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An Integrated Neuro-mechanical Model of C.

elegans Forward Locomotion

Jordan H. Boyle, John Bryden and Netta Cohen

School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom

Abstract. One of the most tractable organisms for the study of nervous
systems is the nematode Caenorhabditis elegans, whose locomotion in
particular has been the subject of a number of models. In this paper we
present a first integrated neuro-mechanical model of forward locomotion.
We find that a previous neural model is robust to the addition of a
body with mechanical properties, and that the integrated model produces
oscillations with a more realistic frequency and waveform than the neural
model alone. We conclude that the body and environment are likely to
be important components of the worm’s locomotion subsystem.

1 Introduction

The ultimate aim of neuroscience is to unravel and completely understand the
links between animal behaviour, its neural control and the underlying molecular
and genetic computation at the cellular and sub-cellular levels. This daunting
challenge sets a distant goal post in the study of the vast majority of animals,
but work on one animal in particular, the nematode Caenorhabditis elegans,
is leading the way. This tiny worm has only 302 neurons and yet is capable of
generating an impressive wealth of sensory-motor behaviours. With the first fully
sequenced animal genome [1], a nearly complete wiring diagram of the nervous
circuit [2], and hundreds of well characterised mutant strains, the link between
genetics and behaviour never seemed more tractable.

To date, a number of models have been constructed of subcircuits within the
C. elegans nervous system, including sensory circuits for thermotaxis and chemo-
taxis [3, 4], reflex control such as tap withdrawal [5], reversals (from forward to
backward motion and vice versa) [6] and head swing motion [7]. Locomotion,
like the overwhelming majority of known motor activity in animals, relies on
the rhythmic contraction of muscles, which are controlled or regulated by neural
networks. This system consists of a circuit in the head (generally postulated to
initiate motion and determine direction) and an additional subcircuit along the
ventral cord (responsible for propagating and sustaining undulations, and po-
tentially generating them as well). Models of C. elegans locomotion have tended
to focus on forward locomotion, and in particular, on the ability of the worm to
generate and propagate undulations down its length [8–12]. These models have
tended to study either the mechanics of locomotion [8] or the forward locomo-
tion neural circuit [9–12]. In this paper we present simulations of an integrated
model of the neural control of forward locomotion [12] with a minimal model
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of muscle actuation and a mechanical model of a body, embedded in a minimal
environment. The main questions we address are (i) whether the disembodied
neural model is robust to the addition of a body with mechanical properties;
and (ii) how the addition of mechanical properties alters the output from the
motor neurons. In particular, models of the isolated neural circuit for locomo-
tion suffer from a common limitation: the inability to reproduce undulations
with frequencies that match the observed behaviour of the crawling worm. To
address this question, we have limited our integrated model to a short section
of the worm, rather than modelling the entire body. We find that the addition
of a mechanical framework to the neural control model of Ref. [12] leads to ro-
bust oscillations, with significantly smoother waveforms and reduced oscillation
frequencies, matching observations of the worm.

2 Background

2.1 C. elegans Locomotion

Forwards locomotion is achieved by propagating sinusoidal undulations along
the body from head to tail. When moving on a firm substrate (e.g. agarose) the
worm lies on its side, with the ventral and dorsal muscles at any longitudinal
level contracting in anti-phase. With the exception of the head and neck, the
worm is only capable of bending in the dorso-ventral plane.

Like all nematode worms, C. elegans lacks any form of rigid skeleton. Its
roughly cylindrical body has a diameter of ∼ 80 µm and a length of ∼ 1 mm. It
has an elastic cuticle containing (along with its intestine and gonad) pressurised
fluid, which maintains the body shape while remaining flexible. This structure
is referred to as a hydrostatic skeleton. The body wall muscles responsible for
locomotion are anchored to the inside of the cuticle.

2.2 The Neural Model

The neural model used here is based on the work of Bryden and Cohen [11–13].
Specifically, we use the model (equations and parameters) presented in [12] which
is itself an extension of Refs. [11, 13]. The model simplifies the neuronal wiring
diagram of the worm [2, 14] into a minimal neural circuit for forward locomotion.
This reduced model contains a set of repeating units, (one “tail” and ten “body”
units) where each unit consists of one dorsal motor neuron (of class DB) and one
ventral motor neuron (of class VB). A single command interneuron (representing
a pair of interneurons of class AVB in the biological worm) provides the “on”
signal to the forward locomotion circuit and is electrically coupled (via gap
junctions) to all motor neurons of classes DB and VB. In the model, motor
neurons also have sensory function, integrating inputs from stretch-receptors, or
mechano-sensitive ion channels, that encode each unit’s bending angle. Motor
neurons receive both local and – with the exception of the tail – proximate
sensory input, with proximate input received from the adjacent posterior unit.
The sensory-motor loop for each unit gives rise to local oscillations which phase
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lock with adjacent units. Equations and parameters for the neural model are set
out in Appendix A.

This neural-only model uses a minimal physical framework to translate neu-
ronal output to bending. Fig. 1B shows the neural model with only two units (a
tail and one body unit), as modelled in this paper. In the following section, we
outline a more realistic physical model of the body of the worm.

3 Physical Model

Our physical model is an adaptation of Ref. [8], a 2-D model consisting of two
rows of N points (representing the dorsal and ventral sides of the worm). Each
point is acted on by the opposing forces of the elastic cuticle and pressure, as well
as muscle force and drag (often loosely referred to as friction or surface friction
[8]). We modify this model by introducing simplifications to reduce simulation
time, in part by allowing us to use a longer time step. Fig. 1A illustrates the
model’s structure. The worm is represented by a number rigid beams, connected
to each of the adjacent beams by four springs. Two horizontal (h) springs con-
nect points on the same side of adjacent beams and resist both elongation and
compression. Two diagonal (d) springs connect the dorsal side of the ith beam
to the ventral side of the i + 1st, and vice versa. These springs strongly resist
compression and have an effect analogous to that of pressure, in that they help
to maintain reasonably constant area in each unit.

The model was implemented in C++, using a 4th order Runge-Kutta method
for numerical integration, with a time step of 0.1 ms.1 Equations and parameters
of the physical model are given in Appendix B. The steps taken to interface the
physical and neuronal models are described in Appendix C.

4 Results

Using our integrated model we first simulated a single unit (the tail), and then
implemented two phase-lagged units (adding a body unit). In what follows, we
present these results, as compared to those of the neural model alone.

4.1 Single Oscillating Segment

The neural model alone produces robust oscillations in unit bending angle (θi)
with a roughly square waveform, as shown in Fig. 2A. The model unit oscillates
at about 3.5 Hz, as compared to frequencies of about 0.5 Hz observed for C.

elegans forward locomotion on an agarose substrate. It has not been possible
to find parameters within reasonable electrophysiological bounds for the neural
model that would slow the oscillations to the desired time scales [12].

Oscillations of the integrated neuro-mechanical model of a single unit are
shown in Fig. 2B. All but four parameters of the neuronal model remain un-
changed from Ref. [12]. However, parameters used for the actuation step caused

1 The original model [8] required a time step of 0.001 ms with the same integration
method.
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Fig. 1. A: Schematic diagram of the physical model illustrating nomenclature (see
Appendix B for details). B: The neural model, with only two units (one body, one tail).
AVB is electrically coupled to each of the motor neurons via gap junctions (resistor
symbols).

a slight asymmetry in the oscillations when integrated with a physical model,
and were therefore modified.

Fig. 2. Oscillations of, A, the original neural model [12] and, B, the integrated model
(with drag of 80×10−6kg.s−1). Note the different time scales. C: Oscillation frequency
as a function of drag. The zero frequency point indicates that the unit can no longer
oscillate.

As can be seen from the traces in the figure, the frequency of oscillation
in the integrated model is about 0.5 Hz for typical agarose drag [8], and the
waveform has a smooth, almost sinusoidal shape. Faster (and slower) oscillations
are possible for lower (higher) values of drag. Fig. 2C shows a plot of oscillation
frequencies as a function of drag for the integrated model.

4.2 Two Phase-lagged Segments

Parameters of the neural model are given in Table A-1 for the tail unit and in
Table A-2 for the body unit. Fig. 3 compares bending waveforms recorded from
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a living worm (Fig. 3A), simulated by the neural model (Fig. 3B) and simulated
by the integrated model (Fig. 3C).

Fig. 3. Phase lagged oscillation of two units. A: Bending angles extracted from a record-
ing of a forward locomoting worm on an agarose substrate. The traces are of two points
along the worm (near the middle and 1

12
of a body length apart). B: Simulation of two

coupled units in the neural model. C: Simulation of the integrated model. Take note
of the faster oscillations in subplot B.

5 Discussion

C. elegans is amenable to manipulations at the genetic, molecular and neuronal
levels but with such rich behaviour being produced by a system with so few
components, it can often be difficult to determine the pathways of cause and
effect. Mathematical and simulation models of the locomotion therefore provide
an essential contribution to the understanding of C. elegans neurobiology and
motor control.

The inclusion of a realistic embodiment is particularly relevant to a model
of C. elegans locomotion. Sensory feedback is important to the locomotion of
all animals. However, in C. elegans, the postulated existence of stretch receptor
inputs along the body (unpublished communication, L. Eberly and R. Russel,
reported in [2]) would provide direct information about body posture to the
motor neurons themselves. Thus, the neural control is likely to be tightly coupled
to the shape the worm takes as it locomotes. Modelling the body physics is
therefore particularly important in this organism. Here we have presented the
first steps in the implementation of such an integrated model, using biologically
plausible parameters for both the neural and mechanical components.

One interesting effect is the smoothing of the waveform from a square-like
waveform in the isolated neural model to a nearly sinusoidal waveform in the
integrated model. The smoothing can be attributed to the body’s resistance to
bending (modelled as a set of springs), which increases with the bending angle.
By contrast, in the original neural model, the rate of bending depends only on
the neural output.

The work presented here would naturally lead to an integrated neuro-mechanical
model of locomotion for an entire worm. The next step toward this goal, extend-
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ing the neural circuit to the entire ventral cord (and the corresponding motor
system) is currently underway. The physical model introduces long range inter-
actions between units via the body and environment. In a real worm, as in the
physical model, for bending to occur at some point along the worm, local muscles
must contract. However, such contractions also apply physical forces to adjacent
units, and so on up and down the worm, giving rise to a significant persistence
length. For this reason the extension of the neuro-mechanical model from two to
three (or more) units will not be automatic and will require parameter changes
to model an operable balance between the effects of the muscle and body prop-
erties. In fact, the worm’s physical properties (and, in particular, the existence
of long range physical interactions along it) could set new constraints on the
neural model, or could even be exploited by the worm to achieve more effective
locomotion. Either way, the physics of the worm’s locomotion is likely to offer
important insights that could not be gleaned from a model of the isolated neural
subcircuit.

We have shown that a neural model developed with only the most rudimen-
tary physical framework can continue to function with a more realistic embod-
iment. Indeed, both the waveform and frequency have been improved beyond
what was possible for the isolated neural model. We conclude that the body
and environment are likely to be important components of the subsystem that
generates locomotion in the worm.

This work was funded by the EPSRC, grant EP/C011961. NC was funded by the EPSRC, grant

EP/C011953. Thanks to Stefano Berri for movies of worms and behavioural data.

Appendix A: Neural Model

Neurons are assumed to have graded potentials [11–13]. In particular, motor neu-
rons (VB and DB) and are modelled by leaky integrators with a transmembrane
potential V (t) following:

C
dV

dt
= −G(V − Erev) − Ishape + IAVB , (A-1)

where C is the cell’s membrane capacitance; Erev is the cell’s effective reversal
potential; and G is the total effective membrane conductance. Sensory input
Ishape =

∑n

j=1(V − Estretch
j )Gstretch

j σstretch
j (θj) is the stretch receptor input

from the shape of the body, where Estretch
j is the reversal potential of the ion

channels, θj is the bending angle of unit j and σstretch
j is a sigmoid response

function of the stretch receptors to the local bending. The stretch receptor ac-
tivation function is given by σstretch(θ) = 1/ [1 + exp (−(θ − θ0)/δθ)] where the
steepness parameter δθ and the threshold θ0 are constants. The command input
current IAVB = GAVB(VAVB − V ) models gap junctional coupling with AVB
(with coupling strength GAVB and denoting AVB voltage by VAVB). Note that
in the model, AVB is assumed to have a sufficiently high capacitance, so that
the gap junctional currents have a negligible effect on its membrane potential.
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Segment bending in this model is given as a summation of an output function
from each of the two neurons:

dθ

dt
= σout

V B(V ) − σout
DB(V ) , (A-2)

where σout(V ) = ωmax/[1 + exp (−(V − V0)/δV )] with constants ωmax, δV and
V0. Note that dorsal and ventral muscles contribute to bending in opposite di-
rections (with θ and -θ denoting ventral and dorsal bending, respectively).

Table A-1. Parameters for a self-oscillating tail unit (as in Ref. [12]).

Parameter Value Parameter Value Parameter Value

Erev −60mV VAVB −30.7mV C 5pF
GVB 19.07pS GDB 17.58pS GAVB

VB 35.37pS

GAVB

DB 13.78pS Gstretch

VB 98.55pS Gstretch

DB 67.55pS
Estretch 60mV θ0,VB −18.68o θ0,DB −19.46o

δθVB 0.1373o δθDB 0.4186o ωmax,VB 6987o/sec
ωmax,DB 9951o/sec V0,VB 22.8mV V0,DB 25.0mV
δVVB 0.2888mV/sec δVDB 0.0826mV/sec

Table A-2. Parameters for body units and tail-body interactions as in Ref. [12]. All
body-unit parameters that are not included here are the same as for the tail unit.

Parameter Value Parameter Value Parameter Value

GVB 26.09pS GDB 25.76pS Gstretch
′

VB 16.77pS

Gstretch
′

DB 18.24pS Estretch
′

60mV θ′
0,VB −19.14o

θ′
0,DB −13.26o δθ′

VB 1.589o/sec δθ′
DB 1.413o/sec

Appendix B: Physical Model

The physical model consists of N rigid beams which form the boundaries between
the N − 1 units. The ith beam can be described in one of two ways: either by
the (x, y) coordinates of the centre of mass (CoMi in Fig. 1) and angle φi, or
by the (x, y) coordinates of its two end points (P D

i and P
V
i in Fig. 1). Each

formulation has its own advantages and is used where appropriate.

B.1 Spring Forces

The rigid beams are connected to each of their neighbours by two horizontal (h)
springs and two diagonal (d) springs, directed along the vectors

∆
h
k,i = P

k
i+1 − P

k
i for k = D,V

∆
d
m,i = P

k
i+1 − P

l
i for k = D,V , l = V,D and m = 1, 2 , (B-1)

for i = 1 : N − 1, where P
k
i = (xk

i , yk
i ) are the coordinates of the ends of the ith

beam. The spring forces F(s) depend on the length of these vectors, ∆j
k,i = |∆j

k,i|
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and are collinear to them. The magnitude of the horizontal and diagonal spring
forces are piecewise linear functions

Fh
(s)(∆) =















κh
S2(∆ − Lh

2 ) + κh
S1(L

h
2 − Lh

0 ) : ∆ > Lh
2

κh
S1(∆ − Lh

0 ) : Lh
2 > ∆ > Lh

0

κh
C2(∆ − Lh

1 ) + κh
C1(L

h
1 − Lh

0 ) : ∆ < Lh
1

κh
C1(∆ − Lh

0 ) : otherwise

, (B-2)

F d
(s)(∆) =







κd
C2(∆ − Ld

1) + κd
C1(L

d
1 − Ld

0) : ∆ < Ld
1

κd
C1(∆ − Ld

0) : Ld
1 < ∆ < Ld

0

0 : otherwise
, (B-3)

where spring (κ) and length (L) constants are given in Table B-1.

Table B-1. Parameters of the physical model. Note that values for θ0 and θ′
0 differ

from Ref. [12] and Table A-1.

Parameter Value Parameter Value Parameter Value

D 80µm Lh
0 50µm Lh

1 0.5Lh
0

Lh
2 1.5Lh

1 Ld
0

p

Lh2
0

+ D2 Ld
1 0.95Ld

0

κh
S1 20µN.m−1 κh

S2 10κh
S1 κh

C1 0.5κh
S1

κh
C2 10κh

C1 κd
C1 50κh

S1 κd
C2 10κd

C1

fmuscle 0.005Lh
0κh

C1 c‖ = c⊥ 80 × 10−6kg.s−1 θ0,VB −29.68o

θ0,DB −8.46o θ′
0,VB −22.14o θ′

0,DB −10.26o

B.2 Muscle Forces

Muscle forces F(m) are directed along the horizontal vectors ∆
h
k,i with magnitude

F(m)k,i = fmuscleAk,i for k = D,V and i = 1 : N − 1 , (B-4)

where fmuscle is a constant (see Table B-1) and Ak,i are scalar activation functions
for the dorsal and ventral muscles, determined by

(AD,i, AV,i) =

{

(θi(t), 0) if θi(t) ≥ 0
(0,−θi(t)) if θi(t) < 0 ,

(B-5)

where θi(t) =
∫ t

0
dθi

dt
dt is the integral over the output of the neural model.

B.3 Total Point Force

With the exception of points on the outer beams, each point i is subject to
forces F D,i and F V,i, given by differences of the spring and muscle forces from
the corresponding units (i and i − 1):

F D,i = (F h
(s)D,i − F

h
(s)D,i−1) + (F d

(s)1,i − F
d
(s)2,i−1) + (F (m)D,i − F (m)D,i−1)

F V,i = (F h
(s)V,i − F

h
(s)V,i−1) + (F d

(s)2,i − F
d
(s)1,i−1) + (F (m)V,i − F (m)V,i−1) .

(B-6)

Since the first beam has no anterior body parts, and the last beam has no
posterior body parts, all terms with i = 0 or i = N are taken as zero.



9

B.4 Equations of Motion

Motion of the beams is calculated from the total force acting on each of the
2N points. Since the points P

D
i and P

V
i are connected by a rigid beam, it is

convenient to convert F(t)k,i to a force and a torque acting on the beam’s centre
of mass.

Rotation by φi converts the coordinate system of F(t)k,i = (F x
(t)k,i

, F y

(t)k,i
)

to a new system F
′

(t)k,i
= (F⊥

(t)k,i
, F

‖
(t)k,i

) with axes perpendicular to (⊥) and

parallel with (‖) the beam:

F⊥
(t)k,i = F x

(t)k,i cos(φi) + F y

(t)k,i
sin(φi)

F
‖
(t)k,i

= F y

(t)k,i
cos(φi) − F x

(t)k,i sin(φi) . (B-7)

The parallel components are summed and applied to CoMi, resulting in pure
translation. The perpendicular components are separated into odd and even
parts (giving rise to a torque and force respectively) by

F⊥,even
i =

(F⊥
(t)D,i

+ F⊥
(t)V,i

)

2

F⊥,odd
i =

(F⊥
(t)D,i

− F⊥
(t)V,i

)

2
. (B-8)

As in Ref. [8] we disregard inertia, but include Stokes’ drag. Also following Ref.
[8], we allow for different constants for drag in the parallel and perpendicular
directions, given by c‖ and c⊥ respectively. The motion of CoMi is therefore

V
‖
(CoM),i =

1

c‖
(F

‖
(t)D,i

+ F
‖
(t)V,i

)

V ⊥
(CoM),i =

1

c⊥
(2F⊥,even

i )

ω(CoM),i =
1

rc⊥
(2F⊥,odd

i ) , (B-9)

where r = 0.5D is the radius of the worm. Finally we convert V
‖
(CoM),i and

V ⊥
(CoM),i back to (x, y) coordinates with

V x
(CoM),i = V

‖
(CoM),i cos(φi) − V ⊥

(CoM),i sin(φi)

V y

(CoM),i = V ⊥
(CoM),i cos(φi) + V

‖
(CoM),i sin(φi) . (B-10)

Appendix C: Integrating the neural and physical model

In the neural model, the output dθi(t)/dt specifies the bending angles θi(t) for
each unit. In the integrated model, θi(t) are taken as the input to the muscles.



10

Muscle ouputs (or contraction) are given by unit lengths. The bending angle αi

is then estimated from the dorsal and ventral unit lengths by

αi = 36.2
|∆h

D,i| − |∆h
V,i|

Lh
0

, (C-1)

where Lh
0 is the resting unit length. (For simplicity, we have denoted the bending

angles of both the neural and integrated models by θ in the Figures.)
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