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ABSTRACT

This paper investigates the effect of cooling on standing slow magnetosonic waves in coronal magnetic loops. The
damping mechanism taken into account is thermal conduction that is a viable candidate for dissipation of slow
magnetosonic waves in coronal loops. In contrast to earlier studies, here we assume that the characteristic damping
time due to thermal conduction is not small, but arbitrary, and can be of the order of the oscillation period, i.e., a
temporally varying plasma is considered. The approximation of low-beta plasma enables us to neglect the magnetic
field perturbation when studying longitudinal waves and consider, instead, a one-dimensional motion that allows a
reliable first insight into the problem. The background plasma temperature is assumed to be decaying exponentially
with time, with the characteristic cooling timescale much larger than the oscillation period. This assumption enables
us to use the WKB method to study the evolution of the oscillation amplitude analytically. Using this method we
obtain the equation governing the oscillation amplitude. The analytical expressions determining the wave properties
are evaluated numerically to investigate the evolution of the oscillation frequency and amplitude with time. The
results show that the oscillation period increases with time due to the effect of plasma cooling. The plasma cooling
also amplifies the amplitude of oscillations in relatively cool coronal loops, whereas, for very hot coronal loop
oscillations the damping rate is enhanced by the cooling. We find that the critical point for which the amplification
becomes dominant over the damping is in the region of 4 MK. These theoretical results may serve as impetus for
developing the tools of solar magneto-seismology in dynamic plasmas.
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1. INTRODUCTION

Standing slow MHD waves have been detected by SUMER in
hot coronal loops with temperatures of the order of or larger than
6 MK (Wang et al. 2002, 2003; Taroyan et al. 2007). Further
afield, intensity variations have been detected in various stellar
environments. McAteer et al. (2005) and Anfinogentov et al.
(2013) have interpreted these observational data as damped slow
waves in stellar loops/arcades. An important and theoretically
challenging property of these oscillations is their fast damping.
To explain the observed fast damping various mechanisms have
been proposed. Among them are thermal conduction, viscosity,
radiation, and shock formation (Ofman & Wang 2002; De
Moortel & Hood 2003; Mendoza-Briceño et al. 2004; Taroyan
et al. 2005; Sigalotti et al. 2007; Bradshaw & Erdélyi 2008;
Verwichte et al. 2008; Erdélyi et al. 2008). For a recent review
on longitudinal oscillations, see, e.g., Wang (2011). It has been
suggested that the dominant dissipative mechanism is likely
thermal conduction. However, often it is found that thermal
conduction alone is not sufficient to account for the observed
damping (e.g., Sigalotti et al. 2007).

It is frequently observed that coronal loops are cooling with
the characteristic cooling time of the order of a few oscillation
periods (e.g., Aschwanden & Terradas 2008). Initially, the effect
of cooling on coronal loop kink oscillations has been studied
(Morton & Erdélyi 2009, 2010; Ruderman 2011a, 2011b). In
particular, it was found that cooling causes the amplification of
kink oscillations. Morton et al. (2010) investigated the effect of
cooling on propagating MHD waves in a homogeneous plasma.
They found that cooling causes the damping of propagating slow
MHD waves. Erdélyi et al. (2011) studied the effect of cooling
on propagating slow MHD waves in stratified coronal loops.
They found that cooling and stratification cause a reduction in

the damping rate. In a recent work by Al-Ghafri & Erdélyi
(2013), the effect of cooling on standing slow MHD waves in
coronal loops has been investigated.

Al-Ghafri & Erdélyi (2013) assumed that the cooling is
weak with the characteristic cooling timescale much larger
than the oscillation period. They also assumed that the thermal
conduction is weak that restricted applicability to astrophysical
plasmas. Then, they used the WKB method to study the
evolution of the properties of longitudinal oscillations. The
effects of cooling and thermal conduction on the oscillation
amplitude were of the same order. In general, however, when
thermal conduction is strong, it dominates the effect of cooling,
so the account of cooling can provide only a small correction
to the damping time. It is worth noting that there is one
important exception. It is well known that the damping rate
due to thermal conduction is a non-monotonic function of the
thermal conduction coefficient (e.g., De Moortel & Hood 2003).
When the thermal conduction coefficient increases, the damping
rate first also increases, takes its maximum, and then starts to
decrease and tends to zero as the thermal conduction coefficient
tends to infinity. Hence, when thermal conduction is very strong,
slow magnetosonic waves propagate almost without damping.
Instead, when these waves propagate along the magnetic field,
their phase speed reduces from the adiabatic to isothermal sound
speed. This implies that cooling can substantially affect the
damping rate not only when thermal conduction is weak but
also when it is very strong. This work links these two disparate
ideas into a continuous description of damping as a result of
thermal conduction.

In this paper, we aim to study the effect of plasma cooling
on the damping rate of slow standing MHD waves in coronal
loops for arbitrary thermal conduction coefficient. The paper
is organized as follows. In the next section, we formulate the
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Figure 1. Coronal loop.

problem, and present the governing equations and boundary
conditions. In Section 3, we carry out the analytical study of
the problem using the WKB method. In Section 4, we present
a numerical evaluation using the analytical solution. Section 5
contains the summary and discussion of the results and our
conclusions.

2. THE MODEL AND GOVERNING EQUATIONS

We consider standing slow MHD waves in hot coronal
magnetic loops. We model a magnetic loop as a straight
homogeneous magnetic flux tube of length L with the constant
magnetic field magnitude equal to B0 (see Figure 1). We use the
low-beta approximation applicable to solar coronal conditions.
This enables us to use the rigid tube approximation when
studying the propagation of longitudinal waves, and neglect the
magnetic field perturbation. As a result, a standing slow MHD
wave is a superposition of two sound waves propagating along
the magnetic field in the opposite directions. We assume that the
homogeneous plasma density, ρ0, does not vary with time. On
the other hand, both the plasma temperature, T0, and pressure,
p0, are functions of time, the temperature dependence on time
being given by

T0 = T0i exp(−t/τc), (1)

where τc is the characteristic cooling timescale. We assume that
cooling is slow, so ε = P/τc � 1, where P is the characteristic
period of the loop oscillation. No mechanism for this cooling is
suggested here, other than to note that the cooling is independent
of the thermal conduction considered below. This assumption is
made for the purposes of simplicity in the work performed here.
Here, and in what follows, the subscript “i” indicates the value
of a quantity at t = 0. The pressure is related to the temperature
by the Clapeyron law,

p0 = R

μ̃
ρ0T0, (2)

where R = 8.3 × 103 m2 s−2 K−1 is the gas constant and μ̃ the
mean molecular weight.

In our model the coefficient of thermal conduction along the
magnetic field is given by κ‖ = κ0T

5/2
0 , where κ0 is a constant.

The gravity is neglected.
Let us now perturb the governing MHD equations for the

plasma motion by writing all variables in the form

f (z, t) = f0(t) + f1(z, t), (3)

and introduce the dimensionless variables

t̃ = t

P
, z̃ = z

L
, c̃s =

√
T0

T0i

, ṽ1 = v1

csi

, T̃1 = T1

T0i

,

c2
si = γRT0i

μ̃
, (4)

where the subscripts “0” and “1” represent the equilibrium
and the perturbed quantities, respectively, z is the coordinate
along the magnetic field, γ is the ratio of specific heats, v1
and T1 are the velocity and temperature perturbations, c̃s is the
dimensionless sound speed, and we put P = L/csi . In what
follows we drop the tilde. We note at this point that while the
discussion below takes place under the assumption of linear
wave propagation, oscillatory loop systems similar to those
investigated here contain nonlinear effects. This study, however,
is strictly linear and as such aims to provide the foundation
for future investigations into nonlinear wave propagation in
appropriate solar and/or astrophysical plasmas.

Thus, the linearized perturbed MHD equations in a 1D system
are

∂ρ1

∂t
+

∂v1

∂z
= 0, (5)

∂v1

∂t
= − 1

γ

∂p1

∂z
, (6)

[
ρ1

dT0

dt
+

∂T1

∂t
+ (γ − 1)T0

∂v1

∂z

]
= σ T

5/2
0

∂2T1

∂z2
, (7)

p1 = T1 + T0ρ1, (8)

where ρ1 and p1 are the density and pressure perturbations, and
v1 ≡ v1z. The strength of thermal conduction is determined by
the inverse Peclet number

σ = (γ − 1)μ̃κ0 T
5/2

0i

RL
√

γ p0i ρ0
. (9)

For standard coronal conditions γ = 5/3, μ̃ ≈ 0.6, and
κ0 ≈ 10−11 m2 s−1 K−5/2. If we take L = 100 Mm and
T0i = 0.6–6 MK as typical coronal values then we obtain
0.007 � σ � 0.7. At this point it must be noted that there
is disagreement over the value of γ in the solar corona. Many
previous studies have taken a value of 5/3 as a standard figure,
however, recent observational investigations have found a value
of γ ≈ 1.1 in the corona (see e.g. Van Doorsselaere et al. 2011).
However, if the value of γ were to be different from the 5/3
assumed here, the results derived below will not qualitatively
change and the conclusions drawn will still be valid.

Al-Ghafri & Erdélyi (2013) have shown that the linearized
system of governing Equations (5)–(8) can be reduced to one
equation for v1,

∂3v1

∂t3
+

7

2
ε
∂2v1

∂t2
− 5

2
εc2

s

∂2v1

∂z2
− c2

s

∂3v1

∂t∂z2
− εσc5

s

∂3v1

∂t∂z2

− σc5
s

∂4v1

∂t2∂z2
+

σ

γ
c7
s

∂4v1

∂z4
= 0. (10)

Next, in order to set appropriate boundary conditions, we
also need the relation between the velocity and temperature
perturbation:

∂2v1

∂t2
− c2

s

γ

∂2v1

∂z2
+ ε

∂v1

∂t
= − 1

γ

(
∂2T1

∂t∂z
+ ε

∂T1

∂t

)
. (11)

To study the damping of standing waves we need to impose
the boundary conditions at z = ±1/2. Since the loop ends are
bounded by the dense photospheric plasma, we assume that the
perturbation velocity vanishes at these ends,

v1 = 0 at z = ±1/2. (12)
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The thermal conduction drops dramatically at the photosphere.
Hence, it is viable to assume that the loop is thermally insulated,

∂T1

∂z
= 0 at z = ±1/2. (13)

Using Equation (11) we rewrite this boundary condition in terms
of v1,

∂2v1

∂t2
− c2

s

γ

∂2v1

∂z2
+ ε

∂v1

∂t
= 0 at z = ±1/2. (14)

Equations (10) and (11), and the boundary conditions (12) and
(14) are used in the next section to study the damping of standing
slow waves in cooling coronal loops.

3. ANALYTICAL SOLUTION

Let us introduce the “slow timescale” t1 = εt . Now, we
rewrite Equation (10) and the boundary condition (14) in terms
of slow time,

ε3 ∂3v1

∂t3
1

+
7ε3

2

∂2v1

∂t2
1

− 5εc2
s

2

∂2v1

∂z2
− εc2

s

∂3v1

∂t1∂z2
− ε2σc5

s

∂3v1

∂t1∂z2

− ε2σc5
s

∂4v1

∂t2
1 ∂z2

+
σc7

s

γ

∂4v1

∂z4
= 0, (15)

ε2 ∂2v1

∂t2
1

− c2
s

γ

∂2v1

∂z2
+ ε2 ∂v1

∂t1
= 0 at z = ±1/2. (16)

Then, we use the WKB method and look for the solution to
Equation (15) with the boundary conditions (12) and (16) in the
form

v1(z, t1) = Q(z, t1) exp(iε−1Θ(t1)). (17)

Function Q is expanded in power series with respect to ε, i.e.,

Q = Q0 + εQ1 + · · · . (18)

3.1. Approximation of Geometrical Optics

Substituting Equations (17) and (18) into Equation (15)
and the boundary conditions (12) and (16), we obtain in the
leading-order approximation, often called the approximation of
geometrical optics (e.g., Bender & Orszag 1991),

∂4Q0

∂z4
+

γω

c2
s

(
ω − i

σc3
s

)
∂2Q0

∂z2
− i γω3

σc7
s

Q0 = 0, (19)

Q0 = 0,
∂2Q0

∂z2
= 0 at z = ±1/2, (20)

where ω = dΘ/dt1. The characteristic equation for
Equation (19) is

λ4 + αλ2 − β = 0, (21)

where

α = γ
ω2

c2
s

− i
γω

σc5
s

, β = i
γω3

σc7
s

. (22)

The four roots of the bi-quadratic Equation (21) are λ = ±ik±,
where k± are given by

k± =
√

α ±
√

α2 + 4β

2
. (23)

Then, the general solution to Equation (19) is

Q0(z, t1) = A1 cos (k+z) + A2 sin (k+z) + A3 cos (k−z)

+ A4 sin (k−z), (24)

where Ai, i = 1, . . . , 4 are arbitrary constants. Substituting
Equation (24) in the boundary conditions (20) we obtain two
systems of linear homogeneous algebraic equations,

A1 cos(k+/2) + A3 cos(k−/2) = 0,

A1 k2
+ cos(k+/2) + A3 k2

− cos(k−/2) = 0,
(25)

A2 sin(k+/2) + A4 sin(k−/2) = 0,

A2 k2
+ sin(k+/2) + A4 k2

− sin(k−/2) = 0.
(26)

The first system corresponds to symmetric and the second to
anti-symmetric eigenmodes. Each of the two systems has a non-
trivial solution only when its determinant is equal to zero. This
condition gives the dispersion equation. Hence, the dispersion
equation for symmetric eigenmodes is

(k2
+ − k2

−) cos(k+/2) cos(k−/2) = 0, (27)

while it is

(k2
+ − k2

−) sin(k+/2) sin(k−/2) = 0, (28)

for anti-symmetric eigenmodes. Since

(k2
+ − k2

−)2 = α2 + 4β = γ 2ω2

c4
s

(
ω2 − 1

σ 2c6
s

+ 2i
(2 − γ )ω

γσc3
s

)
�= 0,

when ω �= 0, the dispersion equations for symmetric and anti-
symmetric eigenmodes reduce to k± = π (2n − 1) and k± =
2πn, respectively, where n = 1, 2, . . . . These two expressions
can be unified to k± = πn, where now odd n corresponds
to symmetric and even to anti-symmetric eigenmodes. After
simple algebra we can rewrite this equation in terms of ω,

ω3 − i(πn)2σc5
s ω

2 − (πn)2c2
s ω + i

σc7
s

γ
(πn)4 = 0. (29)

This dispersion equation is in agreement with that found by
Field (1965), De Moortel & Hood (2003), and Erdélyi et al.
(2011) in an appropriate limit. Note that, in the limit σ → 0,
i.e., if there is no thermal conduction, Equation (29) reduces to
ω2 = (πncs)2. In the case of very strong thermal conduction,
i.e., when σ → ∞, Equation (29) becomes ω2 = (πncs)2/γ .

3.2. Approximation of Physical Optics

In what follows, we are only interested in the fundamental
longitudinal mode corresponding to n = 1. Hence, either k+ = π
or k− = π . In both cases Equation (24) reduces to

Q0(z, t1) = A(t1) cos(πz), (30)

where A = A1 in the first case and A = A3 in the second
case. Now, we need to determine the function A(t1). To do this
we proceed to the next order approximation, often called the
approximation of physical optics (e.g., Bender & Orszag 1991).
Substituting Equations (17) and (18) into Equation (15) and the

3
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boundary conditions (12) and (16), and collecting terms of the
order of ε, we obtain

σ

γ
c7
s

∂4Q1

∂z4
+

(
σc5

s ω
2 − ic2

s ω
) ∂2Q1

∂z2
− iω3Q1

=
(

7

2
ω2 + 3ω

dω

dt1

)
Q0

+ 3ω2 ∂Q0

∂t1
+

(
5

2
c2
s + iσc5

s ω + iσc5
s

dω

dt1

)
∂2Q0

∂z2

+
(
c2
s + 2iσc5

s ω
) ∂3Q0

∂t1∂z2
, (31)

Q1 = 0,
∂2Q1

∂z2
= 0 at z = ±1/2. (32)

When deriving Equation (32) we have taken into account that
Q0 = 0 at z = ±1/2.

If we put the right-hand side of Equation (31) equal to zero,
then we obtain the same eigenvalue problem as in the leading-
order approximation. This problem has a non-trivial solution
Q0 = A cos(πz). This implies that boundary-value problem
(31), Equation (32) has a solution only when the right-hand side
of Equation (31) satisfies the compatibility condition, which is
the condition that it is orthogonal to Q0. This condition can be
obtained by multiplying Equation (31) by Q0, integrating with
respect to z from −1/2 to 1/2, and using the integration by parts
and the boundary conditions (32). As a result we obtain

∫ 1/2

−1/2

[(
7

2
ω2 + 3ω

dω

dt1

)
Q2

0 + 3ω2Q0
∂Q0

∂t1

+

(
5

2
c2
s + iσc5

s ω + iσc5
s

dω

dt1

)
Q0

∂2Q0

∂z2

+
(
c2
s + 2iσc5

s ω
)
Q0

∂3Q0

∂t1∂z2

]
dz = 0, (33)

which gives the following equation for the evolution of the
oscillation amplitude A,

2f (ω, t1)
dA

dt1
+

[
∂f

∂ω

dω

dt1
+ h(ω, t1)

]
A = 0, (34)

where
f (ω, t1) = 3ω2 − 2iπ2σc5

s ω − π2c2
s , (35)

h(ω, t1) = 7ω2 − 2iπ2σc5
s ω − 5π2c2

s . (36)

Now we re-write the dispersion Equation (29) as

c−7
s ω3 − iπ2σc−2

s ω2 − π2c−5
s ω + i

σ

γ
π4 = 0.

Differentiating this equation with respect to t1, then multiplying
by 2c7

s , and taking into account that cs = e−t1/2 yields

2f
dω

dt1
= −ωh. (37)

Substituting this result in Equation (34) and using Equation (35)
we obtain

2f 2 dA

dt1
= π2c2

s h
(
1 + iσc3

s ω
)
A. (38)

Integrating this equation we eventually arrive at

A(t1) = A0 exp

(
π2

∫ t1

0

c2
s h(1 + iσc3

s ω)

2f 2
dt ′

)
, (39)

where A0 = A(0). Finally, the wave amplitude a(t1) is given by

a(t1) = |A(t1)| exp

(
−ε−1

∫ t1

0
�(ω) dt ′

)
, (40)

where � indicates the imaginary part of a quantity.
It is instructive to compare the results derived in this section

with those obtained by Al-Ghafri & Erdélyi (2013). These
authors assumed that σ is small and took, as mentioned earlier,
σ = O(ε). For small σ we obtain from Equation (29)

ω ≈ πcs + i
σπ2c5

s (γ − 1)

2γ
. (41)

When calculating A(t1) we take ω ≈ πcs and neglect the term
proportional to σ in the exponent and in the expressions for f
and h. As a result we have

A(t1) ≈ A0e
t1/4. (42)

Substituting Equations (41) and (42) in Equation (40) we
arrive at

a(t) = A0 exp

[(
ε

4
− σπ2(γ − 1)

2γ

)
t

]
, (43)

where we have also substituted t1 = εt . This expression
coincides with that given by Al-Ghafri & Erdélyi (2013) (see
their Equation (51)) if we take n = 0 in the latter, which
correspond to the fundamental mode, and neglect the small term
proportional to εt2 in the exponent.

In the next section, we use Equation (40) to analyze the
temporary evolution of the oscillation amplitude.

4. NUMERICAL RESULTS

In this section, we use the analytical results obtained in the
previous section to study the evolution of the periods and am-
plitudes of standing slow waves in cooling dynamical coronal
loops. Since the analytical expressions are quite complex, we
calculate the periods and amplitudes for typical coronal condi-
tions numerically and plot the results. The oscillation period is
equal to 2π/ωr where ωr is the real part of the frequency, ω.
The frequency has been calculated using Equation (29). At this
point it is convenient to reiterate that the numerical work here
is carried out with values typical to those of the solar corona.
However, the general results will be applicable to stellar plasmas
in a strictly qualitative manner.

Figure 2 displays the evolution of the oscillation period with
time for various values of ε and the initial loop temperature. We
see that the oscillation period increases with time due to cooling.
This is an expected result because cooling decreases the phase
speed. We can see that the effect is more pronounced in cooler
loops.

The dependence of the oscillation amplitude on time for
various values of ε and the initial loop temperature is displayed
in Figure 3. We see that, in general, the oscillation amplitude
decreases due to thermal conduction. When the loop temperature
is not very high (T � 5 MK) cooling reduces the damping rate.

4
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Figure 2. The dependence of the oscillation period on time for various values of ε and the loop temperature T. Recall that the time is measured in units of L/csi .
Panels (a), (b), (c), and (d) correspond to T0i = 0.6 MK, T0i = 3 MK, T0i = 6 MK, and T0i = 10 MK, respectively.

This feature is especially clearly seen in Figure 3(a). We can
observe in this figure that the damping of oscillation is very
weak. This result is consistent with the general conclusion that,
in cool EUV loops (T � 1 MK) the thermal conduction is too
weak to cause substantial damping of standing oscillations (e.g.,
Al-Ghafri & Erdélyi 2013). As a consequence, the amplification
of oscillations due to cooling dominates damping due to thermal
conduction, and the oscillation amplitude in cooling loops
increases.

For a loop with larger temperatures (T � 3 MK) even
strong cooling (ε = 0.5) cannot counter-balance damping due
to thermal conductions, so it only can reduce the damping rate.

Figures 3(c) and (d) are especially interesting. We see in
these figures that cooling enhances damping. The explanation

of this effect is as follows. As we have already pointed out,
the dependence of damping rate on the coefficient of thermal
conduction and, consequently, on the loop temperature is not
monotonic. It is clearly seen in Figure 3 that, in the absence of
cooling, damping in a loop with T = 10 MK is weaker than
that in a loop with T = 6 MK. This results is in agreement
with the observation by Sigalotti et al. (2007) that slow standing
oscillations of relatively cool loops (T ∼ 5 MK) damp faster
than those in very hot loops with T ∼ 10 MK. Cooling decreases
the temperature of the loop and, as a result, damping in the loop
with the initial temperature 6 MK is becoming stronger.

It is now instructive to compare the results obtained in this
paper with those obtained by Al-Ghafri & Erdélyi (2013).
Figure 3(a) agrees very well with Figure 3(a) in Al-Ghafri &
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Figure 3. The dependence of the oscillation amplitude on time. Panels (a), (b), (c), and (d) correspond to T0i = 0.6 MK (σ = 0.0068), T0i = 3 MK (σ = 0.17),
T0i = 6 MK (σ = 0.68), and T0i = 10 MK (σ = 1.9), respectively. The time is measured in units of L/csi .

Erdélyi (2013). The agreement is fairly good for T � 3 MK.
However, when the loop temperature increases further, the
agreement is less clear. This discrepancy in not surprising
because Al-Ghafri & Erdélyi (2013) assumed that damping is
weak, which is less appropriate for sufficiently hot loops.

The results shown in Figure 3 are obtained for κ0 = 10−11.
It is expedient to study the dependence of the damping rate on
κ0. Figure 4 shows the dependence of the oscillations amplitude
on time for ε = 0.1, T0i = 3 MK, and various values of κ0.
As it can be expected, damping becomes stronger when κ0
increases.

Figure 5 depicts the relation between the oscillation amplitude
and the temperature for various values of ε at t = 1. The

damping rate of coronal oscillations increases gradually, takes
its maximum at the temperature ∼4 MK, and then decreases
onward.

It is worth studying what should be the cooling rate to com-
pensate damping due to thermal condition and thus provide
an undamped oscillation. These undamped longitudinal oscilla-
tions have yet to be directly observed, however, undamped fast
kink MHD waves have already been detected by Aschwanden &
Schrijver (2011). The theoretical results derived here do indicate
that, with the recent improvements in observational equipment,
undamped longitudinal oscillations should soon be detected.

In what follows, we consider the oscillation as undamped if
a(2) = 1, i.e., if the oscillation amplitude at t = 2 is the same
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Figure 5. The dependence of the oscillation amplitude on temperature for t = 1,
and various values of ε.

as at the initial moment of time. Since the damping rate due
to thermal conduction is a function of the initial temperature,
so is the cooling rate needed to compensate the damping.
The cooling rate is defined by the parameter ε. Let us calculate
the dependence of the value of ε needed to compensate the
damping on the inverse Peclet number σ analytically using
Equation (43) valid for weak damping, and numerically using
Equation (40). The results of this calculation are shown in
Figure 6. As it can be expected, the analytical and numerical
solutions are very close for small values of σ , but they are
sufficiently different for larger values of σ .

5. DISCUSSION AND CONCLUSION

In this paper, we have studied the effect of cooling of coronal
loops on the damping of slow standing waves. We have used
the low-beta plasma and rigid flux tube approximation, which

Figure 6. The required cooling rate to balance the thermal ratio (the inverse
Peclet number) for t = 2, and a(t) = 1. The dashed and solid lines correspond
to the analytical and numerical calculations, respectively.

enable us to disregard the magnetic field perturbation. As a re-
sult we have reduced the problem to studying one-dimensional
standing acoustic waves. We have assumed that, due to cooling,
the temperature in the loop decreases exponentially with the
characteristic timescale τc, which is much longer than the char-
acteristic oscillation period P, i.e., that we consider a temporally
slowly varying plasma. The latter assumption has allowed us to
use the WKB method with ε = P/τc as a small parameter to
model the damped oscillations. In the leading-order approxima-
tion of the WKB method, called the approximation of geometri-
cal optics, we have derived the dispersion equation determining
the instantaneous complex frequency of the loop oscillation.
In the next order approximation, called the approximation of
physical optics, we have obtained the equation determining the
variation of oscillation amplitude with time.

We have used the analytical results to estimate the dependence
of the oscillation period and amplitude on time numerically.
We have obtained that cooling results in the increase of the
oscillation period. This is an expected result because cooling
causes the decrease of the sound speed, and the oscillation period
is equal to the double time of the travel of a signal from one loop
footpoint to the other. In not very hot loops (the temperature not
exceeding ∼5 MK) cooling reduces the damping rate due to
thermal conduction. In cold loops with the temperature below
∼1 MK the damping due to thermal conduction is very weak.
As a result the effect of oscillation amplification dominates the
damping and the oscillation amplitude increases with time. In
hotter loops cooling cannot compete with damping and is able
only to reduce the damping rate.

The damping rate is not monotonic function of the temper-
ature. While it increases with the temperature in relative cold
loops, the temperature increase in very hot loops leads to the de-
crease of the damping rate. As a result, in very hot loop with the
temperature about 6 MK and higher cooling causes the damping
enhancement.

In light of the results found here, as well as the observation of
undamped fast MHD waves (see e.g. Aschwanden & Schrijver
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2011; Wang et al. 2012), we expect that undamped slow MHD
waves should not remain unobserved, especially inside cooler,
<1 MK structures.

As briefly discussed in Section 2, the numerical models
analyzed in this work are aimed specifically at solar coronal
loops. However, by applying the analytical results, and the
physical principles behind them, we can expect that the same
temporal evolution will occur in more generalized, astrophysical
plasmas, albeit with different quantitative values.
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Ofman, L., & Wang, T. 2002, ApJL, 580, L85
Ruderman, M. S. 2011a, SoPh, 271, 41
Ruderman, M. S. 2011b, A&A, 534, A78
Sigalotti, L. D. G., Mendoza-Briceño, C. A., & Luna-Cardozo, M. 2007, SoPh,

246, 187
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