooas

‘2% °vY =2anbtg
LYd"¢¢

DY 2113 sseooad puooss - £ 'Y NBTA - G

Al Il
{joe/drsv) {joesa/v¥) (o/%) (a7%) ! (o/4) (ara}
ssepoad peesl ssepnad praa ssedoad pesalt
plooea picoei piooed
puocoes pucoas puooes
pEeye peel peEBYE peEBI peeye peel
A
ssedouad ssenoxd
o pral o (4] prax g [}
I
(2/4d/¥) tara/v)
ssepoad pred
plooel
is113 suojaor’ |

praye prel

splooel
oMy
prays peaa

esylejajuy

]

EEL]
eri3
sseooxd

pucoes

"ETFCVY eInbid

Lvar ez

AL II1I
(Joa/a/v) (3o03/a/v) (D/v) (o/%) (o/a) (o/4)
ssasoad peai ssa220ad peaa ssaonoad peaa
peaa1 D pe=2i1 g peai y
usym usym usym
anutTj3uos anurjyuoD snuTjuca
0 pes1 o (o] pral g o peal y
piosail I
. (o/d/%)
pucoss
ﬂﬂm—h
peaye peail
piocosa
1SIT] suoTyoeT I

peaye pesl

spIooaa
omy

praywe peail

SSTTRTIATUT

odv
8113
ssasoad
UCDUNW

PP °Y 2anbrg

LY¥a 9e

DY ©TTJ sseooxd puooss - Y nbtd - 94

II

piooel puooes pesye pesal - G F'Y NBTd - LL

pesax peax pesx
Jo® pue D pue D pue
pe=21 D usym pe=21 g uaym peax ¥ usym
sganoaxd gs8d0xd sganoxd
peax joe peax g peax v
joa/d/¥Y (3os/d/¥)
ssaooxd peax

peax D
usaym
aNUTIJIUOD

0 pesx D

pIooax
puooas
peaye peax

AT

"G'y°Y 2anbrdg
LYd" €

« (Jo8/Y)pPrREZ,
1A=e3e3s

suoT3ow 1Y

o alqeiTeAav o

¥
ssasooxd
a3 e
pesax

v

ssesoad
Uﬂh:.ﬂu

|

peal
pue y
ATuo

ssaooad

Q>

shay
3uaIxan2
ssaooad

a1oko
Koy

Xeul= : qy
(W) A=:%)

0 A® D ¥ dIA® ¥

AI=23®3s 3e Y sseooad - 9°'y°yY nb1d - 8L

s.g
pue
s.¥ T11%
ssanoxd

shoy
ayey

axay
sTgelTeA® ale) pue Y

AI=®3%3s
e ¥
ssaooxd

‘g p 'y sInbtg

LYa“ v

aaay

aTqerTeae aIe D pue g

«3oa/d
peax,

IIX=23%35

suotjoe 14

o]

s1qeiTeae D

q

ssaooxd
as3je
peax

g

35113

ssaooaxd

peax
pue g
Atuo
ssanoxd

a<ey]

shay
juaxans
ssasoad

a124&>
Aay

(g)d=:9¥
Xeus=: ey

o]

A® D ¥ qra® d

s.4d

pue
s,¥ 11®
sgazoad

sheay
a)ey

AI=23%e3s
e d
ssasoxd

AT=23®3s 1e g ssedoad - £*§°V nbBTd - 6L

‘L'PTY eanb1g
Lyas

L]

AT=®3e3s e joe sseaodoad - g §°yY nbrid - 08

Xeu=:
suoT30® ™D meI.M“

O A® JO® ®§ A® D

9 sKay
sseooad axe)]

9218y aTgelIeAR AT=93e3s
98I JO® pue D Jje Jjos

sssooaxd
"8°y°VY 2anbtyg

LYd" 9

AI=23e3s 3e Joa/g/y sseocoid - 6°p°¥ NbTd - 18

. (Jos/¥ipRea,

suoljoe 1y

.3o2/4
eal suorior”
peaas nal - 1A=83e4s
I[1¥=23e3s
0 ®[qe[lea® D 0 ®ol1qrlleAR D
a v
ssaonoad g gsanoad L)
ssanoad szaosoad
193] a1t 13338 4811
pesa Isatly peai 3113
peal peal
pue g pue y
Atjuo Aluo
ssaooad ssaooad
0 qQy<ry 0 qy>ey
whay shAay
JUBIAND
ssapoad
TR a1oAo a124A0 Kews: gy {g)d=9y xew=:qy
8 Aay Any WRl=: By Kews=:ey {¥id=:ey
O ne Joa % A® D © AR D 1 qlA® H O AR D 3 qInE Y
.4 v.d
o] pue puw whsy
sgasoad §,9 11% Y oL1e a)ey
ssadoad gwaooad
0 ne Jo@ 3 AR D 0 Ae D 9 dln® d AR D % qlaR ¥
uo
[¢] N
moj10]
218y a[qeiiRA®R Al=23®18 3@
jo8n | oA | OV jos/dA/Y
ssaooad 6 bV 2anb14
1| Lva- s9

=joa/g
pear.
I1x=03R1SE

suoy3anw” 14

) B1qUITeAT O
L
;]
ssasoaxd
ssasoxd
183w
3 EL LS ¥
pesi
peal
pue €
Ajuo
ssed301d
a qy <®Y
ajqeiicA® D
pue g uaym
ssesoad
0 A% 3 3 qlaF H
suayiae”)
2
ssesoad
0 dqlav® Joa 3 3

I

shey
qusrIns
ssad01d

8243
Koy

€.

puv
s.¥ 11%
ssad0sd

(<] a4

T

oY

[

uo
AoT(oy

.ljoe/y)pwea., cgiABETEY
1A=83181S
] a1qar(IeAr O
Y
¥
ssasoad
ssesoxd
1ai1jw
IsI1}
peas
pral
pue ¥
Atue
sse301d
0 q¥> ey
ajqeriear o
pu® y uaya
ssasoid
0 AF O 9 qrav ¥

AI=23e3s e Jos/d/y sseooad - 0T°¥'Y¥ BTd - 28

Xews (A)¥=:q xwws=:qy
xEews XPW= ey (V) a=:ex%
0 Av joB § A® O Av 3 3 qlav A A D 8 qQlaRm ¥

[

shay
aye1

@18y B[qe]ivAR

joe3

|

| 28 | ovw

Al=®31R35 ¥
jos/a/v
ss®s01d

oL'¥'Y eInbry
ava-© L

T e

AI=23e3s 3e joa/d/y sseocoad - TT'¥%'¥ BTd - €8
.J0a/g
s o (308/¥)peaa, R
peax, suo1yoe”1d = e suoryoeT 1y
I1X=83e3s
(5] w...u«i?.;c D 0 a[qeilear O
= Y
sseooad g ssasoad .
~ swaooxd oo ssasoad
1233 38113 i EEET!
pRag peax
peai peail
pue g pue ¥
Afue Aluo
ssaooxd ssaboad
(0"} 3 (ay<ey)=gpuod [4] Zpuoo [5] [pueo (DO¥) 3{q¥>®=y}=1puod
shey
Jua1Ino
seapoad
P a10Ao
suo1y0® D Reiy
7,8
o pur Xews: qy (a)d=:9y Xews=:qy
ssaooad g,9 T1% Xel=: Y Xews=: ey (W) d=:ey
ssanoad
O qlae joa ¥ D 0 o8 | O¥ D AR OB 3 AR D 0 A¥ 3 7 q[ae § 0 A® D % qlA® ¥
uo shAay
Moy (o] ayey o N
Al=®3®ys je
alay s[qe|1eA® jom/a/v
jo2 | 28 | ov sssdoad 1Lk ¥ sanbiy
—_ —_ L¥a-SL

o O ® o

5 R ~
IT=23e3s 3e D/d ssadoad - gI°'%'VY BT - ¥8
« (D/d/¥)peal.
IIA=37®35
[]
piooal
.(o/d8)peai, suoTIoe—1a 48113 suo{0%"zd suojioe”ZyY «lJo8/v)peai, ._U\iu_mmu. SESTERE T
IX=31838 IA=31e3S A=81e3s
peax
0 ®lgelieae ¥ Q0 a[qejjeae D 0 A[gqeljeae g
8 g spicoal g 4) v
ssapoad ssaooad
sseooad oMy ssaooad ssaooad ssapoad
A2ade FEER S peai puosas puosas asdgs FEE R
peax I i N = peax el
pead pea1 peaa
pue g pue g pue y
Aluo pue g Atuo
szspoid ssaooad sseooad
o Spuoo| (aw) 3 (gx<ey)=gpuco 0 [EGE (8¥) 3 (ax=ey) =ppuc> 5 TPuos (ov|av) 5 {qy>ey) =gpuco
chay
Ju81INd
ssanoad
azay =2[(qelirA® O¥ | 8Y a1odo xews= iqy (ayd=:qay
Aay (W) N=:ey (¥)u=:ey
0 A® 3 5 q[AE ¥ 0O A® g % qTAR ¥
s.4
pue shay 5
.8 11" ayey
gsadoid
|iay alqe(ieae OV | av Ii=eyeqs
a® o/8 .
ssasoad ‘ZL B Y 2anBld
LYa e

III=23®3s e D/V sseooad - €T1°¥°V BTd - 58

-{o/8/¥)prRa.
1IA=®348YS
Q
pieoai -
: 3 ®
w302 R pesn, -{o/a)pesa, suogyoe” g 3511} suo]3oeTzH SuU0[398 ZY -(o/y)peai. sucyyoeT 1LY
IIX=91®835 I1X=a3ie3s A=@3e3S
peai
s} 2[qe] AR D 0 2[qe[ieae y o arqeiieae g
ssapoad 3 TRASoEL 8 v ssaooad Y
ssadoad omy ssaooad ssanoad ssaoo0ad
w3 sayg pes1 puooas puodss 1233 FEES B
peaz E) prax
pral [T pral
pue g pue g pue vy
Atuo pue ¢ Aluo
ssaooad ssaooxd ssaooad
a gpuod (28] 8¥) 3 (ax<ex) =gpucd Q qi=Ry (8Y) 3 (q)=¥)) =/puod 0 gpuocd (8Y) 2(@x>e3) =gpuod
SAny
JUAIIND
ssanoad
a1odo (A) 8=} (A)d=:93%
sIsy s[qe|ieA® 24 aY
LA C LI l iy (W) H=: ey
0 A® D 3 AlA® § 0 A% H 3 qLAR Y
5,8
pu= shay i
L ayes
ssapoad
a1y a1quiieAv 24 | av 111=23e38
i® 2/¥Y
ssavoad CELT Y @anbry
LYa' €

od¥ @TTJ sseooad pucoes - JT°7°¥ BTd - 98

Lla/eivipeea,
Tia=ravan
0
<lasssaiores, <torarpee, " . . taservipaea, tarvises.
castisy T s
i o 1ameanar amsaear
eomc i [Cam s G oz S O
v . St .
west v
wibsena dsrsea o
s
wans i suoser
i
S
ot
arus [T TP T s
5 T
sAwy AL
ECLEELES L] ivipres
LRELES asseaesd i 1
12 Aaraa g o torerpaes toruipves
o s 7 i T S
ST [1T [I]
1 ade v Sl B |
Sddsna
2 —
P Ry
7 ZiL T e R T R G T

akey
sxeq

o " faiuivipres

sp1sanx
ona expisiael
pasyr pres

SabU BlaviieAr PieIes o

2d¥ 21T3 ssoooad puooss - GT°

x x1 LILA
b taensu arvle tatutpena
tein
Q 0 3 5 T Tvea Y]
vreses 1A
" puess ° tarervipves
lgeren pesus pres
T A o v AT Y
Tix - 1 A
i iy 1eiprea taruipana susyiaeT L (3emsyipues tasvipees
xrmeiey
T A 5 v A § 5 viasiivAT 3] 5 TarTieAT V] ORI CEECCOLI
g
fi e . spaeans . A
. axvanaa o asnsera srwsead .
bt i aesn . guasy pusses
weex .
s e

fam1ay) e lans ey deapuss f¥ Iy lai-egl=poues fov |aviviquzen)=tpuss
anvdesd
a0 TPues T o
saen e Al
Asu Ausasns "
sxey savsead
N LI EEUERCCL)
sasznad 1 51
sus 11> wres fara=iny aawas pur Inivipves
" Ay [T TIrY oy
10339 pees
) sai] v 5 v aie w © A% ® v aiAv ¥ o 5 3 s o Fres v
exeu wiasiteas 34 | ov | e - [
r i) taew 1 2ljeu = wapw
passws
s Pu 5 wussen L]
LT PRt
preus pess
wreaesd

| I | 1 I m 1

paeass
s
wesur pres

rpaesea

wasy wiqeijras pisses ow

