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Assurance calculations for
planning clinical trials with
time-to-event outcomes
Shijie Rena*† and Jeremy E. Oakleyb

We consider the use of the assurance method in clinical trial planning. In the assurance method, which is an
alternative to a power calculation, we calculate the probability of a clinical trial resulting in a successful out-
come, via eliciting a prior probability distribution about the relevant treatment effect. This is typically a hybrid
Bayesian-frequentist procedure, in that it is usually assumed that the trial data will be analysed using a frequen-
tist hypothesis test, so that the prior distribution is only used to calculate the probability of observing the desired
outcome in the frequentist test. We argue that assessing the probability of a successful clinical trial is a useful
part of the trial planning process. We develop assurance methods to accommodate survival outcome measures,
assuming both parametric and nonparametric models. We also develop prior elicitation procedures for each
survival model so that the assurance calculations can be performed more easily and reliably. We have made free
software available for implementing our methods. © 2013 The Authors. Statistics in Medicine published by John
Wiley & Sons, Ltd.

Keywords: assurance; elicitation; prior distribution; power; sample size; survival analysis

1. Introduction

Sample size determination is an important part of clinical trial design and conventionally involves
power calculations. However, the power of a trial does not necessarily give the probability of the trial
demonstrating a treatment effect, as the true treatment effect may be different to that assumed in the
power calculation. Several authors have proposed a hybrid classical-Bayesian approach for assessing the
probability of a successful trial, given the sample size only, which can then be used to inform sample
size decisions.

The hybrid method was first considered by Spiegelhalter and Freedman [1]. They constructed an
unconditional probability of having a desired outcome and called this unconditional probability the
average power. O’Hagan and Stevens [2] used this method for choosing sample sizes for clinical
trials of cost-effectiveness. They referred to the unconditional probability of a successful trial as the
‘assurance’ of the trial, and we use this term here. O’Hagan et al. [3] extended assurance methods to
two-sided testing and equivalence trials, covering the use of non-conjugate prior distributions for
uncertain parameters. Chuang-Stein [4] discussed the difference between traditional power calculations
and assurance calculations to determine sample sizes, giving an example of planning the next trial
based on the results of an early trial. Chuang-Stein and Yang [5] reviewed the concept of assurance
and illustrated its use when planning phase III trials. They also applied assurance to study designs when
re-estimating a sample size based on an interim analysis.

An assurance calculation requires a prior distribution for the treatment effect, but does not necessarily
involve a Bayesian analysis of the trial data. The method of analysis, and in particular the criteria for
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which the trial is deemed a ‘success’, are determined externally, for example, by a regulator. Once the
criteria have been specified, a prior distribution is used to assess the probability that these criteria will
be met. Typically, the prior distribution will only be used in the design stage and not the analysis. At the
design stage, the risk of trial failure is primarily the trial sponsor’s, and so it should be uncontroversial
for a trial sponsor to use all their prior knowledge in assessing such a risk.

We consider clinical trials in which the endpoint of interest is a survival time. For time-to-event
outcome measures, power and sample size calculations have been well studied under various model
assumptions. For example, Schoenfeld and Richter [6] developed a power function with a limited
recruitment period and a pre-specified follow-up period under the assumption that the survival times
in each treatment group follow exponential distributions and patients enter the trial uniformly. Gross
and Clark [7] provided a method of calculating sample size by assuming that the sample mean survival
time is approximately normally distributed under Weibull models for the survival times. Freedman [8]
and Schoenfeld [9] derived sample size formulae under the assumption of proportional hazards based on
asymptotic properties of the logrank statistic.

Little has been done in calculating assurance for survival endpoints. Assuming proportional hazards,
Spiegelhalter et al. [10] derived an assurance formula in the case of equal allocation and follow-up.
The only uncertain variable considered was the log hazard ratio, and a normal prior was assumed. In
this paper, we extend assurance calculations to accommodate both parametric and proportional hazards
models. Under proportional hazards models, we derive an assurance formula assuming uniform patient
entry over a limited recruitment period. We consider uncertainty in both the log hazard ratio and the
baseline survivor function.

In Section 2, we review how assurance is calculated to determine the unconditional probability of
having a desired outcome. In Section 3, we derive assurance calculations for exponential and Weibull
survival models and describe the elicitation methods for the required prior distributions. In Section 4, we
extend assurance calculations to accommodate proportional hazards models, considering uncertainty in
both treatment effect and baseline survivor function. We also describe the procedure of generating the
baseline survivor function. Examples are given in Section 5.

2. Assurance and sample size

We now review the concept of assurance. Suppose that a randomised controlled trial is to be conducted
to compare an experimental treatment and a standard treatment for a particular disease. A hypothesis test
is to be carried out to test the null hypothesis that the treatment effect � D 0 against the alternative that
� ¤ 0. On the basis of a power calculation, the sample size is chosen to solve

P.Reject H0j� D �A/D �
�; (1)

for some desired probability ��.
The power of the test P.RejectH0j� D �A/ provides the probability of successfully rejecting the null

hypothesis if the true value of � is the specified �A. As the true value of � may be very different to �A,
the actually probability of successfully rejecting the null hypothesis may be very different to the power.

Assurance is the unconditional probability that the trial will end with the desired outcome, which we
derive via

P.‘Successful trial’/D
Z
P.‘Successful trial’j�/f .�/d�; (2)

where f .�/ is the prior distribution for the true treatment effect � . If a successful trial simply corresponds
to rejecting a null hypothesis of no treatment effect, then the assurance in (2) can be thought of as an
expected power (interpreting �A in (1) as the true value of the treatment effect, rather than some minimum
clinically relevant difference).

If our desired outcome is to reject the null hypothesis with data favouring the experimental treatment,
then assurance is given by

� D P.‘Successful trial’/

D P.Reject H0; O� > 0/

D

Z
P.Reject H0; O� > 0j�/f .�/d�;

32
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with O� > 0 indicating that the data favour the experimental treatment. We again emphasise that specifying
what constitutes a ‘successful trial’ is not part of the assurance method; the criteria determining a suc-
cessful trial are set externally, and the idea of assurance is to use prior information to determine the
probability that these criteria are met.

The power of a clinical trial can, in theory, be made as large as desired by increasing the sample
size. The same does not hold for assurance. For a large enough sample size, we will ‘observe’ the true
treatment effect, so that the assurance converges to the prior probability that the new treatment is suitably
effective. If this prior probability is low, no trial will have a high assurance of success; we cannot ‘beat
the prior’.

We restrict the scope of this paper to frequentist methods for analysing the trial data, but Bayesian
methods could be used and are discussed in depth by Ibrahim et al. [11] and Christensen et al. [12].
(In particular, Ibrahim et al. [11] discussed Bayesian inference for all the survival models considered in
this paper.) In this case, there may be a distinction between the prior used in the design stage, and the
prior used in the analysis stage, if the regulator is not willing to accept the trial sponsor’s prior.

3. Assurance calculations for parametric survival models

We now suppose that, in each of two treatment groups, the outcome variable for each patient is the
survival time to some event and consider exponential and Weibull models for the survival times. For
each model, we first choose the analysis method, and hence the criteria for a successful trial. We then
consider assurance calculations and elicitation methods for the required prior distributions.

3.1. Exponential distribution

We first suppose that the survival times in each treatment group follow an exponential distribution, with
hazard rates �1 and �2 (i D 1 for the control group and i D 2 for the experimental group) and allow for
a limited recruitment period from time 0 to R with uniform patient entry and T as the total trial length.
The time origin for survival time is when a patient enters the trial, not when the trial starts. Here, we
consider the analysis method based on Schoenfeld and Richter [6].

The null hypothesis is m1=m2 D 1, where mi is the median survival time in group i , against the
alternative m1=m2 D �, where � is the minimum clinically important difference. Note that assuming an
exponential model, the hypotheses stated earlier are equivalent to H0 W � D 0 versus H1 W � ¤ 0, where

� D log.�2=�1/: (3)

The test statistic is

O� � 0q
1
d1
C 1

d2

�N.0; 1/ under H0 W � D 0;

where di is the number of events in group i and O� is the maximum likelihood estimate of � .
On the basis of the asymptotic properties of the test statistic, the power �E of a 100˛% two-sided

test is

�E D P.Reject H0j�1; �2/

Dˆ

0
B@� �q

1
N1P1e

C 1
N2P2e

�Z˛=2

1
CACˆ

0
B@ �q

1
N1P1e

C 1
N2P2e

�Z˛=2

1
CA ; (4)

where Ni is the number of patients in group i and Pie is the probability of an individual patient in
group i experiencing the outcome event during the trial. Schoenfeld and Richter [6] derived an exact
formula for Pie:

Pie D 1�
expf��i .T �R/g � expf��iT g

�iR
for i D 1; 2: (5)

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 31–45
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The assurance of rejecting the null hypothesis with data favouring the experimental treatment is

�E D P.Reject H0; O� < 0/

D

Z
ˆ

0
B@� �q

1
N1P1e

C 1
N2P2e

�Z˛=2

1
CAf .�1; �2/d�1d�2;

(6)

where � and Pie are functions of �1 and �2.

3.1.1. Constructing the priors. From (6), we see that a joint prior is required for �1 and �2. Kadane and
Wolfson [13] argued that it is better to ask for opinion about observable quantities rather than parameters
in statistical models, and we follow their advice here. We elicit f .�1; �2/ via judgements about survival
rates at some specified time.

To construct a prior for each parameter, first note that

�i D
� log.Si .t0//

t0
; for i D 1; 2; (7)

with Si .t0/ the survival rate for group i at time t0. Hence, to elicit the joint prior distribution, we first
elicit judgements about S1.t0/ instead of eliciting beliefs about �1 directly. An expert may judge S1.t0/
to be informative for S2.t0/, so that �1 and �2 are not independent. To elicit this dependence, we propose
to elicit judgements about the difference, �D S2.t0/�S1.t0/, and assume that � is independent of S1.t0/.

Methods for eliciting univariate distributions are given in Sections 6.3 and 6.4 of O’Hagan et al.
[14] and can be implemented using the freely available SHELF package [15] and the MATCH online
elicitation tool available at http://optics.eee.nottingham.ac.uk/match/uncertainty.php. See also Johnson
et al. [16] for a systematic review of elicitation methods.

One option is to elicit a beta distribution for S1.t0/ and a normal distribution for �, truncating the
normal prior if necessary to ensure S2.t0/ 2 .0; 1/. (An alternative would be to use a shifted and scaled
beta distribution for �, although we have not found the need to truncate to cause significant computational
problems.)

For illustration, we describe a ‘trial roulette’ method proposed by Gore [17] to elicit a normal prior
for �. The method is based on the fixed interval approach, in which the expert is asked to provide a
probability that the unknown quantity of interest will fall in a pre-fixed interval. Using the SHELF
package, the facilitator, who conducts the elicitation, firstly elicits from the expert the lower and upper
bounds of the range of plausible values for �. Then the facilitator divides the range from the lower bound
to upper bound in to 10 equal-width ‘bins’. The expert is asked to specify his or her probability of �
lying in a particular bin by placing ‘chips’ in that bin, with the proportion of chips allocated representing
the probability. The number of chips given to the expert is specified by the facilitator. For example, if
in total 20 chips are used, then each chip represents a probability of 0.05. The trial roulette method is
simple to use and provides the expert with an immediate display of her elicited judgements.

A parametric distributed can be fitted to the elicited judgements using a least squares procedure: the
parameters are chosen to make the fitted probabilities as close as possible to the elicited probabilities.
Feedback should be provided to the expert for checking the adequacy of the elicited distribution.

One illustration of the use of elicitation in clinical trials is given by Parmar et al. [18], who used a
questionnaire to elicit the log hazard ratio given in (3) by eliciting a point estimate for S1.t0/ and a
prior distribution for � using the roulette method. Tan et al. [19] and Hiance et al. [20] both adapted this
questionnaire and used it for a phase III trial. Our elicitation process is more complicated, as we consider
uncertainty in both S1.t0/ and �.

Given the elicited distributions f .S1.t0// and f .�/, we estimate �E using Monte Carlo simulation:

�E '
1

M

MX
jD1

ˆ

0
BB@ � .j /r

1

N1P
.j/
1e

C 1

N2P
.j/
2e

�Z˛=2

1
CCA ; (8)

where � .j / and P .j /ie for i D 1; 2, are obtained by the following steps.
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1. Simulate S .j /1 .t0/ from the elicited prior distribution f .S1.t0//.

2. Simulate �.j / from the elicited prior distribution f .�/ and calculate S .j /2 .t0/D S
.j /
1 .t0/C �

.j /.

3. Calculate �.j /1 and �.j /2 using (7).

4. Calculate � .j / using (3).

5. Calculate P .j /1e and P .j /2e using (5).

The process is computationally quick, so we can make M very large to ensure convergence.

3.2. Supporting software

We have made available software to implement the methods in this paper. The software can be down-
loaded from www.jeremy-oakley.staff.shef.ac.uk/assurance.zip. For the exponential case, we have a
written an interactive elicitation tool for computing assurance. The code is written in R [21] and uses the
rpanel package of Bowman and Crawford [22] and the tkrplot package of Tierney [23] to provide
interactive graphics. The tool helps to elicit the prior distributions of the baseline survival rate S1.t0/ at
a specified time t0, and the survival difference � between the experimental group and the control group
at time t0, using the trial roulette method. The tool also provides feedback to check the adequacy of the
elicited distributions. Once the priors are specified, the tool draws both power and assurance curves for
the corresponding elicited distributions. Users can see immediately how changes in the elicited beliefs
affect the assurance.

3.3. Weibull distribution

We now suppose that the survival times of patients receiving the standard and experimental treatment
follow Weibull distributions, with scale parameters �1, �2 and shape parameters �1, �2, respectively.
The probability density function of the Weibull distribution in each treatment group is

f .t/D �i�i t
�i�1 exp .��i t

�i / ; t > 0; �i > 0; �i > 0;

for i D 1; 2. The method of analysis that we consider here is to compare mean survival times for
each group. We assume that the sample mean survival times are approximately normally distributed:
X i � N

�
	i ; 


2
i =Ni

�
, with Ni the number of patients in group i (i D 1 for the control group, i D 2 for

the experimental group).
Gross and Clark [7] derived a power function of a 100˛% two-sided test of the null hypothesis that the

mean survival times are the same, 	1 D 	2, against the alternative 	1 ¤ 	2. They used the test statistic

X2 �X1q

21=N1C 


2
2=N2

�N.0; 1/ under H0 W 	1 D 	2:

The power formula is

�W D P.Reject H0j	1; 	2/

Dˆ

0
B@ 	2 �	1q


21=N1C 

2
2=N2

�Z˛=2

1
CACˆ

0
B@� 	2 �	1q


21=N1C 

2
2=N2

�Z˛=2

1
CA ; (9)

where 	i and 
2i , for i D 1; 2, are expressed by

	i D
�.1C 1=�i /

�
.1=�i /
i

; (10)


2i D
�.1C 2=�i /� Œ�.1C 1=�i /�

2

�
.2=�i /
i

: (11)

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 31–45
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As the variance parameters 
21 and 
22 are unknown, we switch to using a two-sample t -test in
the assurance calculation. The assurance of rejecting the null hypothesis with data favouring the
experimental treatment is given by

�W D P.Reject H0; X2 >X1/

D

Z
P

0
B@ NX2 � NX1q
O
21=N1C O


2
2=N2

> T1�˛=2I�

1
CA f .�1; �2; �1; �2/d�1d�2d�1d�2; (12)

where T1�˛=2I� is the 100 � .1 � ˛=2/ percentile from the t -distribution with degrees of freedom
 calculated according to Welch’s t -test. As in the exponential case, we estimate this integral using
Monte Carlo simulation.

3.3.1. Constructing the priors. To derive the assurance, a joint prior distribution for �1; �2; �1 and �2 is
needed. Clearly, making judgements directly about these parameters would be too difficult, so we again
construct the priors from judgments about survival rates.

Several authors have presented methods for eliciting an expert’s opinion for a single Weibull
distribution. In Singpurwalla [24], beliefs about the median survival time and shape parameter � are
elicited. Berger and Sun [25] and Kaminskiy and Krivtsov [26] both considered a predictive approach,
in which survival rates at two specified times are elicited. We consider a similar approach, allowing for
the possibility of dependence between the two uncertain survival distributions.

For each group, the shape and scale parameters can be estimated using the survival rate after two
periods. Let Si .t0/ and Si .t 00/ be the survival rates at time t0 and t 00, where t 00 > t0 without loss of
generality. The Weibull parameters are derived from

�i D
log

�
log.Si .t

0

0
//

log.Si .t0//

�
log

�
t 0
0

t0

� ; (13)

�i D
� log.Si .t0//

t
�i
0

; for i D 1; 2: (14)

We could elicit the prior distribution for �i and �i by eliciting an expert’s opinion about Si .t0/
and Si .t

0
0/ and then applying (13) and (14), but the expert may judge that Si .t0/ and Si .t

0
0/ are

dependent. Instead, we suggest eliciting beliefs about the following four observable quantities (assuming
independence):

S1.t0/;

ı11 D S1.t0/� S1.t
0
0/; (15)

ı12 D S2.t0/� S1.t0/; (16)

ı22 D S2.t0/� S2.t
0
0/; (17)

and this will induce a joint prior for �1, �2, �1 and �2. Another option is to elicit judgments about odds
ratios instead of differences.

If beliefs about the differences between two survival rates are elicited, one option is to elicit a beta
distribution for S1.t0/, and a normal prior for ı12, beta priors for ı11, ı22. It may be necessary to truncate
the priors to ensure S1.t 00/, S2.t0/ and S2.t 00/ all in the range .0; 1/, but this is unlikely to be a significant
computational problem. If the odds ratios are the uncertain quantities of interests, we could again elicit
a beta distribution for S1.t0/, and lognormal distributions for the odds ratios.

We estimate �W using Monte Carlo simulation:

�W '
1

M

MX
jD1

I

0
B@ NX

.j /
2 �

NX
.j /
1q

O

2.j /
1 =N1C O


2.j /
2 =N2

> T1�˛=2I�

1
CA ; (18)

where I./ is the indicator function, and the simulation procedure for each j is as follows.
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1. Simulate S .j /1 .t0/, ı
.j /
11 , ı.j /12 and ı.j /22 from their elicited prior distribution.

2. Calculate S .j /1 .t 00/, S
.j /
2 .t0/ and S

.j /
2 .t 00/ from the sampled values in step 1 using Equations

(15)–(17).
3. Calculate �.j /i and �.j /i for i D 1; 2, using Equations (13) and (14).

4. Simulate survival times X .j /i1 ; : : : ; X
.j /
iNi

for i D 1; 2, for the two groups, from Weibull distributions
with the parameter values calculated in step 3.

5. Calculate the sample means NX .j /i and sample variances O
2.j /i for i D 1; 2, from the simulated data
in step 4.

Again, the process is computationally quick, soM can be chosen to be very large to ensure convergence.
The R code to compute the assurance for the Weibull model is also available in the supporting software
described in Section 3.2.

3.4. Priors based on historical data

Suitable historical data may be available for informing the prior distributions, particularly with regard to
the control arm of a trial. We could then derive a posterior distribution given the historical data (following
the approaches described by Ibrahim et al. [11]), which could be used as the prior in the assurance
calculation. For example, in the exponential case, the distribution for the rate parameter �1 in the control
arm could be based on the historical data (and perhaps a noninformative prior), and we would then only
elicit prior judgements about the difference between the treatments �D S2.t0/� S1.t0/.

Ibrahim et al. [11]) also described the use of ‘power priors’. This also involves deriving a posterior
distribution given the historical data, but a posterior in which the likelihood function is downweighted,
by raising it to a power between 0 and 1. The downweighting may be used to reflect differences between
the study populations in the historical and new trials.

4. Assurance calculation for proportional hazard and nonparametric survivor
function models

We now consider a proportional hazards model, with no parametric assumption about the underlying
survivor functions, for a two-arm trial with uniform patient entry during the recruitment period 0 to R
and total study length T . We suppose that the trial results will be analysed with a logrank test. Let hi
and Si denote the hazard and survivor function for treatment group i (i D 1 for the control group and
i D 2 for the experimental group), respectively, with � the hazard ratio h2.t/=h1.t/. A two-sided 100˛%
logrank test is performed to test the null hypothesis, H0, that the log hazard ratio, � D log.�/, is zero
against the alternative � ¤ 0.

Assuming equal number of patients per treatment group, the power formula is

� D P.Reject H0j�/

Dˆ

 
��

r
d

4
�Z˛=2

!
;

where d is the total number of events in the trial. Spiegelhalter et al. [10] derived an exact assurance
formula assuming a normal prior N.m; v/ for � :

� Dˆ

0
BB@�Z˛=2

q
d
4
�md

4r
d
4
C
�
d
4

�2
v

1
CCA :

This assumes that all patients are monitored until the outcome event with no limitation of the length of
the trial. We extend this formula to allow for limited recruitment and follow-up periods.

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 31–45
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Our assurance calculation is based on the power formula derived by Schoenfeld [9]. The recruitment
rate is uniform over an interval 0 to R, and there is a follow-up period to time T . The time origin for
survival time is when a patient enters the trial. Given the total number of patients N , the test statistic is

U � 0r
NPe
1
Q1
� 1
Q2

�N.0; 1/ under H0 W � D 0;

where U is the logrank statistic, Pe is the probability that an individual patient will experience the
outcome event during the trial and Qi is the proportion of patients allocated to group i for i D 1; 2. Let
P1e and P2e denote the probabilities that a patient from treatment groups 1 and 2 will experience the
outcome event during the trial, respectively. The power formula for a two-sided 100˛% logrank test is

�P D P.Reject H0j�; Pe/

Dˆ

 
��

s
NPe
1
Q1
� 1
Q2

�Z˛=2

!
Cˆ

 
�

s
NPe
1
Q1
� 1
Q2

�Z˛=2

!
; (19)

where

Pe DQ1P1e CQ2P2e: (20)

The assurance, considering uncertainty in � and Pe , is

�P D P.Reject H0; O� < 0/

D

Z
ˆ

 
��

s
NPe
1
Q1
� 1
Q2

�Z˛=2

!
f .�; Pe/d�dPe; (21)

where O� < 0 implies that the experimental treatment is better than the standard/placebo.
To compute the assurance �P , a joint prior for � and Pe is required. Depending on whether there are

data available, the elicitation procedures for Pe are different. When there are no data available about
the standard treatment, we could elicit Pe directly, and the assurance is calculated using Equation (21).
When data about the standard treatment are available, we will use the data to learn about S1.:/ and then
derive Pe from

Pe DQ1P1e CQ2P2e

DQ1

 
1�

1

R

Z T

T�R

S1.u/du

!
CQ2

 
1�

1

R

Z T

T�R

ŒS1.u/�
exp.�/du

!
: (22)

With both the data available and no data available cases, beliefs about the log hazard ratio � are
required. The model parameter � can be expressed in terms of the survival rates at a fixed time point t0
in each group:

� D log

�
logŒS1.t0/C ��

logŒS1.t0/�

�
; (23)

where � denotes the difference between the survival rates in the two groups at time t0 (group 2 minus
group 1). We elicit opinion about the survival rates S1.t0/ and � instead of the model parameter � as in
the case of exponential models.

4.1. Constructing the priors with no data available

From (21), a joint prior distribution for � and Pe is required. Under the proportional hazards model,
P2e is given by

P2e D 1� .1�P1e/
exp.�/: (24)

Hence, to elicit the joint prior distribution for � and Pe , we can elicit beliefs about P1e , S1.t0/ and �
and then apply (24), (23) and (22). As in Section 3.1.1, we could elicit independent beta distributions for
P1e and S1.t0/ and an independent normal distribution for �. As before, a Monte Carlo simulation can
be used to estimate (21).

38

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 31–45



S. REN AND J. E. OAKLEY

4.2. Constructing the priors with available data

Information from a pilot study or historic data for the standard treatment may be available at the planning
stage. In this section, we describe a method of incorporating both information from the data and expert
opinion to obtain the final joint prior distribution for the assurance calculation.

From (22), Pe is determined by S1.:/ and � . Hence, we consider a joint distribution for .�; S1.://
rather than .�; Pe/. The integral in the first term of (22) can be estimated numerically, for example,
using Simpson’s rule:

OP1e D 1�
1

3.H � 1/

HX
kD1

wkS1.uk/; (25)

where wk D 1; 4; 2; 4; 2 : : : ; 4; 1 for k D 1; : : : ;H , and H is the number of subintervals in the interval
.T �R/ to T with H an odd number. We now just require a joint prior for .�; S1.u1/; : : : ; S1.uH //.

Taking into account both uncertainty in the log hazard ratio � and baseline survival rates S1.uk/ for
k D 1; : : : ;H , the (approximate) assurance �PD is

�PD D P.Reject H0; O� < 0/

D

Z
P.Reject H0; O� < 0j�; S1.u1/; : : : ; S1.uH //

� f .�; S1.u1/; : : : ; S1.uH //d�dS1.u1/ : : : dS1.uH /: (26)

We suppose that survival data (with right censoring at J distinct times, �1; : : : ; �J ) are available for
the standard treatment, and so consider inference for S1.u1/; : : : ; S1.uH / using a Dirichlet distribution,
as in Susarla and Ryzin [27]. To handle censoring, we use a Gibbs sampling approach, as suggested
by Kuo and Smith [28], to generate .S1.u1/; : : : ; S1.uH // from its posterior distribution, which is
another Dirichlet distribution. See also Ibrahim et al. [11] for further discussion of inference for survivor
functions using Dirichlet distributions.

The problem with censored data is that we do not observe the exact event times. Hence, in the
Gibbs sampler, we firstly simulate event times for each censored observation and then update the prior
distribution using these simulated times and the observed uncensored event times.

We now describe the procedure for simulating .S1.u1/; : : : ; S1.uH // using the Gibbs sampling
approach. The first step is to partition the sample space Œ.T �R/; T � into .HCJ / subintervals according
to the censored times and the quadrature points in Simpson’s rule. The uncertain quantities of interest
are S1.u1/; : : : ; S1.uH /, and the nuisance parameters are S1.�1/; : : : ; S1.�J /. To simplify the notation,
we define

S1.u1/; S1.u2/; : : : ; S1.�j /; : : : ; S1.uH /� S1.t1/; S1.t2/; : : : ; S1.tHCJ�1/; S1.tHCJ /;

where tj is the j th smallest value in the set fu1; : : : ; uH ; �1; : : : ; �J g.
We define a vector of probabilities p1WHCJC1 D .p1; p2; : : : ; pHCJC1/ of an event occurring in each

subinterval:

p1WHCJC1 � .S1.0/� S1.t1/; S1.t1/� S1.t2/; : : : ; S1.tHCJ�1/� S1.tHCJ /; S1.tHCJ //:

We consider a Dirichlet process prior for S1.:/ with parameter function ˛, of the form ˛.Œt;1// D
c0G.t/. The function G.:/ represents the beliefs about the shape of S1.:/. The precision parameter c0
is a positive real number, and it measures how much weight to put on these prior beliefs. The prior
distribution of p1WHCJC1 is a Dirichlet distribution:

p1WHCJC1 �D.c0ŒG.0/�G.t1/�; c0ŒG.t1/�G.t2/�; : : : ; c0ŒG.tHCJ�1/�G.tHCJ /�; c0G.tHCJ //:

In the Gibbs sampler, we iterate between sampling event times for the censored data conditional
on the probabilities p1WHCJC1, and sampling a new probability vector p1WHCJC1 given the sampled
event times.
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4.2.1. Sampling the unobserved event times for the censored data. For the Gibbs sampler, conditional
on the probabilities p1WHCJC1, we need to sample which interval each censored event time occurred
in (we do not actually need the precise event time). We introduce variables ZkC1;k; : : : ; ZHCJC1;k ,
which decompose the number of censored observations rk in the interval .tk�1; tk�, into the number of

events that fall in the intervals .tk; tkC1�, : : :, .tHCJ�1; tHCJ �, .tHCJ ;1/, so that rk D
PHCJC1
lDkC1 Zl;k .

The full conditional distribution of ZkC1;k; : : : ; ZHCJC1;k given the probabilities p1WHCJC1 is a
multinomial distribution with sample size rk and probability parameters �kC1;k; : : : ; �HCJC1;k , where

�j D
pjPHCJC1

jDkC1 pj

for j D kC 1; : : : ;H C J C 1.

4.2.2. Sampling the probabilities p1WHCJC1. Following the sampling of ZkC1;k; : : : ; ZHCJC1;k ,
define d 0

k
to be the revised number of events in the interval .tk�1; tk�, which is the sum of the observed

events and sampled events:

d 0k D dk C

HCJX
jD1

Zk;j ; (27)

where dk and Zk;j are the number of observed events and simulated events in the interval .tk�1; tk�,
respectively. New probabilities p1; p2; : : : ; pHCJC1 are sampled from their full conditional distribution,
which is another Dirichlet distribution:

.p1; p2; : : : ; pHCJC1/jd
0
1; : : : ; d

0
HCJC1 �D

�
c0ŒG.0/�G.t1/�C d

0
1; c0ŒG.t1/�G.t2/�

C d 02; : : : ; c0ŒG.tHCJ�1/�G.tHCJ /�

Cd 0HCJ ; c0G.tHCJ /C d
0
HCJC1

�
:

4.2.3. Eliciting the prior for � and calculating the assurance. To elicit the prior for the log hazard ratio
� , we only need to elicit the prior for the survival difference � at time t0 and then use simulation to obtain
the prior for � using (23). Simulated S1.t0/ can be obtained when generating the survival rates using the
Gibbs sampling approach. As before, the Monte Carlo simulation can be used to estimate (26). The
R code to compute the assurance for the proportional hazards models is also available in the supporting
software described in Section 3.2.

5. Numerical examples

In this section, we provide examples to illustrate how assurance is computed to inform the sample size
choice under different model assumptions. We also present how elicited priors have an effect on the
assurance. In each example, we suppose that a randomised controlled trial is going to be conducted to
compare two treatment effects with an equal number of patients allocated to each treatment group. The
sample sizes determined using power calculations are based on a 5% two-sided hypothesis test.

5.1. Exponential model

We first consider sample sizes based on power. We suppose that the trial has a 3-year recruitment period
with a 2-year follow-up period and that 60% of patients receiving the standard treatment are expected to
be alive after 5 years. For the power calculation, we consider an absolute 20% increase in patient survival
for the experimental group.

Using Equation (7), we have the model parameters �1 D 0:102 and �2 D 0:0446. To achieve a
specified power ��, the required sample size N is determined by solving

�� D �E .N /;

where the power function �E is given in Equation (4).
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Figure 1. The comparison between power and assurance �E considering � �N.m�; v�/ and S1.5/� B.60; 40/.

To calculate assurance �E , an expert’s judgments about the 5-year survival rate in the control group
S1.5/ and the 5-year survival difference � are assessed using univariate elicitation methods. Suppose
this yields S1.5/ � B.as; bs/ and � � N.m�; v�/. In the following, we look at three scenarios for
the priors.

� Scenario 1: � �N.0:2; 0:001/ and S1.5/� B.60; 40/.
� Scenario 2: � �N.0:2; 0:05/ and S1.5/� B.60; 40/.
� Scenario 3: � �N.0:3; 0:005/ and S1.5/� B.60; 40/.

In scenario 1, the prior � � N.0:2; 0:001/ indicates a strong prior belief that the 5-year survival
difference is around 0.2. In scenario 2, v� D 0:05 implies that P.S2.5/ � S1.5/ > 0/ D 0:769. In
scenario 3, the prior � � N.0:3; 0:005/ expresses the belief that P.S2.5/ � S1.5/ < 0/ D 0:00003,
that is, the experimenter believes that the experimental treatment has a very high probability of
being superior.

Figure 1 shows how the assurances differ given the different joint prior distributions. When an expert
has strong beliefs (scenario 1) that the treatment effect will be close to that as specified in the power
calculation, the required sample size informed by assurance is similar to that determined by the power
calculation. In scenario 2, the assurance cannot exceed 80%, as the prior probability of the new treatment
being superior is 76:9%. In scenario 3, a smaller sample size may be required to achieve an 80%
probability of having a successful trial given the very high prior probability of the experimental treatment
being superior.

5.2. Weibull model

We first consider determining sample sizes using the power function under the Weibull model. Suppose
that the 1-year survival rate in the control group is expected to be 20% and to decrease to 10% at the end
of the second year. We consider a two-sided hypothesis test of the null hypothesis of no change in the
mean survival time between the control and experimental groups. For the power calculation, we suppose
that the survival rate in the experimental group at 1 year is 30% and at 2 years is 20%.

Using Equations (13) and (14), the Weibull parameters in each group are �1 D 0:52, �1 D 1:61,
�2 D 0:42 and �2 D 1:20. Using Equations (10) and (11), the mean and variance of the survival times in
each group are 	1 D 0:75, 
21 D 2:57, 	2 D 1:89, and 
22 D 30:33. To achieve a specified power ��,
the require sample size N is determined by solving

�� D �W .N /;

where �W is given in Equation (9).
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Table I. Elicited quartiles of S1.1/, ı11, ı12 and ı22.

S1.1/ ı11 ı12 ı22

Lower quartile 0.15 0.08 0.05 0.05
Median 0.2 0.11 0.1 0.1
Upper quartile 0.23 0.15 0.14 0.12
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Figure 2. Scatterplots of Si .1/ and Si .2/ for i D 1; 2, given the elicited quartiles.

To compute the assurance, we consider eliciting an expert’s opinion about the 1-year survival rate in
the control group S1.1/, the survival difference at 1 year between two groups, ı12, and the difference
in survival probability between the experimental and control groups at 1 and 2 years, denoted by ı11
and ı22, respectively.

Suppose that we elicited quartiles for the uncertain quantities, as given in Table I. Using the MATCH
online elicitation tool, the distributions fitted to the elicited judgements are given later.

S1.1/� Beta.8:10; 32:81/;

ı11 � Beta.4:36; 32:61/;

ı12 �N.0:097; 0:004/;

ı22 � Beta.2:23; 20:10/:

Figure 2 shows how the four survival rates S1.1/, S1.2/, S2.1/ and S2.2/ are correlated given the
elicited quartiles listed in Table I. Figure 3 illustrates the comparison between the power and assurance
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Figure 3. The comparison between power and assurance �W considering uncertainty in S1.1/, ı11, ı12 and ı22.

functions. Given the quartiles of the uncertain quantities in Table I, the prior probability that the
experimental treatment is indeed superior is 73:9%, which cannot be exceeded by the assurance. The
large difference in terms of power and assurance given a fixed large sample size is because uncertainty
in the prior distributions has a large influence on the probability of success.

5.3. Proportional hazard model

Suppose that a trial is planned to have a 5-month recruitment period with a 5-month follow-up period.
In our example, we use the data given in Kaplan and Meier [29] as the available information for the
standard treatment. The data are 0:8, 1:0�, 2:7�, 3:1, 5:4, 7:0�, 9:2 and 12:1�, where ‘�’ denotes censored
observations.

We first consider sample size calculations using the power function. For the power calculation,
we consider an absolute 17:5% increase in the 7-month survival rate for the experimental treatment
compared with the standard. Using the Kaplan–Meier estimate, the survival rate at 7 months for the stan-
dard treatment is S1.7/D 0:525, so the corresponding log hazard ratio � is�0.591. Using Equation (20),
the probability, Pe , that a patient will experience the outcome event during the trial is 0:42. To achieve a
specified power ��, the required sample size N is determined by solving

�� D �P .N /;

where �P is given in Equation (19).
Considering uncertainty in both the log hazard ratio and survivor function in the control group, the

quantities that need to be elicited are the difference � in survival probabilities at 7 months between the
experimental and standard treatment, and parameter function ˛ of the Dirichlet process prior. Suppose
we have already obtained the prior � �N.0:175; 0:01/. Furthermore, an expert proposes the mean of the
standard treatment survivor function to be an exponential distribution with a 5-month survival rate S1.5/
of 50%. Hence, the parameter function ˛ of the Dirichlet process is ˛.Œt;1// D c0 exp.��t/, where �
is given by

�D
� log.0:50/

5
D 0:139:

We fix c0 at 1, which represents a fairly weak prior for the survival rates S1.:/ with the data
being dominant. Figure 4 shows the comparison between the power calculated on the basis of the
Kaplan–Meier estimate of S1.:/ and the assurance. The assurance (dashed line) in this case cannot
exceed 95:5%, which is the prior probability of the experimental treatment being superior. If we had
a stronger prior for �, for example, � � N.0:175; 0:001/, then the calculated assurance would be very
close to the power (as shown by the dotted line in Figure 4).
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Figure 4. The comparison between power and assurance �P considering uncertainty in � and S1.:/.

6. Summary

We have extended the assurance method to accommodate time-to-event outcomes in clinical trials,
assuming one of three analysis methods, and we have made software available for implementing our
methods. The reliability of an assurance probability will depend on the reliability of the elicited prior,
and so it will be important to check the robustness of assurances to the choice of prior. However, the
process of formally assessing the evidence in support of a new treatment and quantifying the attendant
uncertainties could itself form a useful part of the trial planning process. Overall, we believe that it
is clearly useful to know the probability of a trial producing a successful result, and in the context of
clinical trial planning, the extra effort required in using the assurance method is relatively small.

Acknowledgements

This work was funded by an EPSRC Dorothy Hodgkin PhD studentship, with financial support from Roche.
We thank John Stevens, Simon Day and Nelson Kinnersley for helpful discussions and two referees for their
suggestions to improve the paper.

References
1. Spiegelhalter DJ, Freedman LS. A predictive approach to selecting the size of a clinical trial based on subjective clinical

opinion. Statistics in Medicine 1986; 5:1–13.
2. O’Hagan A, Stevens JW. Bayesian assessment of sample size for clinical trials of cost-effectiveness. Medical Decision

Making 2001; 21:219–230.
3. O’Hagan A, Stevens JW, Campbell MJ. Assurance in clinical trial design. Pharmaceutical Statistics 2005; 4:187–201.
4. Chuang-Stein C. Sample size and the probability of a successful trial. Pharmaceutical Statistics 2006; 5:305–309.
5. Chuang-Stein C, Yang R. A revisit of sample size decisions in confirmatory trials. Statistics in Biopharmaceutical

Research 2010; 2:239–248.
6. Schoenfeld DA, Richter JR. Nomograms for calculating the number of patients needed for a clinical trial with survival as

an endpoint. Biometrics 1982; 38:163–170.
7. Gross AJ, Clark VA. Survival Distributions: Reliability Applications in the Biomedical Sciences. Wesley: New York, 1975.
8. Freedman LS. Tables of the number of patients required in clinical trials using the logrank test. Statistics in Medicine

1982; 1:121–129.
9. Schoenfeld DA. Sample-size formula for the proportional-hazards regression model. Biometrics 1983; 39:499–503.

10. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-care Evaluation. John Wiley
and Sons Ltd: England, 2004.

11. Ibrahim JG, Chen M, Sinha D. Bayesian Survival Analysis. Springer: New York, 2001.
12. Christensen R, Johnson W, Branscum A, Hanson T. Bayesian Ideas and Data Analysis: An Introduction for Scientists and

Statisticians. CRC Press: Boca Raton, 2010.

44

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 31–45



S. REN AND J. E. OAKLEY

13. Kadane JB, Wolfson LJ. Experiences in elicitation. Statistician 1998; 47:1–20 (with discussion, 55–68).
14. O’Hagan A, Buck CE, Daneshkhah A, Eiser JE, Garthwaite PH, Jenkinson DJ, Oakley JE, Rakow T. Uncertain

Judgements: Eliciting Expert Probabilities. John Wiley and Sons Ltd: England, 2006.
15. Oakley JE, O’Hagan A. Shelf: The SHeffield ELicitation Framework (version 2.0), School of Mathematics and Statistics,

University of Sheffield, 2010. http://tonyohagan.co.uk/shelf.
16. Johnson SR, Tomlinson GA, Hawker GA, Granton JT, Grosbein HA, Feldman BM. Methods to elicit beliefs for Bayesian

priors: a systematic review. Journal of Clinical Epidemiology 2010; 63:355–369.
17. Gore SM. Biostatistics and the medical research council. Medical Research Council News 1987; 35:19–20.
18. Parmar MKB, Spiegelhalter DJ, Freedman LS. The CHART trials: Bayesian design and monitoring in practice. Statistics

in Medicine 1994; 13:1297–1312.
19. Tan SB, Chung YFA, Tai BC, Cheung YB, Machin D. Elicitation of prior distributions for a phase III random-

ized controlled trial of adjuvant therapy with surgery for hepatocellular carcinoma. Controlled Clinical Trials 2003;
24:110–121.

20. Hiance A, Chevret S, Lévy V. A practical approach for eliciting expert prior beliefs about cancer survival in phase III
randomized trial. Journal of Clinical Epidemiology 2009; 62:431–437.

21. R Development Core Team. R: a language and environment for statistical computing, R Foundation for Statistical
Computing, Vienna, Austria, 2011. http://www.R-project.org/, ISBN 3-900051-07-0.

22. Bowman AW, Crawford E. R package rpanel: simple control panels (version 1.0-5), University of Glasgow, UK, 2008.
http://www.stats.gla.ac.uk/~adrian/rpanel.

23. Tierney L. tkrplot: Tk rplot, 2011. http://CRAN.R-project.org/package=tkrplot, R package version 0.0-23.
24. Singpurwalla ND. An interactive PC-based procedure for reliability assessment incorporating expert opinion and survival

data. Journal of the American Statistical Association 1988; 83:43–51.
25. Berger JO, Sun D. Bayesian analysis for the poly-Weibull distribution. Journal of the American Statistical Association

1993; 88:1412–1418.
26. Kaminskiy MP, Krivtsov VV. A simple procedure for Bayesian estimation of the Weibull distribution. IEEE Transactions

on Reliability 2005; 54:612–616.
27. Susarla V, Ryzin JV. Nonparametric Bayesian estimation of survival curves from incomplete observations. Journal of the

American Statistical Association 1976; 71:897–902.
28. Kuo L, Smith AFM. Bayesian computations in survival models via the Gibbs sampler. In Survival Analysis: State of the

Art, Klein JP, Goel PK (eds). Kluwer Academic: Dordrecht, 1992; 11–24.
29. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical

Association 1958; 53:457–81.

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 31–45

45


