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Abstract

The evolution of disease or the progress of recovery of a patient is a complex process, which depends on many factors. A
quantitative description of this process in real-time by a single, clinically measurable parameter (biomarker) would be
helpful for early, informed and targeted treatment. Organ transplantation is an eminent case in which the evolution of the
post-operative clinical condition is highly dependent on the individual case. The quality of management and monitoring of
patients after kidney transplant often determines the long-term outcome of the graft. Using NMR spectra of blood samples,
taken at different time points from just before to a week after surgery, we have shown that a biomarker can be found that
quantitatively monitors the evolution of a clinical condition. We demonstrate that this is possible if the dynamics of the
process is considered explicitly: the biomarker is defined and determined as an optimal reaction coordinate that provides a
quantitatively accurate description of the stochastic recovery dynamics. The method, originally developed for the analysis of
protein folding dynamics, is rigorous, robust and general, i.e., it can be applied in principle to analyze any type of biological
dynamics. Such predictive biomarkers will promote improvement of long-term graft survival after renal transplantation, and
have potentially unlimited applications as diagnostic tools.
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Introduction

The responses of an individual to an infection, to pharmaco-

logical treatment or to surgery are examples of time-dependent

stochastic processes characterized by complex dynamics. An

increasing amount of time-resolved data is available reporting on

the unique chemical fingerprints that specific cellular processes

leave behind [1,2]. Metabolites, such as those found in blood or

urine, contain in principle a comprehensive picture (referred to as

the metabolome) of the evolution of a patients condition. While

such a picture is very complex and generally not insightful, the

time evolution of the metabolome of a patient contains crucial

information. Conventionally, a biomarker is sought by comparing

differences in the metabolic profiles between two states (e.g.

healthy and pathological) using unsupervised methods (such as

principal component analysis, PCA [3]) or supervised methods

(e.g., orthogonal projections to latent structures, OPLS [4] and

related [5]). However, if one is interested in time-related changes

to the metabolic profile, which are relevant to the pathological

state, for example in the monitoring of disease progression or

defining surrogate end points, the problem becomes more

complex. A number of other methods, sometimes borrowed from

other disciplines, have been proposed for analysis of time-resolved

metabolomic data [2]; they rely in general on previous knowledge,

either of the identity of the relevant metabolites and/or the

functional form of the time dependence of their concentrations.

When the underlying biochemical mechanism is itself unknown,

such methods are obviously not useful.

Disease dynamics, according to the systems biology point of

view, is more accurately described as dynamics of highly entangled

molecular networks, with disease being an emerging property of

the networks [6]. Adopting this view, we seek a biomarker, which

is a descriptor (function) of the networks states, rather than of a few

molecules. We assume that disease dynamics is a Markov

(memory-less) stochastic process, in which future behavior is

completely specified (in a probabilistic sense), by the current state

of an organism, e.g., the complex of genome, proteome,

metabolome, epigenome, age, environment, and whatever addi-

tional information may be required (hereafter the ‘‘configuration

space’’). Illustrative and enlightening is a recent study [1] where a

combination of genomic, transcriptomic, proteomic, metabolomic

and autoantibody profiles from a single individual was followed for

over a 14 month period. The analysis uncovered extensive

dynamics changes in diverse molecular components and biological
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pathways across healthy and disease states. In the case where the

dynamics is stochastic rather than deterministic, a single observed

trajectory is not sufficient for a complete description. In principle,

a Markov state model that gives a complete description of the

process can be constructed by observing various realizations of the

disease, and computing the transition probabilities between all

states. The model can be used to predict the properties of interest,

for example, the probability of a given outcome (e.g., full recovery)

after a certain time given an initial state. Such a straightforward

approach cannot be realized in practice. The amount of

information necessary to define exactly the state of an organism

is huge and difficult to identify; the statistics necessary to construct

the Markov state model grows exponentially with the dimension-

ality of the configuration space. Moreover, to be useful for

practitioners (e.g., for diagnostic purposes), the description of the

disease dynamics needs to be simplified. This can be done by

introducing one or a few variables (hereafter the ‘‘reaction

coordinate’’) that describe the properties of interest. Ideally, such

a simplified description should be as predictive as the Markov state

model previously described, i.e., the probability of a particular

clinical outcome calculated from the value of the variable should

closely approximate that computed based on the full Markov state

model. If such properties are satisfied we call the variable an

‘‘optimal reaction coordinate’’.

Determination of the optimal reaction coordinate
Here we present a general framework that allows us to

determine such an optimal coordinate or biomarker from

longitudinal cohort studies directly, without constructing the

Markov state model. The method was originally developed to

describe complex dynamics of protein folding [7–9]. Briefly, a

putative functional form of the reaction coordinate is assumed, for

example, a linear combination of features (here the metabolome
1H NMR spectra) that could describe the process. The approach is

invariant to the choice of the functional form and the set of

observables, provided they contain all the essential information

about the dynamics of the process. The coordinate is optimized

(trained) on a sample of trajectories, i.e., realizations of a complex

multidimensional dynamical process. This is achieved by choosing

the coordinate (e.g., the coefficients of the linear combination)

such that the cut based free energy profile associated with the

coordinate is the highest [7,10]. Namely, given an ensemble of N

trajectories ~XXj(t) (j~1,N) and a reaction coordinate functional

form y~R(~XX ,~aa) an ensemble of reaction coordinate trajectories is

constructed by projecting the multidimensional trajectories onto

the reaction coordinate yj(t)~R(~XXj(t),~aa) (j~1,N). The optimal

reaction coordinate is found by optimizing the parameters ~aa so

that the cut-based free energy profile FC(y) [7,8] is maximal.

FC(y)~{lnZC(y), where the partition function ZC(y) equals half

number of transitions (crossings) by the reaction coordinate time-

series through point y; here and below we set kBT~1. The

CFEP (FC ) unlike the conventional histogram based free energy

profile (FH ) is invariant to reaction coordinate rescaling,

insensitive to statistical noise and capable of detecting sub-

diffusion. Together they determine the coordinate dependent

diffusion coefficient D(x) and thus completely specify diffusive

dynamics [9]. One can maximize instead the generalized cut

based free energy profile FC,1(y)~{lnZC,1(y) where the

partition function ZC,1(y) takes into account each transition

through point y with weight equal to the transition distance; for a

Gaussian distribution of steps (i.e., diffusive dynamics) the two

optimality criteria are equivalent [10]. If the reaction coordinate

is a weighted sum of basis functions y~
P

k akXk, as used here,

the optimal values of the parameters (ai that maximize FC,1 can

be found analytically [10]).

In supervised optimization a coordinate that accurately

describes the dynamics of transition between two given end states

(e.g., healthy and disease) is determined. Incidentally, the

coordinate is the probability of full recovery, i.e., of ending up

in the ‘‘healthy’’ state rather than the ‘‘disease’’ state starting from

a current state. It is known as committor or folding probability in

protein folding studies [10,11]. If the two end states are separated

by the highest free energy barrier, the transition between them

corresponds to the slowest relaxation mode, and an eigenvector,

corresponding to the slowest mode is an optimal reaction

coordinate [10,12]. This coordinate can be determined in an

unsupervised way without explicit definition of end states.

Results/Discussion

The method outlined above (details given in Materials and

Methods) has been used to analyze the evolution of 1H NMR

spectra of the erythrocyte extracts of blood from 18 patients

undergoing kidney transplantation; for each patient up to nine

samples were taken before surgery and daily up to one week after.

The spectra were normalized to the total sum of the spectral

intensities and then coarse-grained with a bin size of 0.32 ppm.

The average intensity within each bin was logarithmically

transformed as Ik~log(106Ikz1). The reaction coordinate was

taken as a linear sum of the transformed average bin intensities:

y~
P

k akIk. The method to determine the optimal reaction

coordinate is robust: it was repeated with different transformation

(e.g., Ik~
ffiffiffiffi
Ik

p
) or without transformation, with different bin sizes,

in a supervised way, all leading to virtually identical results. Note

however, as discussed below, a significant decrease of the bin size,

e.g., to 0.1 ppm, while leading to a slightly better description

results in over-fitting.

Independently of the NMR data, patients have been divided in

three classes based on a clinical assessment of the patients into

‘‘primary function’’ (PF), ‘‘delayed graft function’’ (DGF) and

‘‘acute rejection’’ (AR) with and without primary function.

Primary function was defined as immediate recovery of renal

function following surgery. Delayed graft function was defined as

the need for dialysis in the first week following transplantation.

The spectra for a single patient for nine different time points (a

‘‘trajectory’’), are shown in Fig. 1a. The trajectory for each patient

projected onto the first principal component (Fig. 1b) shows

individual variability but no separation between different classes of

Author Summary

The evolution of disease or the progress of recovery of a
patient is usually monitored by collecting physical param-
eters, which may be simply the body temperature for a
common cold or properties of tissue samples for e.g.,
cancer. Most often clinical decisions are taken based on
the current value or because of a sizable change of a
relevant parameter. As more advanced diagnostic tools
become available, and huge numbers of parameters can
be collected at short, frequent time intervals, two related
questions arise. The first is, which of the parameters
provides relevant information on the progress of disease
or recovery as opposed to noise? Is there more information
that can be obtained from the history of the evolution of
such parameters? Here we propose a novel approach that
leads, for the specific case of recovery from kidney
transplant, to a positive answer.
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patients, and no relevant information on the evolution of their

clinical conditions during the period in which the samples were

taken. The same is true if the trajectory is projected onto the first

few principal components.

Fig. 1c shows patients trajectories projected onto the optimal

reaction coordinate determined in the unsupervised way (the

second eigenvector). Trajectories categorized as PF are character-

ized by an evolution towards negative values of the coordinate;

those in the DGF cohort evolve towards positive values of the

coordinate. The time evolution of the AR patients cannot be

discerned within the timescale of the data collection. Importantly,

the clinical group to which each patient could be ascribed to is

apparent from about the second day after surgery, earlier than any

other clinical indicator, including invasive, though gold-standard,

biopsy. Note that separation between PF and DGF patients cannot

be due to dialysis, since dialysis was never performed in the first

two days after surgery.

The difference between the results of PCA (Fig. 1b) and of the

approach proposed here (Fig. 1c) can be understood as follows.

PCA (and other algorithms [10]) perform dimensionality reduction

with a focus on representation of the properties of the

configuration space. In particular, the PCA maximizes the

variability of configurations along the principal components. The

dynamical information contained in the temporal sequence of

congurations (trajectory) is ignored. By explicitly considering the

dynamics, our approach performs dimensionality reduction while

preserving and exploiting the dynamics of the process [10,13].

To demonstrate that the results are not affected by over fitting

(even though the analysis is unsupervised) the leave-one-out cross-

validation procedure was performed. In Fig. 1d every trajectory is

projected on the optimal reaction coordinate constructed without

the trajectory. All the trajectories are in good agreement with those

in Fig. 1c, and the prediction on the future evolution of each

trajectory (i.e., the fate of each patient) is identical. This confirms

that the constructed coordinate is robust and that the biomarker

can be used to follow up the evolution of the condition of a new

patient.

The leave-one-out cross-validation was also instrumental in

the choice of the bin size. Decreasing the bin size increases the

number of parameters and thus the flexibility of the coordinate;

while this leads to a slightly better separation, the cross-

validation test fails, a clear consequence of over fitting. Note

that, in principle, the possibility of over fitting, as well as the

optimality of the coordinate, could be established by comparing

the cut profiles computed with different time intervals [8,14] or

with other methods [15–17]. Alternatively, one may optimize

with an over fitting penalty [8], eliminating the need in the

manual choice of the bin size. Here we did not use such an

approach, because the trajectories are too short to be sampled

with larger intervals.

Figure 1. Unsupervised optimization. a) NMR spectra for blood extracts of a single patient, collected over nine time points. b) Patients
trajectories projected on the first principal component do not show any feature enabling us to separate the trajectories according to the clinical
assessment of the patients. The color indicates the final clinical classification of the patient: primary function patients are shown in black, delayed
graft function in red, and acute rejection in blue. c) Patients trajectories projected on the optimal reaction coordinate. d) Leave-one-out cross-
validation: every trajectory is projected on the optimal reaction coordinate constructed without that specific trajectory.
doi:10.1371/journal.pcbi.1003685.g001

Optimal Reaction Coordinate as a Biomarker
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While the second eigenvector describes the transitions dynamics

over the highest barrier, it is possible that the third eigenvector,

which describes the second slowest process, would separate AR

cases from PF and/or DGF cases. However, this is not the case.

Among the many possible reasons why AR cases cannot be

discriminated from the other cases, one could be the insufficient

flexibility of the reaction coordinate due to the small number of

parameters. Increasing the number of parameters while avoiding

over fitting would require more trajectories (i.e., more patients)

than those available. To illustrate this fact we performed a

supervised analysis aimed at separating AR from PF and/or DGF

trajectories. Fig. 2a shows supervised optimization where PF

trajectories were terminated at 21 and AR and DGF trajectories

at 1. The results are virtually identical to those obtained by

unsupervised optimization reported in Fig. 1C. An attempt to

separate AR from PF and DGF with 0.32 ppm binning interval

did not produce meaningful results (Fig. 2b). Decrease of the size

of the binning interval to 0.1 ppm resulted in a more flexible

reaction coordinate, so that the supervised separation of AR from

PF and DGF become possible Fig. 2c. However, results of leave-

one-out cross-validation, shown in Fig. 2d illustrate that such small

binning interval leads to over fitting.

Having determined an optimal coordinate, the dynamics of

disease as a whole can be described as diffusion on the free energy

profile (Fig. 3) along the optimal coordinate. The latter has been

rescaled so that the diffusion coefficient equals unity. Two basins

(attractors) naturally emerge, one identifying the PF condition and

one for DGF and AR conditions together. Starting from the top of

the profile, a patients trajectory can fall either on the left (PF) or

Figure 2. Supervised optimisation. a) PF versus AR and DGF with binning interval of 0.32 ppm: the results are similar to the unsupervised
analysis Fig. 1C. b) AR versus PF and DGF with binning interval of 0.32 ppm: no clear separation between the classes. c) AR versus PF and DGF with
binning interval of 0.1 ppm: AR is separated from PF and DGF. d) leave one out cross validation of panel c: small binning interval of 0.1 ppm leads to
overfitting.
doi:10.1371/journal.pcbi.1003685.g002

Figure 3. The disease dynamics is described as diffusion on the
free energy landscape (black). The left and right basins correspond
to PF and DGF+AR states, respectively. Probability of the successful
outcome from current conditions P(x) computed from diffusion on the
free energy landscape (red line) and directly from the trajectories (the
blue vertical bar represents 95% confidence interval on the estimation).
doi:10.1371/journal.pcbi.1003685.g003
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the right (DGF+AR) basin. Fig. 3 shows the probability of full

recovery, i.e., of reaching the left basin (PF) before reaching the

right one (DGF+AR) starting from any value of the coordinate

(any condition before or after surgery) computed by assuming

diffusive dynamics on the free energy profile and directly from the

trajectories. Their agreement in combination with the cross-

validation (Fig. 1d) demonstrates the possibility to predict the

clinical outcome for patients not previously considered, meaning

that the optimal coordinate found is a good biomarker.

The linear coefficients of the optimal reaction coordinate (Fig. 4)

illustrate that the whole spectrum (metabolome) is important to

determine the optimal coordinate that provides a fine-grained

quantitatively accurate description of the dynamics. Indeed, the

largest weight is associated with the bin ranging from 3.84 to

4.16 ppm; this includes signals for creatinine. Creatinine is

currently used as a clinical marker in the assessment of renal

function and to monitor post-transplant recovery [18]; the trend in

the serum creatinine concentrations is more informative than

absolute values, but it is by no means a specific marker. Other

signals, e.g., at ca. 1 ppm/2 ppm and 1.4 ppm correspond to lipid

and lactate respectively; the signal for the CH of lactate is at

4.2 ppm. We note that while the identity of each of the metabolites

is undoubtedly interesting per se, their identities are not required for

the usage of the optimal coordinate for diagnostic purposes as a

biomarker.

In order to describe the specificity and sensitivity of a proposed

biomarker one commonly uses the ROC analysis, which describes

the trade-off between false positives and false negatives [19]. The

proposed approach differs from the conventional ones (e.g., the

PCA) by assuming that the disease dynamics is stochastic, which

makes an application of such analysis not straightforward. This

can be understood by considering a set of patients and a vector of

measurable characteristics (e.g., the NMR spectra) for i-th patient

denoted as Xi. Conventionally, one assumes that the true state of a

patient, denoted by Ti, can be unambiguously mapped (by a ‘‘gold

standard’’ test) onto two classes Ti~f0,1g, e.g., healthy and

diseased. And that this mapping is deterministic, i.e., that if

Xi~Xj , then Ti~Tj . A biomarker is then a binary function M(X)

from Xi onto f0,1g which best approximates Ti. Cases where

M(Xi)=Ti correspond to the two possible types of errors - false

positive and false negative. The former, for example, corresponds

to the fraction of cases where M(Xi)~1, while Ti~0. Since Ti are

determined by a ‘‘gold standard’’ test, the biomarker function is

assumed to be the sole source of errors.

The proposed approach assumes that the current state of a

patient Ti is related to the two terminal states f0,1g, where the

patient will end up eventually, only probabilistically. Identical

patients with identical conditions undergoing identical treatment

(i.e., Xi~X) will end up in different terminal states 1 and 0 with

probabilities of p and 1{p, respectively. Thus knowing the

terminal state does not allow one to determine the true value of the

current state Ti, i.e., a ‘‘gold standard’’ test and stochastic

dynamics are incompatible. Correspondingly, the purpose of a

biomarker is not to approximate the terminal states but rather to

approximate the probability p(Xi) of ending up in one of the two

end states.

A way to asses the accuracy of such a biomarker is to judge how

accurately it reproduces that probability, e.g., Fig. 3. The

classification process is analogous to the Bernoulli trial of a binary

random variable that accepts 1 with probability pi~p(Xi). To

determine the probability p(Xi) of ending up in the terminal state

1, starting from Xi, one needs to repeat ‘‘the experiment’’ a

number of times starting from the same conditions Xi (in

particular, the same patient) and count the fraction of events

ending up in 1. Such a direct approach is clearly unrealistic. An

alternative is to combine the states Xi with similar p(Xi)&p and

determine p from such an ensemble of states, as have been done in

Fig. 3.

Conclusion
We have shown that the dynamics of recovery from kidney

transplant can be quantitatively described as diffusion on a free

energy profile, which is a function of a measurable biomarker.

Such a biomarker can be determined in an (un)supervised way

from longitudinal cohort studies (patient trajectories), which is

optimal in the sense that it is able to discriminate where each

patient is on a free energy profile. In particular, the probability of

rapid recovery (primary function) can be used to devise optimal

treatment. Such an approach is general and can be useful to

develop optimal biomarkers for diseases that develop slowly and in

a complicated way depending on many factors, or unknown

unknowns, such as aging [20], cancer [21,22] and psychological

disorders [23].

Materials and Methods

Ethics statement
Approval was given by the regional ethics approval committee

approval number REC Ref: 07/H1306/129

The cut-based free energy profiles
The partition function of the cut-based free energy profile ZC,r

at point y equals half the sum of the distances of those trajectory

steps that go through point y [14]. More precisely,

ZC,r(y)~

1=2
X

i

jx(iDtzDt){x(iDt)jrH½{(x(iDtzDt){y)(x(iDt){y)�,

where H(x) is the Heaviside step function and x(iDt) is the reaction

coordinate time series sampled with time interval Dt. The cut free

energy profile is defined as FC,r(y)=kT~{lnZC,r(y) and

FC~FC,0; here we assume that kT~1.

The optimal coordinate is defined as the one with the highest

cut profiles (lowest partition function). The justification of the

Figure 4. Linear coefficients of the optimal reaction coordinate
y~

P
k akIk, where Ik is the logarithm of the intensity of NMR

spectra in bin k.
doi:10.1371/journal.pcbi.1003685.g004
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optimization criteria can be summarized as follows (for the details

see the cited references). It can be shown that minimum ofÐ
ZC,1(y)dy, with constrains y(A)~0 and y(B)~1, is attained

when the reaction coordinate y equals the pfold coordinate - an

optimal coordinate [10]. Correspondingly, a sub-optimal coordi-

nate with a lower value of the cut profile, has the mean square

displacement which grows slower then linear with time [14]. The

latter is an indication that dynamics is not diffusive and that non-

Markovain memory effects are at play. Another manifestation of a

sub-optimal coordinate, is that it has lower free energy barriers

and thus a faster kinetics. The kinetics along the coordinate with

the highest cut profile is the slowest [9,14].

Supervised optimization
Optimization of the reaction coordinate can be performed in a

supervised or unsupervised manner. In supervised optimization a

coordinate that accurately describes the dynamics of transition

between two given end states (e.g., healthy and disease) is

determined. Incidentally, the optimal coordinate is the probability

of full recovery, i.e., of ending up in the ‘‘healthy’’ state rather than

the ‘‘disease’’ state starting from a current state. The optimization

is constrained by fixing the value for the coordinate for the two

state y(A)~0 and y(B)~1 [10]. If the reaction coordinate is a

weighted sum of basis functions y~R(~XX ,~aa)~
P

k akrk(~XX ),

boundary conditions are given as yi0~
P

k akrk(~XX (i0Dt))~0

and yi1~
P

k akrk(~XX (i1Dt))~1 where i0 and i1 index the points

which belong to A and B states, respectively. The optimal weights

(ai) which give constrained maximum to
Ð

ZC,1(y)dy can be found

analytically [10]. Here we specified the constrains in the following

way, which resulted in a more flexible coordinate. Instead of

assuming that each trajectory ends at either 0 or 1, we assumed

that each trajectory is constrained to end with either 0 or 1 (in

other words a trajectory reaches an end state on the following day).

In this case the optimal weights are found by minimizingÐ
ZC,1(y)dy*

P
i,j ½yj(iDtzDt){yj(iDt)�2, which equals

X
j~1,N

X
i~1,tj{1

X
k

akrk(~XX j(iDtzDt)){akrk(~XX j(iDt))

" #2

z
X

j~1,N

bj{
X

k

akrk(~XX j(tj))

" #2

,

where i,j,k are indexes that refer to time frame, trajectory and

basis function, respectively; the second term of the functional

describes the boundary condition with bj equal 0 or 1 for

trajectories connected to 0 or 1, respectively. The optimal

parameters are found by solving the corresponding system of

linear equations L=Lak

Ð
ZC,1(y)dy~0. To facilitate the visual

comparison with the unsupervised results bj~0 where changed to

bj~{1, which results in a shift and change of scale of the optimal

coordinate.

Unsupervised optimization
In unsupervised optimization the determined coordinate

describes the slowest relaxation mode (the second eigenvector) of

the stochastic dynamics [10]. If the two states (A and B) are

separated by the highest barrier, so the slowest relaxation rate

corresponds to the transition dynamics between the states, the

second eigenvector reaction coordinate approximates the folding

probability (the probability of full recovery here) reaction

coordinate in the transition state region - the most important part

for the description of the transition dynamics [10,12]. The

eigenvectors can be found by minimizing I~
Ð

ZC,1(y)dy*P
i,j ½yj(iDtzDt){yj(iDt)�2 under constraint

P
i,j y2

j (iDt)~1

[10]. Due to the constraint, the optimization function simplifies

to the auto-correlation function. If reaction coordinate is a

weighted sum of basis functions, the optimal weights can be

found analytically. They are the solution of the generalized

eigenvalue problem [10].

Determination of the equilibrium free energy profile and
the probability of successful outcome

The free energy profile that describes the disease dynamics

cannot be determined from the patients trajectory simply by

computing the cut based (or histogram) free energy profiles

because the trajectories are not at equilibrium. The procedure

described in Ref [13] was employed. Briefly, assuming diffusive

dynamics, the equilibrium free energy profile can be computed

from the steady state (non-equilibrium) probability distribution Pss

as

F (x)~{lnPss(x){

ðx J(x)dx

D(x)Pss(x)
:

Using Pss(x)~ZH (x), J(x)Dt~Zz
C (x){Z{

C (x) and

D(x)~(ZC=ZH )2p=Dt, one obtains

F (x)~{lnZH (x){

ðx (Zz
C (x){Z{

C (x))ZH (x)dx

pZ2
C(x)

,

where Zz
C (x) and Z{

C (x) are the cut profiles that measure flux in

positive and negative direction, respectively.

Note that the method for determining the optimal reaction

coordinate was originally derived for equilibrium dynamics; an

extension of the framework to non-equilibrium dynamics has been

suggested recently [24]. Here we assume that while non-

equilibrium sampling affects populations, its main effect on the

optimization procedure is in altering the contribution (weight) of

the different regions to the optimization functional
Ð

ZC,1(x)dx

and can be neglected.

The probability of ‘‘full recovery’’ (the folding probability) was

computed from the free energy profile as

p(x)~

Ð b

x
eF (x)=D(x)dxÐ b

a
eF (x)=D(x)dx

The success probability with 95% confidence interval were

estimated from the trajectories by ‘‘add two successes and two

failures’’ approach [25] as p̂pi+2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pi(1{p̂pi)=(nl

iznr
i z4)

q
, where

p̂pi~(nl
iz2)=(nl

iznr
i z4) and nl

i and nr
i are the numbers of

trajectories visiting bin i ended up in left or right half of the profile,

respectively [26].

Acquisition of NMR spectra
1H NMR spectra were obtained for the water soluble

components [27] of erythrocytes taken from 18 kidney transplant

patients (up to 9 time points from pre-op to 7 days after surgery).

One-dimensional 1H NMR spectra were measured at

499.97 MHz on a Varian Unity Inova 500 spectrometer at

20uC, using a standard PRESAT pulse sequence. For all samples a

relaxation delay of ca. 9 s (three times the longest T1) was applied
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between scans to allow the spins to fully relax, with 256 transients

collected into 16384 data points and a spectral width of 6000 Hz.

An exponential line broadening of 0.5 Hz was applied to each

free induction decay (FID) and zero filling to 32768 points was

carried out, followed by Fourier transformation. Phase and

baseline corrections were carried out using ACD/Labs 12.0

(Advanced Chemistry Development Inc., Toronto, Canada) and

chemical shifts were referenced to the lactate doublet at 1.33 ppm.

Clinical assessment of patients
Independently of the NMR data, patients have been divided in

three classes based on a clinical assessment of the patients into

primary function (PF), delayed graft function (DGF) and acute

rejection (AR) with and without primary function. Primary

function was defined as immediate recovery of renal function.

Delayed graft function was defined as the need for dialysis in the

first week following transplantation. Diagnosis of acute rejection

was conducted on the basis of biopsy and histological findings.

Dialysis was performed on day 5 to patient 4, day 2 to patient 7,

day 4 to patient 9, day 7 to patient 17 and day 6 to patient 18. All

biopsies were conducted between 6 and 9 days following

transplantation. Nine patients had immediate primary function,

five patients had delayed graft function and four patients had acute

rejection. All but one transplant were eventually successful: in

addition to acute rejection, patient 14 also suffered from renal

artery stenosis, and the graft was ultimately removed. The

immunosuppressive regime and induction agents were the same

across the cohort.

Supporting Information

Data S1. NMR Spectra of patients.

(TGZ)

Author Contributions

Conceived and designed the experiments: SVK JF. Performed the

experiments: HF PJG RKP. Analyzed the data: SVK EP. Wrote the

paper: SVK HF PJG RKP JF EP.

References

1. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, et al. (2012) Personal

omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:
1293–307.

2. Smilde AK, Westerhuis JA, Hoefsloot HC, Bijlsma S, Rubingh CM, et al. (2010)

Dynamic metabolomic data analysis: a tutorial review. Metabolomics 6: 3–17.
3. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics.

Journal of proteome research 6: 469–79.
4. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS).

Journal of Chemometrics 16: 119–128.
5. Bylesjo M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, et al. (2006)

OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA

classification. Journal of Chemometrics 20: 341–351.
6. Schadt EE (2009) Molecular networks as sensors and drivers of common human

diseases. Nature 461: 218–23.
7. Krivov SV (2010) Is protein folding sub-diffusive? PLOS Comp Biol 6:

e1000921.

8. Krivov SV (2011) The free energy landscape analysis of protein (FIP35) folding
dynamics. J Phys Chem B 115: 12315–24.

9. Krivov SV, Karplus M (2008) Diffusive reaction dynamics on invariant free
energy profiles. Proc Natl Acad Sci USA 105: 13841–6.

10. Krivov SV (2011) Numerical construction of the p-fold (committor) reaction

coordinate for a markov process. J Phys Chem B 115: 11382–8.
11. Du R, Pande VS, Grosberg AY, Tanaka T, Shakhnovich ES (1998) On the

transition coordinate for protein folding. J Chem Phys 108: 334–350.
12. Berezhkovskii A, Szabo A (2004) Ensemble of transition states for two-state

protein folding from the eigenvectors of rate matrices. J Chem Phys 121: 9186–
7.

13. Krivov SV (2011) Optimal dimensionality reduction of complex dynamics: the

chess game as diffusion on a free-energy landscape. Phys Rev E 84: 011135.

14. Krivov SV (2013) On reaction coordinate optimality. J Chem Theor Comput 9:

135–146.

15. Hummer G (2003) From transition paths to transition states and rate coefficients.

J Chem Phys 120: 516–523.

16. Chodera JD, Pande VS (2011) Splitting probabilities as a test of reaction

coordinate choice in single-molecule experiments. Phys Rev Let 107: 098102.

17. Peters B, Bolhuis PG, Mullen RG, Shea JE (2013) Reaction coordinates, one-

dimensional smoluchowski equations, and a test for dynamical self-consistency.

J Chem Phys 138: 054106.

18. Stenlund H, Madsen R, Vivi A, Calderisi M, Lundstedt T, et al. (2009)

Monitoring kidney-transplant patients using metabolomics and dynamic

modeling. Chemometrics and Intelligent Laboratory Systems 98: 45–50.

19. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a

fundamental evaluation tool in clinical medicine. Clinical chemistry 4: 561–577.

20. Vaupel JW (2010) Biodemography of human ageing. Nature 464: 536–42.

21. Haeno H, Gonen M, Davis MB, Herman JM, Iacobuzio-Donahue CA, et al.

(2012) Computational modeling of pancreatic cancer reveals kinetics of

metastasis suggesting optimum treatment strategies. Cell 148: 362–75.

22. Sawyers CL (2008) The cancer biomarker problem. Nature 452: 548–52.

23. Singh I, Rose N (2009) Biomarkers in psychiatry. Nature 460: 202–7.

24. Krivov SV (2013) Method to describe stochastic dynamics using an optimal

coordinate. Phys Rev E 88: 062131.

25. Agresti A, Caffo B (2000) Simple and effective confidence intervals for

proportions and dierences of proportions result from adding two successes and

two failures. The American Statistician 54: 280–288.

26. Rao F, Settanni G, Guarnera E, Caisch A (2005) Estimation of protein folding

probability from equilibrium simulations. J Chem Phys 122: 184901.

27. Cohn JN (2004) Introduction to surrogate markers. Circulation 109: IV20–1.

Optimal Reaction Coordinate as a Biomarker

PLOS Computational Biology | www.ploscompbiol.org 7 June 2014 | Volume 10 | Issue 6 | e1003685


