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ABSTRACT

Magnetic Rayleigh–Taylor (MRT) instabilities may play a relevant role in many astrophysical problems. In this
work the effect of magnetic shear on the growth rate of the MRT instability is investigated. The eigenmodes
of an interface and a slab model under the presence of gravity are analytically calculated assuming that the
orientation of the magnetic field changes in the equilibrium, i.e., there is magnetic shear. We solve the linearized
magnetohydrodynamic equations in the incompressible regime. We find that the growth rate is bounded under
the presence of magnetic shear. We have derived simple analytical expressions for the maximum growth rate,
corresponding to the most unstable mode of the system. These expressions provide the explicit dependence of the
growth rate on the various equilibrium parameters. For small angles the growth time is linearly proportional to
the shear angle, and in this regime the single interface problem and the slab problem tend to the same result. On
the contrary, in the limit of large angles and for the interface problem the growth time is essentially independent
of the shear angle. In this regime we have also been able to calculate an approximate expression for the growth
time for the slab configuration. Magnetic shear can have a strong effect on the growth rates of the instability. As
an application of the results found in this paper we have indirectly determined the shear angle in solar prominence
threads using their lifetimes and the estimation of the Alfvén speed of the structure.
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1. INTRODUCTION

The magnetic Rayleigh–Taylor (MRT) instability is impor-
tant in many astrophysical systems. Some examples are buoy-
ant magnetized bubbles identified in clusters of galaxies (see
Robinson et al. (2004) and Jones & De Young (2005) for
studies in two-dimensional (2D), and O’Neill et al. (2009) for
three-dimensional (3D) configurations). MRT instabilities also
manifest themselves in shells of young supernova remnants,
this has been investigated by Jun et al. (1995) in 2D and 3D
Cartesian configurations and by Jun & Norman (1996) in 3D
using spherical coordinates. Bucciantini et al. (2004) have nu-
merically investigated the development of the MRT instability
at the interface between an expanding pulsar wind nebula and its
surrounding supernova remnant. Stone & Gardiner (2007) stud-
ied the behavior of MRT instability in three dimensions with
special focus on the structure and dynamics of the nonlinear
evolution of the system. They analyzed various configurations
including the situation in which magnetic fields change direc-
tion at the interface between the two fluids. Stone & Gardiner
(2007) used the MRT instability to explain the structure of the
optical filaments observed in the Crab nebula.

In laboratory plasmas the possible stabilizing effect by a
force-free magnetic field has been studied in the past by many
authors (see for example Goedbloed 1971a, 1971b, 1971c;
Goedbloed & Poedts 2004) using the single interface problem
and the slab problem and applying vacuum conditions at some of
the boundaries. Yang et al. (2011) have studied the magnetic field
transition layer effects on the MRT instability with continuous
magnetic field and density profiles and have found that the linear
growth rate of the MRT instability increases with the thickness
of the magnetic field transition layer, especially for the case of
small thickness. Recently, Zhang et al. (2012) have used the

ideal magnetohydrodynamic (MHD) model to study the effect
of magnetic shear in a finite slab representing a magnetic liner,
which is a device used in experiments with fusion plasmas.
These authors have found that magnetic shear reduces the MRT
growth rate in general.

The emergence of magnetic flux from the solar interior
and the formation of flux tubes is another example where
MRT instabilities are relevant. For example, Isobe et al. (2005,
2006) proposed that the MRT instability is a possible cause
of the filamentary structure in mass and current density in the
emerging flux regions. In the solar atmosphere, Ryutova et al.
(2010) suggested that several dynamic processes taking place
in prominences are most probably related to MRT instabilities.
Along this line of work, Hillier et al. (2011, 2012a, 2012b) have
performed 3D MHD simulations to investigate the nonlinear
evolution of the Kippenhahn–Schlüter prominence model to the
MRT instability.

The fine structure of solar prominences reveals the presence
of magnetic threads. These structures are quite thin, of the order
of 100 km, aligned with the magnetic field and, in many cases,
they seem to lie horizontally with respect to the photosphere
(see DeVore 2012, 2013, for recent results about the formation
of these structures). Terradas et al. (2012) have considered
the possible link between MRT instabilities and the short
thread lifetimes. In that work a slab model permeated by a
horizontal magnetic field was considered. The growth rates
of the unstable modes and the thresholds for stability were
determined analytically. In the present paper we extend the
study to the situation with a sheared magnetic field in which
the magnetic field changes its direction at the interfaces of the
plasma slab. To understand the results in the slab model we
describe first the effect of shear at a single plasma interface.
Magnetic shear introduces changes in the growth rates of the
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Figure 1. Sketch of a single magnetic interface.

unstable modes that might be relevant regarding the lifetime
of threads. In this work we analytically calculate these growth
rates and perform a detailed analysis of their dependence on the
equilibrium parameters.

2. PROBLEM FORMULATION

To describe the plasma motion we use the linearized ideal
MHD equations for incompressible plasmas

∇ · ξ = 0, (1)

ρ
∂2ξ

∂t2
= −∇p +

1

μ0
(∇ × b) × B, (2)

b = ∇ × (ξ × B). (3)

Here ξ is the plasma displacement related to the plasma velocity
u by u = ∂ξ/∂t , p the pressure perturbation, and b the
magnetic field perturbation; B is the background magnetic field,
ρ the plasma density assumed to be piecewise constant, and
μ0 the magnetic permeability of free space. When deriving
Equations (1)–(3) we have assumed that the equilibrium is static
and current-free, e.g., ∇ × B = 0.

In what follows we consider two equilibrium states. In the first
one there are two semi-infinite regions separated by the xy-plane
in Cartesian coordinates x, y, z with the z-axis in the vertical
direction (see Figure 1). The plasma density and background
magnetic field are constant in the two regions, and they are
given by

ρ =
{
ρe, z < 0,
ρi, z > 0,

B =
{

Be, z < 0,
Bi , z > 0.

(4)

The background magnetic field is assumed to be parallel to the
xy-plane. The equilibrium pressure P is defined by the equation

dP

dz
= −gρ, (5)

where g is the gravity acceleration. The total pressure, magnetic
plus kinetic, has to be continuous at z = 0. The solution to
Equation (5) satisfying this condition is

P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P0 − B2
e

2μ0
− gρez, z < 0,

P0 − B2
i

2μ0
− gρiz, z > 0,

(6)
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Figure 2. Sketch of the magnetic slab.

where P0 is an arbitrary constant. We call this equilibrium state
the single magnetic interface.

In the second equilibrium state there are three regions
separated by horizontal planes at z = ±a (see Figure 2). The
plasma density and background magnetic field are the same in
two semi-infinite regions, and they are given by

ρ =
{

ρe, z < −a,
ρi, |z| < a,
ρe, z > a,

B =
{

Be, z < −a,
Bi , |z| < a,
Be, z > a.

(7)

The background magnetic field is once again assumed to be
parallel to the xy-plane. The total pressure has to be continuous
at z = ±a. The solution to Equation (5) satisfying this
condition is

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 − B2
e

2μ0
+ ga(ρi − ρe) − gρez, z < −a,

P0 − B2
i

2μ0
− gρiz, |z| < a,

P0 − B2
e

2μ0
− ga(ρi − ρe) − gρez, z > a.

(8)

This second configuration is called the magnetic slab.
At the boundaries separating regions with different plasma

densities and background magnetic field the plasma displace-
ment in the z-direction and the Lagrangian perturbation of the
total pressure have to be continuous. Hence, we have two bound-
ary conditions,

[ ξz ] = 0, [ pT − gρξz ] = 0, (9)

where the square brackets denote the jump of a quantity across
a discontinuity, and pT = p + B · b/μ0 is the perturbation of the
total pressure. When deriving the second boundary condition
we have used Equation (5). The boundary conditions (9) have to
be satisfied at z = 0 in the case of the single magnetic interface,
and at z = ±a in the case of the magnetic slab. One additional
boundary condition is that all perturbations have to vanish as
|z| → ∞.

Equations (1)–(3) together with the boundary conditions (9)
are used in the next section to derive the dispersion relations
determining the stability of the two equilibrium configurations.
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3. DERIVATION OF THE DISPERSION RELATIONS

We Fourier-analyze the perturbations of all quantities and take
them proportional to exp[i(k · r − ωt)], where k = (kx, ky, 0)
and r = (x, y, z). Then Equations (1)–(3) reduce to

dξz

dz
+ ik · ξ = 0, (10)

ρω2ξ⊥ = ikpT − i

μ0
b⊥(k · B), (11)

ρω2ξz = dpT

dz
− i

μ0
bz(k · B), (12)

b = i(k · B)ξ , (13)

where ξ⊥ and b⊥ are the components of the plasma displace-
ment and magnetic field perturbation orthogonal to the z-axis.
Eliminating all the variables from Equations (10)–(13) in favor
of ξz we obtain the equation for this variable,

d2ξz

dz2
− k2ξz = 0. (14)

In addition, we obtain the expression of pT in terms of ξz,

pT = ρ
(
ω2 − ω2

A

)
k2

dξz

dz
, (15)

where ωA is the Alfvén frequency defined by

ω2
A = (k · B)2

μ0ρ
. (16)

This expression enables us to rewrite the boundary conditions (9)
in terms of ξz as

[ ξz ] = 0,

[
ρ
(
ω2 − ω2

A

)dξz

dz
− gρk2ξz

]
= 0. (17)

3.1. Dispersion Relation for a Single Magnetic Interface

In the case of a single magnetic interface the solution
to Equation (14), satisfying the first boundary condition in
Equation (17) at z = 0 and decaying as |z| → ∞, is given,
with the accuracy up to an arbitrary multiplicative constant, by

ξz =
{
ekz, z < 0,

e−kz, z > 0.
(18)

Substituting this solution in the second boundary condition in
Equation (17) we obtain the following dispersion relation

ω2 = ρeω
2
Ae + ρiω

2
Ai + gk(ρe − ρi)

ρe + ρi

. (19)

This is the well-known dispersion equation for the interface
problem in an incompressible fluid (Chandrasekhar 1961).
When g = 0 this is the dispersion equation for surface waves on a
magnetic interface (e.g., Roberts 1981). On the other hand, when
there is no magnetic field, this dispersion equation determines
the Rayleigh–Taylor instability of the interface between two
incompressible fluids (Rayleigh 1883; Taylor 1950).

3.2. Dispersion Relation for the Magnetic Slab

Now we proceed to the derivation of the dispersion equation
for the magnetic slab. The general solution to Equation (14)
continuous at z = ±a and decaying as |z| → ∞ is

ξz =

⎧⎪⎨
⎪⎩

[C1 cosh(ka) − C2 sinh(ka)] ek(z+a), z < −a,

C1 cosh(kz) + C2 sinh(kz), |z| < a,

[C1 cosh(ka) + C2 sinh(ka)] e−k(z−a), z > a,

(20)

where C1 and C2 are arbitrary constants. Substituting this
solution in the second boundary condition in Equation (17) we
obtain two equations,

A11C1 − A12C2 = 0, A21C1 + A22C2 = 0, (21)

where

A11 = ρe

(
ω2 − ω2

Ae

)
+ gk(ρi − ρe) + ρi

(
ω2 − ω2

Ai

)
tanh(ka),

A12 = [
ρe

(
ω2 − ω2

Ae

)
+ gk(ρi − ρe)

]
tanh(ka) + ρi

(
ω2 − ω2

Ai

)
,

A21 = ρe

(
ω2 − ω2

Ae

) − gk(ρi − ρe) + ρi

(
ω2 − ω2

Ai

)
tanh(ka),

A22 = [
ρe

(
ω2 − ω2

Ae

) − gk(ρi − ρe)
]

tanh(ka) + ρi

(
ω2 − ω2

Ai

)
.

(22)

The system (21) of linear homogeneous equations for C1 and
C2 has non-trivial solutions when its determinant is zero. This
condition is written as A11A22 +A12A21 = 0. After some algebra
this equation gives

ω4
[
2ρeρi +

(
ρ2

e + ρ2
i

)
tanh(2ka)

] − 2ω2
[
ρeρi

(
ω2

Ae + ω2
Ai

)
+

(
ρ2

e ω
2
Ae + ρ2

i ω
2
Ai

)
tanh(2ak)

]
+ 2ρeρiω

2
Aeω

2
Ai

+
(
ρ2

e ω
4
Ae + ρ2

i ω
4
Ai

)
tanh(2ak)

− g2k2(ρe − ρi)
2 tanh(2ak) = 0. (23)

The two solutions to this dispersion equation are ω2
+ and ω2

−
given by

ω2
± = F ± G

H
, (24)

where

F = ρiρe

(
ω2

Ai + ω2
Ae

)
cosh(2ka) +

(
ρ2

i ω
2
Ai + ρ2

e ω
2
Ae

)
sinh(2ka),

(25)

G = {
ρ2

i ρ
2
e

(
ω2

Ai − ω2
Ae

)2
+ g2k2(ρi − ρe)2

× [(
ρ2

i + ρ2
e

)
sinh2(2ka) + ρiρe sinh(4ka)

]}1/2
, (26)

H = 2ρiρe cosh(2ka)+
(
ρ2

i +ρ2
e

)
sinh(2ka). (27)

When g = 0 the dispersion relation given by Equation (24)
describes waves in a magnetic slab (e.g., Parker 1974; Edwin &
Roberts 1982). The plus sign corresponds to kink waves where
ξz(z) is an even function of z, while the minus sign corresponds
to sausage waves where ξz(z) is an odd function of z. Although,
when g �= 0, ξz(z) is neither odd nor even in both perturbation
modes described by Equation (24), we will still use the name
“kink” for modes with the plus sign, and “sausage” for modes
with the minus sign. It can be also shown that Equation (24)
in the absence of magnetic shear reduces to Equation (22) in
Terradas et al. (2012).
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4. INVESTIGATION OF STABILITY

Here we use the dispersion equations derived in the previous
section to study the stability of a single magnetic interface and
a magnetic slab.

4.1. Stability of a Single Magnetic Interface

Without loss of generality we can choose the x-axis in the
direction of the vector Bi . It is convenient to introduce the
angle ϕ between the x-axis and the wave vector k. Then
we write k = k(cos ϕ, sin ϕ, 0), and we also introduce the an-
gle α between Be and Bi , so Be = Be(cos α, sin α, 0). Since
the MHD equations are invariant under the substitution −B for
B, we can always choose such the direction of vector Be that
the angle α is either acute or right. Hence, in what follows we
assume that 0 � α � π/2. Finally, we introduce the dimen-
sionless parameters ζ = ρi/ρe and χ = Bi/Be. We rewrite
Equation (19) as

ω2 = g2h

V 2
Ae

h[χ2 cos2 ϕ + cos2(ϕ − α)] + 1 − ζ

ζ + 1
, (28)

where the Alfvén speed in the lower medium, VAe, and the
dimensionless wave number h are defined by

V 2
Ae = B2

e

μ0ρe

, h = V 2
Aek

g
. (29)

A well-known result is that the interface is stable when ζ < 1,
i.e., when the density of the upper medium is smaller than that of
the lower medium. In the opposite situation, i.e., when ζ > 1,
there is a qualitative difference between the case where the
magnetic field is in the same direction at the two sides of
the interface (α = 0), and the case where the magnetic field
is sheared (α �= 0). In the first case perturbations with the
wave vector perpendicular to the magnetic field (ϕ = π/2)
are unstable for any value of the dimensionless wave number h.
Since, for such perturbations, the instability increment or growth
rate is equal to √

gk
ζ − 1

ζ + 1
,

the instability growth rate is unbounded. This means that the
initial value problem describing the evolution of the interface
initial perturbation is ill-posed. Of course, the growth rate will
be bounded and the problem will be well-posed if we take into
account either dissipation or the finite thickness of the transition
between the two homogeneous regions.

In the second case (α �= 0) perturbations with a fixed direction
of the wave number defined by the angle ϕ are unstable only
when

h < hc(ϕ) = ζ − 1

χ2 cos2 ϕ + cos2(ϕ − α)
. (30)

In Figure 3 we have plotted the square of ω as a function
of h and ϕ. The continuous curve corresponds to ω = 0 and
separates the regions between stable and unstable modes. In
fact all perturbations with the wave number larger than h̄c are
stable, where

h̄c = max
ϕ

hc(ϕ) = hc(ϕc)

= ζ − 1

2χ2 sin2 α
(χ2 + 1 +

√
χ4 + 2χ2 cos 2α + 1), (31)

Figure 3. Square of the frequency (in arbitrary units) as a function of
the dimensionless number h and ϕ for the interface. The continuous curve
corresponds to ω = 0 and represents the transition between stable and unstable
modes. The horizontal and vertical dotted lines, respectively, represent the
critical angle ϕc , and the wave number h̄c/2 at which the increment takes
its maximum value. In this plot, α = 10◦, χ = 1, and ζ = 100.

(A color version of this figure is available in the online journal.)

and

ϕc = 1

2
arctan

sin 2α

χ2 + cos 2α
+

π

2
. (32)

Note that ϕc is defined with the accuracy up to an additive
constant multiple to π .

It turns out that the instability increment takes its maximum
value γm for a harmonic perturbation with the dimensionless
wave number h̄c/2 (see vertical line in Figure 3) and propagating
at either the angle ϕc (see horizontal line in Figure 3) or ϕc + π .
This maximum value is given by

γm = g

2VAe

√
h̄c

ζ − 1

ζ + 1
. (33)

Hence, in the case of sheared magnetic field, the perturbation
growth rate is bounded, and the initial value problem is well-
posed.

The external and internal Alfvén speed satisfy the following
relationship

VAe = VAi

√
ζ

χ
, (34)

and now we rewrite Equation (33) in terms of the internal Alfvén
speed,

γm = g|ζ − 1|
2
√

2VAi sin α

√
χ2 + 1 +

√
χ4 + 2χ2 cos 2α + 1

ζ (ζ + 1)
. (35)

It is interesting to study the dependence of the growth time,
defined as τg = 1/γm, on the equilibrium parameters. In Figure 4
the 2D dependence of τg is represented as a function of α and χ
for ζ = 100. We do see that a given growth time can be obtained
by the proper combination of the parameters α, χ , and VAi. Note
that, for small angles, a larger Alfvén speed is required to obtain
the same growth rate. In fact, Equation (35) is further simplified
if we take the limit of small shear angles (α 
 1),

γm ≈ g|ζ − 1|
2αVAi

√
χ2 + 1

ζ (ζ + 1)
. (36)

This expression explains why decreasing α while keeping γm

constant requires an increase of the internal Alfvén speed (if

4
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Figure 4. Growth time τg = 1/γm of the MRT most unstable mode at a single
interface as a function of the shear angle α and VAi for χ = 1 and ζ = 100.

(A color version of this figure is available in the online journal.)

the rest of the parameters, i.e., g, χ , and ζ are constant). In the
opposite limit, i.e., when α ≈ π/2, Equation (35) reduces to

γm ≈ g

2VAi

|ζ − 1|√
ζ (ζ + 1)

Θ. (37)

where

Θ =
{

χ, χ > 1,

1, χ � 1.
(38)

Thus, as Figure 4 indicates, for configurations with a strong
shear the curve of the growth time is almost horizontal since,
according to Equation (37), it is independent of α. Note that for
χ < 1 the growth time is independent of χ while it is linearly
proportional to χ for χ > 1. Finally note that the factor that
contains the dependence with ζ in the previous expressions is
approximately 1 in the limit of ζ � 1. Then Equations (35)–(37)
can be further simplified for configurations with a high density
contrast.

4.2. Stability of a Magnetic Slab

Since now there is a natural spatial scale a, it is convenient to
introduce a new dimensionless wave number κ = ak. We also
introduce the parameter characterizing the relative strength of
magnetic field and gravity, σ = V 2

Ae/(ag). Otherwise we use
the same dimensionless parameters as in the previous section.
Then we rewrite Equation (24) as

ω2
± = g(F̃ ± G̃)

aH̃
, (39)

where

F̃ = σκ2{[χ2 cos2 ϕ + ζ cos2(ϕ − α)] cosh 2κ

+ [ζχ2 cos2 ϕ + cos2(ϕ − α)] sinh 2κ}, (40)

G̃ = {σ 2κ4[χ2 cos2 ϕ − ζ cos2(ϕ − α)]2

+ κ2(ζ − 1)2[(ζ 2 + 1) sinh2 2κ + ζ sinh 4κ]}1/2, (41)

H̃ = 2ζ cosh 2κ + (ζ 2 + 1) sinh 2κ. (42)

It is obvious that only ω2
− can be negative, while ω2

+ is always
positive. Hence, only the sausage perturbations can be unstable,
while the kink perturbations are always stable. If ω2

− < 0, then

Figure 5. Square of the frequency (in arbitrary units) as a function of κ and ϕ for
the slab problem. The continuous curve corresponds to ω2 = 0 and represents
the transition between stable and MRT unstable modes. The circle indicates the
position in the diagram of the maximum growth rate. In this plot, α = 10◦,
χ = 1, ζ = 100, σ = 3.65 × 104.

(A color version of this figure is available in the online journal.)

the two roots of Equation (23) considered as a quadratic equation
with respect to ω2 have different signs. This is only possible
when the free term of the quadratic equation (23) is negative. In
the dimensionless variables this condition is written as

κ2σ 2{2χ2 cos2 ϕ cos2(ϕ − α) + [cos4(ϕ − α)

+ χ4 cos4 ϕ] tanh 2κ} < (ζ − 1)2 tanh 2κ. (43)

This inequality can be rewritten as

f (κ) ≡ κ(X + Y tanh 2κ]) − Z
tanh 2κ

κ
< 0, (44)

where
X = 2χ2 cos2 ϕ cos2(ϕ − α),

Y = cos4(ϕ − α) + χ4 cos4 ϕ,

Z = σ−2(ζ − 1)2.

(45)

Differentiating the function f (κ) we obtain

f ′(κ) = X + Y tanh 2κ +
2κY

cosh2 2κ
+

Z[sinh(4κ) − 4κ]

2κ2 cosh2 2κ
. (46)

It follows from a well-known inequality sinh x > x for x > 0
that the last term on the right-hand side of this equation is
positive. Hence, f ′(κ) > 0. We also have f (κ) → −2Z < 0
as κ → 0 and f (κ) → ∞ as κ → ∞. This implies that there
is exactly one number κc(ϕ) such that f (κc) = 0. The quantity
κc(ϕ) is defined by the equation obtained from Equation (43)
by substituting the sign “<” by “=.” The inequality (43) is
satisfied when κ < κc(ϕ), and it is not satisfied otherwise. All
perturbations with κ > κ̄c = max κc(ϕ) are stable. In general,
we failed to calculate max κc(ϕ) analytically, so it must be done
numerically.

An example of the dependence of the square of the frequency
on κ and ϕ is shown in Figure 5. The value of σ = 3.65 × 104

used to plot this figure can be obtained if we take, for example,
VAe = 103 km s−1 and a = 100 km. It is interesting to compare
this figure with the results for the single interface shown in
Figure 3. The equilibrium parameters are exactly the same
in the two plots, but now for the slab problem we have an
additional parameter, which is the half width of the slab, denoted
by a. The curve representing the transition between the stable

5
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Figure 6. Eigenfunction for the ω2− solution (top panel) and for the stable ω2
+

solution (bottom panel) in the slab model. The continuous curve corresponds
to an angle of propagation ϕ = 80◦, the dotted curve to ϕ = 90◦, and the
dash-dotted to ϕ = 100◦. A fixed dimensionless wave number κ = 0.07 has
been selected to calculate the eigenfunctions. The rest of the parameters are the
same as in Figure 5. The vertical dashed lines represent the slab boundaries.
Note that some parts of the dotted and dash-dotted lines are superimposed on
the solid lines and therefore not easy to distinguish. This happens on the left
part of the top panel and on the right part of the bottom panel.

and the unstable regime of the ω2
− solution is slightly more

complex for the slab problem and shows a double lobe structure
around the maximum κ . The eigenfunctions for three different
propagation angles are plotted in Figure 6 for a fixed κ and the
same parameters as in Figure 5. In the top panel the ω2

− solution
changes from stable (continuous curve) with a clear “sausage”
character to unstable (dotted and dash-dotted lines). Note that
eventually the eigenfunction of this mode is now localized at
the lower interface. On the contrary, the solution corresponding
to the ω2

+, see bottom panel of Figure 6, has a clear “kink”
profile, but it tends to be localized at the upper interface when
ϕ is increased. Therefore the nature of the modes is closer to
surface waves associated to the individual interfaces. Similar
results were found in Terradas et al. (2012) in the absence of
magnetic shear.

We concentrate now on the analysis of the growth time. In
Figure 7 the dependence of τg associated to the most unstable
mode is plotted as a function of α and VAi for a fixed value of χ ,
ζ , and a. The differences with respect to the interface results are
that the curves of constant τ are essentially shifted down in the
diagram (see Figure 4). This means that the slab configuration
is more stable than the interface model. This diagram can be
used as a diagnostic tool and clearly shows the dependence of
the grow times in the space of parameters.

The stability analysis is greatly simplified in two limiting
cases. In the first case the magnetic fields in the slab and external

Figure 7. Growth time of the MRT instability for the slab problem as a function
of the shear angle α and VAi. In this plot χ = 1, ζ = 100 and a = 100 km.

(A color version of this figure is available in the online journal.)

regions are almost parallel, α 
 1, and |ζ −1|/σ is of the order
of unity. In this case it follows from the equation f (κ) = 0
that κc(ϕ) takes moderate values when ϕ is not close to π/2,
while it takes very large values when ϕ is close to π/2. Hence,
to calculate κ̄c, it is enough to consider ϕ close to π/2. In
accordance with this we put ϕ = π/2 − ψ and assume that
|ψ | 
 1. In addition, since κc � 1, we can take tanh 2κc ≈ 1.
Then we obtain from the equation f (κ) = 0 the approximate
expression

κc(ϕ) ≈ |ζ − 1|
σ [(ψ + α)2 + χ2ψ2]

. (47)

It immediately follows that

κ̄c = κc(ϕc) ≈ |ζ − 1|(1 + χ2)

σχ2α2
, ϕc ≈ π

2
+

α

1 + χ2
. (48)

It is also not difficult to obtain the asymptotic expression for ω2
−

valid for α 
 1 and |ϕ − π/2| 
 1. It is given by

ω2
− ≈ g{σκ2[χ2ψ2 + (ψ + α)2] − κ|ζ − 1|}

a(ζ + 1)
. (49)

When deriving this expression we have assumed that κ � 1
because |ω2

−| is of the order of g/a when κ ∼ 1, while
|ω2

−| � g/a when κ � 1. The quantity ω2
− takes its minimum

value at ϕ = ϕc and κ = (1/2)κ̄c, and the maximum growth rate
is given by

γm ≈ |ζ − 1|
2χα

√
g(1 + χ2)

aσ (ζ + 1)
. (50)

In terms of the internal Alfvén speed the previous expression
reduces to

γm ≈ g|ζ − 1|
2αVAi

√
χ2 + 1

ζ (ζ + 1)
. (51)

This is exactly the same as Equation (36) which corresponds
to the interface result in the limit of small α. This confirms
that the slab problem in the limit of κ � 1 reduces to the
interface problem because the penetration scale given by 1/κ
is rather small and the role of the upper interface is negligible
for the unstable mode (see also the plot of the eigenfunctions in
Figure 6). Again we see that the situation here is similar to one
that we have in the case of a single interface: γm → ∞ as α → 0,
so, in the case of parallel magnetic field (α = 0), the growth rate

6
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Figure 8. Dependence of sc on Δ.

is unbounded and the initial value problem is ill-posed. On the
other hand, the growth rate is bounded when the magnetic field
is sheared (α �= 0), so the initial value problem is well-posed.
As mentioned in the case of a single interface, the growth rate
of the MRT instability in the model with parallel magnetic field
(α = 0) will be bounded and the problem will be well-posed if
we take into account either dissipation or the finite thickness of
the transitions between the three homogeneous regions.

Another limiting case where the analytic asymptotic analysis
is possible is when ζ � 1 and σ � ζ 2, while χ � 1 and α � 1.
In this case it is not difficult to see from the equation f (κ) = 0
that κc(ϕ) 
 1, so the equation f (κ) = 0 can be written in the
approximate form as

κ2[cos4(ϕ − α) + χ4 cos4 ϕ] + κχ2 cos2 ϕ cos2(ϕ − α) = ζ 2σ−2.

(52)

This equation is used in Appendix A to calculate ϕc. It is found
that

ϕc = ϕc1 ≈ π

2
+

2ζ cot α

σχ2
,

κ̄c = κc(ϕc1) ≈ ζ

σ sin2 α

(53)

when χ > 1 and

ϕc = ϕc2 ≈ π

2
+ α − 2ζ cot α

σ
,

κ̄c = κc(ϕc2) ≈ ζ

σχ2 sin2 α

(54)

when χ < 1.
It is shown in Appendix B that the fastest growing mode

propagates approximately perpendicular to the external mag-
netic field (ϕ ≈ π/2 + α). Its dimensionless wave number is
equal to κc = ζ−1sc(Δ), where

Δ = σχ2 sin2 α

ζ 2
. (55)

The dependence of sc on Δ is shown in Figure 8. The instability
increment is equal to

γm = (g/aζ )1/2Γ(Δ). (56)

The dependence of Γ on Δ is plotted in Figure 9. All these
results are obtained under the assumption that ζΔ > 1, i.e.,
when χ2 sin2 α > ζ/σ .

Figure 9. Dependence of Γ on Δ.

Figure 10. Growth time of the MRT instability for the slab problem (black
color) and interface problem (red color) as a function of the shear angle α. The
thin curves correspond to σ = 1.45 × 105 (VAi = 200 km s−1) while thick
curves represent the case σ = 5.2 × 104 (VAi = 120 km s−1). Dashed lines
correspond to the approximation in the slab problem for large angles given by
Equation (56). In this plot χ = 1 and ζ = 100.

(A color version of this figure is available in the online journal.)

In Figure 10 the growth time of the instability calculated
using the full solution (continuous curve) is plotted together
with the approximation for finite angles (dashed curves) given
by Equation (56). We do see a good match in the behavior
of the two curves. The approximation slightly underestimates
the growth time, and the differences increase when σ decreases.
This is what we should expect if we recall that the approximation
is based on the assumption σ � 1. We have already shown that,
for small angles of the shear, the interface and the slab results
are the same. Now this is also evident in Figure 10. This plot
also shows that the differences in the growth time between the
slab and the interface can be quite significant for α � 1.

5. APPLICATION TO OSCILLATING THREADS

The purpose of this section is to use the previous theoret-
ical results to infer some information about the shear in real
prominence threads. We consider the thread oscillation stud-
ied by Okamoto et al. (2007) using Hinode. These authors
found threads oscillating vertically with periods around 4 min.
Terradas et al. (2008) used these oscillations to do a seismo-
logical study of the thread. Although Okamoto et al. (2007) did
not investigate the lifetime of the threads, from the movie of the
event we estimate that threads do not last long. It is found that
the typical lifetime is 10 min. The main idea here is to assume
that the excitation of unstable modes is responsible for the short

7
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lifetime of the structure. This MRT instability produces the dis-
appearance of the structure. According to our results the fastest
growing mode when there is magnetic shear has the following
approximate growth time (see Equation (36))

τg ≈
√

2

g
VAiα, (57)

where we have assumed that ζ � 1 and χ ≈ 1. This expression
applies to the interface problem as well as to the slab problem
(see Equation (51)), and it is valid in the limit of small α only.
If the growth time is assumed to be around 10 min in order
to use Equation (57) we must obtain a small angle, otherwise
we get an inconsistent result. Terradas et al. (2008) found that
the lower bound for the internal Alfvén speed is between 120
and 350 km s−1. Nevertheless, some of the threads have high
Alfvén velocities, up to 800 km s−1, since they belong to an
active region prominence. Let us assume that the velocity is
around 500 km s−1 and calculate the corresponding shear angle.
According to Equation (57) and using that τg = 10 min and
VAi = 500 km s−1 we obtain that α ≈ 13◦. This angle is
small and the application of Equation (57) is justified. This
is in agreement with the behavior found in the more general
expression given by Equation (35) which shows that α decreases
when the internal Alfvén speed increases (see also Figure 4). In
fact this expression shows that α is small for sufficiently large
values of VAi but moderate for smaller values. For the present
case of a velocity of VAi = 500 km s−1 the angle is small,
and this is in accordance with the observations of prominence
threads.

The observed oscillations of the thread are most probably kink
oscillations. It is well known that the sausage waves in magnetic
slabs and tubes have quite similar properties, while the proper-
ties of kink waves in slabs are quite different from those in
tubes (e.g., Edwin & Roberts 1982, 1983). Since ω+-mode is
a kink mode, it is quite improbable that the observed disappear-
ances of the thread are described by this mode. Note that, in the
linear approximation, the kink oscillation of the thread does not
interact with the unstable mode causing its disappearance, and
thus it does not affect the instability growth time.

6. SUMMARY AND CONCLUSIONS

In the present paper we have extended the study by Terradas
et al. (2012) to the models of an interface and a slab with
magnetic shear, and have focused on the MRT instability. The
fact that the magnetic field changes its direction introduces a
bounded growth rate of the instability. This is different from
the models without shear where the growth rate is unbounded.
Because of this Terradas et al. (2012) concentrated on a
particular wave number in the perpendicular direction equal to
1/a, a being the half-thickness of the slab. Here we have focused
on the maximum growth rate, representing the most unstable
mode of the system, and have found analytical expressions in
various limiting cases. For small angles of the shear the growth
time is linearly proportional to the shear angle α. This applies
to the single interface as well as to the slab problem. On the
contrary, for large angles the growth time depends only weakly
on α in the interface problem. In this limit, we have also been
able to calculate an approximate expression for the growth time
in the slab problem.

We have shown, using a simple example, how it is possible
to estimate the shear angle in threads belonging to active region
prominences from the combination of observations and the

theoretical results presented in this paper. Using this method
we have found that the observations of oscillating threads of
Okamoto et al. (2007) are compatible with small shear angles
(around 13◦). This indirect method of inferring some of the
equilibrium properties of threads can be potentially used as a
seismological tool.

Several simplifications have been done in the models consid-
ered in this work. Both the interface and slab configurations are
unbounded in the perpendicular direction (y-direction) and we
have assumed that there is dense material along the full length of
the magnetic tube. However, in reality, threads only represent a
small part of the full magnetic tube. Compressibility and partial
ionization (see Dı́az et al. 2012) have been also ignored. These
basic assumptions in the models have enabled us to derive ana-
lytical expressions for the growth times. Nevertheless, the need
for using improved models is obvious, and the study of the non-
linear evolution of the system is very relevant to assess the role
of the MRT instability in the fast disappearance of threads.
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grant AYA2011-22846. Funding from CAIB through the Grups
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APPENDIX A

CALCULATION OF ϕc AND κ̄c FOR THE SLAB MODEL

In this appendix we calculate ϕc and κ̄c for the slab model
in the case where σ � ζ � 1, while χ � 1 and α � 1.
As it is shown in Section 4.2, in this case κc(ϕ) is defined by
the approximate equation (52). To calculate ϕc we differentiate
equation (52) with respect to ϕ and then take dκ/dϕ = 0. As a
result we obtain

2κ[χ4 cos3 ϕ sin ϕ + cos3(ϕ − α) sin(ϕ − α)]

+ χ2 cos ϕ cos(ϕ − α) sin(2ϕ − α) = 0. (A1)

Eliminating κ from this equation and Equation (52) we obtain
the equation for ϕc:

sin α cos2 ϕ cos2(ϕ − α) sin(2ϕ − α)[cos4(ϕ −α) − χ4 cos4 ϕ]

= ζ 2σ−2χ−4{cos2(ϕ − α) sin[2(ϕ − α)] + χ4 cos2 ϕ sin 2ϕ}2.

(A2)

Since ζ 2σ−2 
 1, to obtain the solution to this equation we use
the regular perturbation method. In the first-order approximation
we obtain that the left-hand side of Equation (A2) is zero. It is
possible when one of the four multiplier that depend on ϕ is
zero. We investigate these possibilities separately.

1. Let cos ϕ = 0, i.e., ϕ = π/2. In the second-order
approximation we look for the solution in the form ϕ =
π/2 − ψ , where |ψ | 
 1. Substituting this expression in
Equation (A2) we easily calculate ψ and eventually obtain

ϕ1± ≈ π

2
± 2ζ cot α

σχ2
. (A3)

8
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2. Let cos(ϕ − α) = 0, i.e., ϕ = π/2 + α. In the second-
order approximation we look for the solution in the form
ϕ = π/2 + α − ψ , where |ψ | 
 1. Substituting this
expression in Equation (A2) we, once again, easily calculate
ψ and obtain

ϕ2± ≈ π

2
+ α ± 2ζ cot α

σ
. (A4)

3. Let sin(2ϕ − α) = 0, i.e., ϕ = (1/2)α or ϕ = (π + α)/2.
In the second-order approximation we look for the solution
in the form ϕ = (1/2)α + ψ , where |ψ | 
 1. Substituting
this expression in Equation (A2) we calculate ψ and obtain

ϕ3 ≈ α

2
+

2ζ 2(1 − χ4)

σ 2χ4
tan

α

2
sec3 α

2
. (A5)

Similarly, looking for the solution in the form ϕ = (π +
α)/2 + ψ with |ψ | 
 1, we obtain

ϕ4 ≈ π

2
+

α

2
+

2ζ 2(χ4 − 1)

σ 2χ4
cot

α

2
cosec3 α

2
. (A6)

4. Let cos(ϕ − α) = ±χ cos ϕ. It follows from this equation
that

ϕ = ϕ0 ≡ arctan
±χ − cos α

sin α
. (A7)

In the second-order approximation we look for the solution
in the form ϕ = ϕ0 + ψ , where |ψ | 
 1. Substituting this
expression in Equation (A2), after some algebra, we obtain
in the second-order approximation

ψ sin α sin(2ϕ0 − α)[±χ sin ϕ0 − sin(ϕ0 − α)]

= ζ 2σ−2χ−6[tan ϕ0(cos α ± χ ) − sin α]2. (A8)

Using Equation (A7) we derive the formulae

sin(2ϕ0 − α) = sin α(χ2 − 1)

1 ∓ 2χ cos α + χ2
,

±χ sin ϕ0 − sin(ϕ0 − α) =
√

1 ∓ 2χ cos α + χ2.

(A9)

With the aid of Equations (A7) and (A9) we calculate ψ
from Equation (A8). Finally we obtain

ϕ5± ≈ arctan
±χ − cos α

sin α

+
ζ 2(χ2 − 1)

√
1 ∓ 2χ cos α + χ2

σ 2χ6 sin4 α
. (A10)

Hence, we have eight values of ϕ that are the solutions of
Equation (52), and we have to choose one at that κc(ϕ) takes
its maximum value. To do this we have to calculate κc(ϕ)
at each of these eight values of ϕ using Equation (A1). The
calculation is lengthy but straightforward, so we give only
the final results:

κc(ϕ1±) ≈ ±ζ

σ sin2 α
, κc(ϕ2±) ≈ ∓ζ

σχ2 sin2 α
,

κc(ϕ3) ≈ 2ζ 2

σ 2χ2
sec5 α

2
,

κc(ϕ4) ≈ 2ζ 2

σ 2χ2
cosec5 α

2
, κc(ϕ5±) ≈ −1

2
.

(A11)

We disregard negative values of κc because we assumed
from the very beginning that κ > 0. Since we have
assumed that ζ/σ 
 1, it is straightforward to see that
κc(ϕ1+) > κc(ϕ3), κc(ϕ4) and κc(ϕ2−) > κc(ϕ3), κc(ϕ4).
Hence, eventually,

κ̄c ≈ κc(ϕ1+) ≈ ζ

σ sin2 α
, χ > 1, (A12)

and

κ̄c ≈ κc(ϕ2−) ≈ ζ

σχ2 sin2 α
, χ < 1. (A13)

APPENDIX B

CALCULATION OF MAXIMUM INCREMENT

In this appendix we calculate the maximum growth rate of the
Rayleigh–Taylor instability. In accordance with Equation (A1)
the dimensionless wave number of an unstable mode is always
small, κ � ζ/σ 
 1. This observation enables us to use the
approximate Taylor expansions with respect to κ for functions
F̃ , G̃ and H̃ :

F̃ = σκ2{[χ2 cos2 ϕ + ζ cos2(ϕ − α)](1 + 2κ2)

+ 2κ[ζχ2 cos2 ϕ + cos2(ϕ − α)]}, (B1)

G̃ = {σ 2κ4[χ2 cos2 ϕ − ζ cos2(ϕ − α)]2 + 4κ3ζ 3(1 + ζκ)}1/2,
(B2)

H̃ = 2ζ (1 + ζκ). (B3)

We introduce the dimensionless increment γ̃ = (g/a)1/2|ω−|.
Then we obtain from Equation (39) the approximate equation

γ̃ 2 = 2κ3 ζ 2 − σ 2κ{κ[χ4 cos4 ϕ + cos4(ϕ − α)] + χ2 cos2 ϕ cos2(ϕ −α)}
F̃ + G̃

.

(B4)
Now we investigate this expression in three various intervals of
variation of the angle ϕ.

1. Let cos2 ϕ � cos2(ϕ − α) � 1, i.e., ϕ be not close to π/2
and to π/2 + α. Then it follow from Equation (B4) that
γ̃ 2 > 0 only when κ � ζ 2/σ 2. For these values of κ we
have F̃ + G̃ � ζ 5/σ 3 and γ̃ � (ζ/σ )3/2.

2. Let ϕ be close to π/2, so we take ϕ = π/2 − ϕ̃. Then we
can use the approximate expression

γ̃ 2 ≈ 2κ2 ζ 2 − σ 2κ sin2 α(κ sin2 α + χ2ϕ̃2)

σζκ sin2 α + ζ (σ 2κ2 sin2 α + 4ζκ)1/2
, (B5)

It is obvious that, for any fixed κ , γ̃ 2 takes its maximum
value at ϕ̃ = 0. When κ � ζ/σ 2, we obtain γ̃ 2 �
ζ 2/σ 3 
 ζ 2/σ 2. On the other hand, we obtain γ̃ 2 � ζ 2/σ 2

when κ � ζ/σ . Hence, when looking for the maximum
value of γ̃ , we can take ϕ̃ = 0 and κ � ζ/σ . In
that case σ 2κ2 sin2 α � 4ζκ and we can further reduce
Equation (B5) to

γ̃ 2 ≈ κ(ζ 2 − σ 2κ2 sin4 α)

σζ sin2 α
. (B6)

Then we easily find that the maximum value of γ̃ is given
by

γ̃m ≈ ζ

σ sin2 α

4

√
4

27
, (B7)

9
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and it is taken at

κ ≈ ζ√
3σ sin2 α

. (B8)

3. Let now ϕ be close to π/2 +α, so we take ϕ = π/2 +α − ϕ̃.
Then we can use the approximate expression

γ̃ 2 ≈ 2κ3 ζ 2 − σ 2κχ2 sin2 α(κχ2 sin2 α + ϕ̃2)

F̃ + G̃
, (B9)

where F̃ and G̃ are given by

F̃ ≈ σκ2[χ2 sin2 α(1 + 2ζκ) + ζ ϕ̃2], (B10)

F̃ ≈ [σ 2κ4(χ2 sin2 α − ζ ϕ̃2)2 + 4ζ 3κ3(1 + ζκ)]1/2. (B11)

It is easy to show that F̃ + G̃ is a monotonically increasing
function of ϕ̃2. Since the numerator in Equation (B9) is a
monotonically decreasing function of ϕ̃2, we conclude that,
at a fixed κ , γ̃ takes its maximum value at ϕ̃ = 0. Hence,
we can take

γ̃ 2 ≈ 2κ2(ζ 2 − σ 2κ2χ2 sin4 α)

σκχ2 sin2 α(1 + 2ζκ) + [σ 2κ2χ4 sin4 α + 4κζ 3(1 + ζκ)]1/2

(B12)
when looking for the maximum value of γ̃ . Introducing the
new dimensionless variables

s = ζκ, Δ = σχ2 sin2 α

ζ 2
, (B13)

we obtain after some algebra

γ̃ 2 = s
[s2Δ2 + 4s(1 + s)]1/2 − sΔ(1 + 2s)

2ζ (1 + s)
. (B14)

To calculate the maximum of function γ̃ 2(s) we have to find
where its derivative is equal to zero. After some algebra the
equation dγ̃ 2/ds = 0 can be written as

2Δ4(2s6 + 7s5 + 8s4 + 3s3) + Δ2(16s6 + 72s5 + 119s4 + 84s3

+ 19s2 − 2s) − (4s4 + 20s3 + 37s2 + 30s + 9) = 0. (B15)

We consider this equation as a quadratic equation for Δ2.
The roots of this equation have different signs. Then, taking
into account that Δ2 > 0, we obtain that s is defined by the
equation

ϒ(s) = Δ2, (B16)

where ϒ(s) is given by

ϒ(s) = [s2(2s3 + 7s2 + 8s + 3)]−1[(256s10 + 2304s9

+ 9056s8 + 20368s7 + 28833s6 + 26592s5

+ 15962s4 + 6028s3 + 1321s2 + 140s + 4)1/2

− (16s5 + 72s4 + 119s3 + 84s2 + 19s − 2)].

(B17)

It is straightforward to obtain that ϒ(s) → ∞ as s → 0 and
ϒ(s) → 0 as s → ∞. We verified numerically that ϒ(s) is a
monotonically decreasing function. Hence, Equation (B16)
has the single solution sc for any value of Δ. The dependence
of sc on Δ is shown in Figure 8.

Since γ̃ 2(0) = 0 and γ̃ 2(s) → −∞ as s → ∞ and it has
only one extremum at s = sc, this extremum is the maximum,
i.e., γ̃m = γ̃ (sc). The dependence of Γ = ζ 1/2γ̃n on Δ is shown
in Figure 9.

Summarizing the analysis we see that the function γ̃ (ϕ, κ) has
two local maxima. The first one is given by Equation (B7) and it
is taken at ϕ = π/2 and κ given by Equation (B8). The second
local maximum is given by Equation (B14) with s = sc, and it
is taken at ϕ = π/2 + α and κ = ζ−1sc, where sc is defined by
Equation (B16). We temporarily denote the first local maximum
as γ̃m1 and the second as γ̃m2. The absolute maximum of γ̃ (ϕ, κ)
is equal to the larger of the two quantities γ̃m1 and γ̃m2.

Equation (B7) can be rewritten as

γ̃m1 ≈ χ2

ζΔ
4

√
4

27
. (B18)

Then it follows that

γ̃m1

γ̃m2
≈ χ2

ΔΓ(Δ)
√

ζ

4

√
4

27
≈ 0.62χ2

ΔΓ(Δ)
√

ζ
. (B19)

It is not difficult to obtain the approximate expressions

sc ≈

⎧⎪⎪⎨
⎪⎪⎩

1

2Δ
, Δ 
 1,

1

Δ
√

6
, Δ � 1,

(B20)

Using this result we obtain

Γ ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
√

Δ
, Δ 
 1,

1

Δ

√
5

6
√

6
, Δ � 1,

(B21)

We verified numerically that ΔΓ(Δ) is a monotonically increas-
ing function of Δ. Hence, it varies from 0.5

√
Δ to (5/6

√
6)1/2

when Δ varies from very small value to ∞. Then it follows
from Equation (B19) that γ̃m1/γ̃m2 � χ2(ζΔ)−1/2. Hence, we
conclude that γ̃m1 � γ̃m2 for Δ > χ4/ζ . Since we assume that
χ � 1, while the typical value of ζ is 100, we conclude that,
for not very small values of Δ (say, Δ � 0.1), the absolute max-
imum of γ̃ is equal to γ̃m2, i.e., γ̃m = ζ−1/2Γ(Δ). It is taken at
ϕ ≈ π/2 + α and κ ≈ ζ−1sc(Δ).
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