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3. Robustness of the Single Scan Algorithm

This section examines the robustness of the single scan algorithm, when the observer of the
physical quantity to be tracked is imperfect. Consider a field generated by an nth order
polynomial bearing coefficients a,,a,,...,a,. Then, given n samples, H,, i=1,2...,n, captured in a
particular scan and spaced at interval Ay, the single scan algorithm determines the position
y(H), of first sample H,, using the relation [1],

i;f =D g TN (”2 Y prriay )
Where

D™H =(n-1)!a,_ +n'a,y(H) @)
and

D"H =nla,, (3)

Now using the above equations y can be written as

— 1 A"H a_ n-1
y(H) = n=1 e e
n'a, Ay na, 2

Ay 4)

Here the argument H signifies that the value of y depends upon the vector of the sampled

values. Apparently in the above equation, only A" H relies on the sampled values and thus will
be effected by the noise. It has been found that n-1 th order difference for H,, i=1,2,..,n follows
the closed form relation.

A H=Y )" H,C ®)

Now let the observation process is corruptcd by a Gaussian white noise sequence o;, i=1,..
to give noisy observations H such that

H/=H,+®, for i=1,..,n (6)

Hence, n-1 th difference for n noisy samples of H'is written as

Here and throughout this report (": P
« (p-q)lq!
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=A"H + A" 1H)

Here A"'H is the exact n-/ th difference and e(A™'H) is the error introduced due to
imperfection of the observation process. Thus

e(A"‘lH)—Z(— )™, C

i=]

@®)
In order to analyse the distribution of this error when w; is normally distributed zero mean
white noise sequence with variance 62, we use the expectation of sum rule [2, p. 283]

E{Zax )= ZafE{xf} 9)

to find the expectation of e(A “'H) as

Eteca™ )= E(Y, (-1, C)
) a (10)

R+ g

—2( ) CEfw,) =0
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Thus if the noise introduced in the observation process is zero mean, the error included in n-1
th difference will also be zero mean. Furthermore, being a linear combination of the normally
distributed white noise, e(A"' H) will also be normal. Assuming that the noise is uncorrelated,

the variance of the error e(A"™' H) can be calculated using Bienaymé Equality [2, p. 288]:

Var{Zax}—ZafVar{x,-} (11)

i=l

Therefore the variance of the error e(A™' H) is

Varie(s™ H)) = Var{Z( D™, C

i=l

= 2[( -1 C]'] Var{w,} = 2[8]202

i=l i-l i=] i=1

(12)

That is, if the observation process is corrupted by a Gaussian white noise N(0,0), the error
introduced in n-1 th difference will follow a Gaussian distribution N(0,G ) such that



(13)
LU I 2
Since the quantity E[C:l , called the error coefficient, is greater than unity for all values of

i=1

n>1, the variance of the error in the finite difference is always greater than the variance of noise
introduced in the sampled values. In fact, the variance is amplified many times. Fig. 1 shows
how does the error coefficient increase with n. It is obvious to note that lower the order of
polynomial to be tracked, the smaller will be the variance of errors introduced in n-1 th finite
difference.
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Fig. 1. Increase in Error with polynomial order

We will now see effect of this error in determination of the initial scanning position y(ﬁ)
Using equations (9) and (11), the mean and the variance of y(ﬁ) may be written as

E(y(H)) =y(H) (14)
and

o ST

=y -

Hence the variance of y(ﬁ) depends upon G, n, Ay and a, only (and not on a;a,...,4a,,). It is
noteworthy that increasing the sampling interval will result in a smaller variance. Moreover,



apparently with larger n, the variance will be smaller provided the other quantities stay
constant. A useful measure of the robustness is noise amplification factor defined by

) ) ) Var{Output Noise }
= Noise Amplification Factor = 16
¢ = Noise Amplification Factor J Var{ Inpit Noise) (16)
In this case ¢ can be written using equation (15) as
n n-1 2
5e]
0= 6%

"~ Ay"'nla,

3.1 An Example of the Single Scan Polynomial Tracking (Ay=1)
As an example of the effect of the noise on the single scan tracking consider the polynomial

H(y)=ay+a,y* +a,y’ +a,y* g (18)

where a, =-2.624

a, =2.8790 19)
a, =-0.605 (
a, =0.0357

A plot of this curve is shown in Fig. 2.
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Fig. 2. Hardness Function Sampled at 4 Points



Now sampling this hardness function at points y,, ¥,, ¥, and y; with Ay=1 four hardness values
are obtained as

H(y,) =-0.3143
H(y,) =2.0000
H(y,)=4.600
H(y,) = 6.000

(20

Rewriting equation (4)

=__1 A"H a_, n-1
nla, A" na, 2

Ay (21)

For n=4 and Ay=1 this becomes

4l T
Yo=Ts+e ATH @2)

For the deterministic case we obtain n-/ th difference using equation (5) as

A™'H = -1.4857. (23)
Hence

Yo=1.00 (as expected).

Now consider that the unit normal white noise N(0,]) is introduced in the sampling process,
then using equation (22) we can write,

41 7
=—+— (A"'H+e(A'H
Yo=13 6( e( )

; @4)
=1+ 5 e(A"'H)

We are interested to determine what distribution does y, follow while the noise is included in
the observation process of H. Calculating statistics of y,

Ely,)=E{l} + [%)E{e(A""H)}

=1

(25)

and



2
Varly,}=Var{l} + (%) Var{e(A"'H))

49
=—Var{e(A"™'H
- {e( )}
where Var{e(A™ H)} can be calculated using equation (12). Hence

Varly,}= %Var{e(A""H)}

432
_4 [C} (26)

- —3_6 i=1 Li=l
=27.223

Hence the standard deviation of y, is equal to 5.217. This has been verified experimentally by
generating 3000 realisations of y, while sampled values of equation (20) are contaminated by
zero mean unit normal white noise. Statistics of y, are found to be

Minimum [y,] =-16.1408
Maximum[y,] = 17.6123
Mean{y,} = 1.1774
Variance{y,} = 26.11152
Std. Dev.{y,}= 5.11

These statistics conform to what was determined in equations (25) and (26). Here ¢, the noise
amplification factor is about 5.11. A histogram for y, shown in Fig. 2 illustrates the distribution
of y, that appears normal as expected.
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Fig 3. Histogram for positional estimate y_ (sampling interval=1)



3.2 Another Example of the Single Scan Polynomial Tracking (Ay=5)
Apparently, the disappointing results of Example 3.1 above might indicate little practical utility
of the single scan algorithm. However, as we will see here, increasing the sampling interval
would lead to much better consummation. While using the same polynomial field of Example

3.1 we increase sampling interval to 5. Statistics of three thousand realisations are now as
below.

Minimum [y,] = 0.863
Maximum[y,] = 1.133
Mean{y,} = 1.002
Variance{y,} = 0.00167
Std. Dev.{y,} = 0.041

Results now are quite encouraging and ¢, the noise amplification factor is reduced to about
0.041 compared to 5.11 with Ay=/. Histogram below shows spread of the determined position.
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Fig 4. Histogram for positional estimate ¥, (sampling interval=5)

4. Robustness of the Multiscan Algorithm

For a given polynomial field of order n=m+r, the multiscan algorithm uses (r+1)(m+1)
sampled values taken in r+/ scans (m+/ samples per scan) to determine the shift per scan
normal to the field. In this case machine shift, 8y, per scan is given by [1]

n—1 n
Sy(ﬁ) D™ H|D"H+mAy/2

TS AH) /S (A H)—(r=1)/2 @7



Where 8"(A"H ) and 8 ' (A™H ) are the double differences as outlined by equations (29). Using
equations (2) and (3) again, &y can be written as

a,,/na,+mAy/2+y
3N (A™H) /& (A"H)=(r-1)/2

8y(H) = (28)

Here, quantities affected by noise in sampled values are 8" (A"H) and 8'(A"H) and can be
written in the closed form as,

r m+l m r-l

ar—l (AMH) ZZ( 1)m+r+i+1+IH G )CC

Jj=l =l i-1 j=1

r+l m+| L m r (29)
8 AH) =YY -)"""H »HCC
j=1 i=l i=1 j=-1

Now let the observation process Hj(j), i=1,..m+1; j=1,...r+1 is corrupted by a Gaussian
white noise sequence wj(j), i=1,..,m+1; j=1,...,r+1I to give noisy observations H; i such that

Hi(j)=H,(j)+w,) for i=1..m+l;, j=1,.r+l (30)

Hence, for the noisy samples

L b +rdit 4+ m =
S AH)=Y Y (-1) ‘(H (h+0,00CC
j=1 i=l i-1 j=1

r o m+l r-1 r m+l m r-1

= ZZ( 1)m+r+l+1+1H (J)&C s Zz( 1)m+r+'+J+]m‘(J‘.)CC

j=li=l i-1 j=1 Jj=l =1 i=l j-1

=8 (A"H) + e(8"'(A"H))

Similarly

r+l m+l m

§@H)=Y > (0" (H w+0,i)CC

j=1 i=1 i=1 j=1

r+] m+l r+l m+l r

=SSEYHGOCC + 33 D600

j=1 i=l i=1 j-1 Jj=l i=l i-1 j=1

=0"(A"H) + e(8' (A™H))

Where e(8"(A"H)) and e(8'(A"H)) are the errors introduced due to imperfection of the
observation process. Now



r m+l r-1

e(ar-l (AmH)) = 22(_1)m+r+i+j+lwi(j) éc

j=1 i=l i1 j-1

(31)
r+l m+l . m r
B(Sr (AMH)) 2 ZZ(_I)MH-HH(D; (])(::C:

j=1 =l =1 J=

Employing similar approach as for the single scan case while considering that w;(j) is
uncorrelated and with Gaussian distribution N(0,G), the errors (8" (A"H)) and (8" (A"H )

will follow Gaussian Distribution with N(0,5 e ) and N( 0,0"(5,_, CNH) ) respectively where

romll op el 2
Gf(&"'(A"H)) = ZE[C C:I 02

j=]. i=] i-1 j—l

r+l m+l| ;m r 2
Cuwm=33|CC o

j=t =1 L=l j-l

(32)

The above equations show the variance of the errors introduced in 8"(A"H) and 3 (A"H)
due to the imperfection of the measurement process. Obviously, the error variances are much
amplified. For example, for tracking a polynomial of order 5 in 4 scans with 3 samples per scan,
if a Gaussian noise N(0,I) is present in the observation process, errors in & (A"H) and
8" (A™H ) will be normal with N(0,10.95) and N(0,6 ) respectively. Now the ratio of rth and (r-
Dth differences is

,_8UAH') _87V(A"H) + e(8™(A"H))
T8 (A"H') 8 (A"H) + (8 (A"H))

Cs (33)

Evidently, 8"(A"H) and 8" (A"H ) are not independent. Further, as £, is a non-linear function
of two random variables, the determination of a general expression for the variance of this
quantity is not straightforward. An analytic expression for the variance of Sy(ﬁ), therefore, is
not developed here. Nevertheless, experimental results reveal that the multiscan algorithm
renders a non-linear relation between the variance of the observation process noise and that of
the determined shift per scan . Furthermore, it has been found that distribution of Sy(ﬁ) is

skewed normal (see Fig. 5) when the noise in H is standard normal. We will present an example
of the multiscan polynomial tracking before further discussion about the algorithm.

4.1 An Example of Multiscan Tracking:
An example of multiscan tracking is given here. Same fourth order polynomial of the single
scan example of section 3 is used here. Parameters of tracking are

Degree of polynomial n =4

Initial Sampling Position y =1
Sampling Interval Ay =1

10



Number of Scans
Samples per Scam
Change of Height per scan 8y

r+1
m+ 1

=3
=3

=1 (To be determined)

Result of this sampling is shown in the Table 1 below.

Sample Scan Number 1 Scan Number | Scan Number
No 2 3

1 -0.314 2.0 4.6

2 2.0 4.6 6.0

3 4.6 6.0 5.57

Table 1. Sampled Values of the Polynomial Field

With the above parameters and using the poiynomia] coefficients of equation (19), equation
(28) implies

_ -3 543
8 (A"H) /8 (A"H) -1

dy (34)

Here two double differences can be calculated from equations (29) usin g sampled values in the
Table 1 as

31 (A"H)=0.857 (35)

8"(A"H)=-1.486 (36)

Now equations (34), (35) and (36) implies that
dy=1 (As expected for noiseless sampling)

For the purpose of the noise analysis 3000 realisations of 8y are generated while sampled values
of Table 1 are corrupted by a zero mean normal noise of variance=0.001. Here dy is found to
observe the following statistics.

Minimum [8y] = 0.2848
Maximum[8y] = 1.339
Mean{8y} = 0.98422
Variance{dy} = 0.32032
Std. Dev{dy} = 0.13210

This results in a noise amplification factor, ¢, equal to 4.2. Seemingly, the multiscan algorithm
is more robust than the single scan version (¢=5.11) with similar parameters. Nevertheless,

11



equation (17) clearly indicates that, in the case of the single scan algorithm, ¢ is a constant
quantity for a given polynomial and fixed sampling interval. While in the multiscan case, as we
will see shortly, ¢ is non-linear quantity that increases with increasing variance of input noise.
Fig. 5 below shows histogram of 8y. The distribution is negatively skewed.

500 - Frequency of Occurence
400 :
300 :
200 :

100 -

02 03 04 05 06 07 08 09 1 1.1 1.2 1.3 1.4

Determined shift per scan

Fig. 5. Skewed distribution in the case of the multiscan tracking

Table 2 below shows effect of increasing the variance of the observation noise on the robustness
of the single scan and the multiscan algorithms. Same parameters as of example 3.1 and example
4.1 are used. Each experiment delineates statistics of 3000 realisations.

Variance of the Multiscan Case Single Scan Case
Observation
Noise Noise amplification Noise amplification
factor Mean factor Mean
0.001 4,17 0.9865 | 5.196 1.0021
0.005 5.33 0.9252 | 5.215 1.0046
0.010 20.88 ] 0.790 5.187 1.0177
0.020 43 .44 0.605 5.225 1.0251
0.025 104.16 0.6192 | 5.219 1.0284

Table 2. Sampled Values of the Polynomial Field

Clearly, for the multiscan version, the amplification factor increases explosively as the variance
of the observation noise is increased. The mean also diverges with increasing noise.
Consequently, above results indicate that, in general, the single scan algorithm is more noise
tolerant than the multiscan algorithm as the practical range of the noise is not to be limited.
However, the multscan algorithm has a definitive edge over the single scan algorithm when

12



numoer of available samples per scan are less than the degree of the polynomial field. Therefore,
it is desirable to reformulate the multiscan algorithm with improved robustness.

In the multiscan algorithm, increasing the sampling interval results in a reduction of noise
amplification factor. Table 3. shows results of increasing the sampling interval from 1 to 2. A
zero mean normal noise with variance equal to 0.005 has been used. Other parameters are the
same as example 4.1. Every experiment shows statistics of 3000 realisations.

Sampling Interval Mean Noise Amplification
Ay Factor ¢
1.0 0.9253 5.336
1.2 0.9667 2.951
14 0.9827 1.876
1.6 0.9901 1.239
1.8 0.9947 0.819
2.0 0.9975 0.539

Table 3. Reduction in Noise Amplification Factor with increasing

sampling interval

Fig. 6 shows results in a graphical form. An exponential relation is apparent. The noise
amplification factor rises enormously when sampling interval is further reduced below 1. For
example, if sampling interval is reduced to 0.5, the noise amplification factor rises to 4540.

® T Noise Amplification Factor
5 1
4 4
3+ ‘® R
21 o
1] LT
. s - -
1 Sampling Interval -
0 . —
1 1.2 1.4 1.6 1.8 2

Fig. 6. Sampling Interval and Noise Amplification in Multiscan Algorithm
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5. Conclusion and Discussion

An expression for the noise amplification factor for the single scan algorithm has been developed
and authenticated experimentally. It has been shown that the single scan algorithm yields a
normally distributed positional estimate when the observation process is contaminated with
Gaussian white noise. Furthermore, as equation (15) indicates, the variance of the observation
noise and that of the positional estimate are linearly related. Increasing the sampling interval
results in an exponential reduction in the noise amplification factor depending on the order of
field generating polynomial. It is also interesting to note that the noise amplification factor
depends only on g, the most significant coefficient of the field generating polynomial and not on
@illsiiill i

Due to mathematical intractability, an expression for the noise amplification factor in the case of
multiscan algorithm has not been developed. Nevertheless, it has been shown that the relation
between the variance of the observation process noise and the variance of the estimated shift per
scan is non-linear and explosive. With observation noise values as small as N(0,0.025), noise
amplification factor rises to 104.16 compared to 4.17 for N(0, 0.001). Moreover with increasing
noise, mean of the estimated shift per scan diverges rapidly as apparent from Table 2. It has
been found that increase in the sampling interval reduces the noise amplification factor
exponentially.

The deficient performance of the multiscan algorithm implies little utility in practical situations.
However, in the circumstances where samples per scan are limited to less than the order of field
generating polynomial, the multiscan version is probably the only answer. Hence it is desired to
further investigate the multiscan algorithm for possible improvement in the robustess.

The foregoing analysis and discussion lead to the conclusion that for a given polynomial field the
only manoeuvrable variable for improving the robustess in the single scan algorithm is
sampling interval. However, maximum sampling interval is limited by the maximum available
width (called scope) of sampling window. As might be expected, in any practical situation,
available scope would be restricted. For example, in case of a coal mining shearer steered by
tactile sensing and subsequent tracking of hardness profile of a coal seam, the scope is limited by
the width of the cutting drum. The choice of drum width itself is restricted by the total height of
the coal seam to be attacked apart from other factors. It is therefore highly desirable to improve
the algorithms so as to use limited available scope while improving the robustness. This report
has not considered the potential benefits of utilising numbers of samples > n. This is examined in
the third report of this series.
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ERRATA FOR THE AC & SE RESEARCH REPORT NO. 492:

TRACKING THE FEATURES OF A SPATIALLY DISTRIBUTED
CONTINUOUS FIELD

1. Replace the Page No. 14 (6.1 Appendix A) with one attached with this note.

2. Page. No. 9, Line No. 6 (the very next line to the equation 48). Read sum
instead of product.

P.S. This errata is for the first report (No. 492) of this series and not for this
report (No. 501)



6. Appendices
6.1 Appendix A

From Taylor’s Theorem

2 3 4 n=1 n
H D'H . .
ﬂ=DH+JD HAy+D HAy2+D—HAy3+ ...... +D Ay 4+ ——Ay™!
Ay 2! 3! 4! n-1! !
now
A’H=H(y+2Ay)—2H(y+Ay)+H(y)
A=l
2 anyy + ZH opyyt s H +-D—(2Ay)
3 4 n-l n
-2 H+DHAy+D—HAy gl Ay’+MAy‘+ ...... +2 HAy +D—HAy" +H
2! 1 4! n=1! n!
2 3
Y D
% i 1;1 =D*H + 2 H Ay + Higher order terms in D and Ay
V2
A'H=H(y+A3y)=3H(y+2Ay)+3H(y +Ay) - H(y)
2 3 r=1
—H+DH{3Ay)+D—(3Ay)’+-?—(3Ay) +-9-—H-(3Ay) i +-——(3Ay)

4 —l
—:‘,(H+DH(2Ay)+—--2'—(2Ay)2 D’ H(ZAy)3+L(2Ay) S + H(ZA " -‘+D——(2Ay) J
- n-—

2 3 n=1
+3[H + DHAy + ) Ay’ + L Ay’ + D°H Ay +...ont il Ay + gL Ay" J+H
2 3! 4! n-1! n!
AH 3D%H . .
oy =D3H + Ay + Higher order terms in D and Ay
Y

Thus, finally we get

Ay
Ayﬂ-‘l

=pigs it

D”HAy +(no. higher order terms)

Therefore

An—lH 3
Ayn—l

(61)
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