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A distributed Lagrangian moving-mesh finite element method is applied to problems

involving changes of phase. The algorithm uses a distributed conservation principle to de-

termine nodal mesh velocities, which are then used to move the nodes. The nodal values are

obtained from an ALE (Arbitrary Lagrangian-Eulerian) equation, which represents a gener-

alisation of the original algorithm presented in Applied Numerical Mathematics, 54:450–469

(2005). Having described the details of the generalised algorithm it is validated on two test

cases from the original paper and is then applied to one-phase and, for the first time, two-

phase Stefan problems in one and two space dimensions, paying particular attention to the

implementation of the interface boundary conditions. Results are presented to demonstrate

the accuracy and the effectiveness of the method, including comparisons against analytical

solutions where available.

1 Introduction

Moving-mesh methods have been used for the solution of partial differential equations (PDEs)

in recent years in various ways. The motivation is usually to improve the resolution of

solutions [4, 14, 17, 19, 20, 29, 38], to track special features of a solution (such as shocks,
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singularities and moving boundaries) [2, 5, 6, 7, 10, 18, 30, 31, 32, 33, 42, 43, 44], and/or

to exploit geometric properties such as scale-invariance, orderings or asymptotics [8, 12,

15]. The moving-mesh methods can be divided into two broad categories: those based on

mappings between a fixed computational mesh and physical space [10, 16, 17, 38] and those

based on velocities expressed in terms of the mesh coordinates in physical space [6, 12, 18, 19,

20, 34]. In this paper we focus on one particular velocity-based moving-mesh finite element

method [6, 7, 8], which is related to the Geometric Conservation Law [18, 40]. This method

has been successfully applied to a range of time-dependent nonlinear PDE problems involving

singularities and implicit moving boundaries: however, since its original introduction in [6], a

number of improvements have been made which are incorporated into the description below.

The algorithm has been designed to be very general in nature and applicable to a large

family of problems. Having validated the proposed method for a range of situations, the main

thrust of this paper is its application, for the first time, to phase-change problems involving

an internal moving boundary. Many numerical schemes have been applied to such problems,

including those involving moving-mesh techniques [10, 25, 26, 33, 39]. The application of

the moving-mesh finite element method described in this paper to this problem is however

new, and is shown to be both accurate and robust.

The layout of the paper is as follows. Section 2 gives a description of the moving-mesh

finite element method of [6] incorporating a number of recent developments. Section 3.1

presents validating results from a mass-conserving problem using the porous medium equa-

tion [41], which is a second order nonlinear diffusion equation for which simple self-similar

solutions exist with finite support that grows with time. Section 3.2 then describes validating

results from a non-mass-conserving implicit moving boundary problem, a simple model of

absorption and diffusion, referred to here as the Crank-Gupta problem [24], which contains

a sink term which causes the finite support to shrink with time. Section 4 contains the main

application of the moving-mesh finite element method to one-phase and two-phase Stefan

problems and section 5 contains details of the results of numerical experiments, validated

against analytic solutions whenever possible. Finally, section 6 includes a discussion of points

raised in the paper.

2 A Moving-Mesh Finite Element Method

In this section we present a derivation of the equations used by the moving-mesh finite

element method to find mesh velocity potentials which are subsequently used to define the

nodal velocities. This is followed by a summary of the complete algorithm, as used in this

paper, and the enhancements which have been made since its original publication in [6].
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2.1 A Mesh Movement Velocity Potential

Let u(x, t) be the solution of a well-posed time-dependent nonlinear PDE problem of general

form
∂u

∂t
= Lu (1)

on a finite time-dependent domain R(t), where L is a differential operator involving space

derivatives only, with consistent boundary conditions on the (in general moving) boundary

∂R(t).

An important quantity in our approach is the total integral of the dependent variable

θ(t) =

∫

R(t)

u dx . (2)

For brevity and convenience we will refer to θ(t) as the “mass” in the domain at time t.

Note however that, as in section 4 for example, the dependent variable may be related to a

quantity other than density.

A moving polygonal or polyhedral approximation R(t) to R(t), with boundary ∂R(t)

approximating ∂R(t), is assumed, together with a moving tessellation of simplices of R(t).

A piecewise linear approximation U is also assumed, which can be expanded in terms of

piecewise linear basis functions Wi(t,x) forming a partition of unity and moving with the

domain. The total discrete mass Θ(t) ≈ θ(t) is defined by (cf. (2))

Θ(t) =

∫

R(t)

U dx . (3)

Now consider the distribution of the mass (3) across the domain R(t). Each basis function

Wi(t,x) is associated with a partial mass and a proportion Ci, defined by
∫

R(t)

Wi U dx = Ci Θ(t) = Ci

∫

R(t)

U dx . (4)

A moving-mesh numerical method can be created by keeping the proportions Ci ∈ [0, 1]

constant as time progresses. The fact that the weight functions Wi(t,x) are non-negative

and form a partition of unity means that conservation of the partial masses (4) is consistent

with total mass conservation. (Clearly
∑

Ci = 1 is required to maintain the correct total

mass and this also follows from
∑

Wi ≡ 1.)

The velocity V(t,x) of the moving frame can be derived from a weak form of the Reynolds

Transport Theorem [6],

d

dt

[∫

R(t)

Wi U dx

]
=

∫

R(t)

{
∂(Wi U)

∂t
+ ∇ · (Wi U V)

}
dx

=

∫

R(t)

Wi

{
∂U

∂t
+ ∇ · (U V)

}
dx , (5)

since we have assumed that the basis functions Wi(t,x) move with the domain R(t) and are

therefore advected with velocity V, i.e.

∂Wi

∂t
+ V · ∇Wi = 0 . (6)
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From (5) and a weak form of (1) a moving weak form of the PDE can be written as

d

dt

[∫

R(t)

Wi U dx

]
−
∫

R(t)

Wi ∇ · (U V) dx =

∫

R(t)

Wi LU dx , (7)

where the U on the right hand side may need to be regularised to lie in the domain of L.

Hence, applying (4) with constant Ci, equation (7) gives

Ci Θ̇ −
∫

R(t)

Wi ∇ · (U V) dx =

∫

R(t)

Wi LU dx . (8)

A unique solution of equation (8) for V in multiple space dimensions is obtained if the

curl of V is prescribed in R(t) and the normal component of V is prescribed on ∂R(t),

by Helmholtz’ Theorem. For ease of exposition we shall assume that curl V = 0, so that

V = ∇Φ, where Φ is a scalar velocity potential.

Instead of (8), Φ and Θ̇ now satisfy the equation

Ci Θ̇ −
∫

R(t)

Wi ∇ · (U ∇Φ) dx =

∫

R(t)

Wi LU dx (9)

or, after integration by parts,

Ci Θ̇ −
∮

∂R(t)

Wi U ∇Φ · n ds +

∫

R(t)

U ∇Φ · ∇Wi dx =

∫

R(t)

Wi LU dx , (10)

where n is the unit outward normal to ∂R(t), the boundary of the domain.

Summing equations (10) over all of the mesh nodes gives

Θ̇ −
∮

∂R(t)

U ∇Φ · n ds =

∫

R(t)

LU dx , (11)

which, in situations where U V · n is known on the entire boundary, can be used to give an

explicit expression for Θ̇. However, for greater generality, the rate of change of mass Θ̇ is

treated here as an unknown.

Combining (10) with (11) yields a square system of equations of reduced rank, since

equation (11) is the sum of equations (10). Although the combined system has a single

infinity of solutions, a unique solution for Φ and Θ̇ may be obtained by specifying the value

of Φ at one of the nodes and ignoring the corresponding equation. Since Φ is a velocity

potential there is no resulting loss of generality. Although we do not do so in this paper, a

further option is to impose a constant value of Φ on the whole of ∂R(t), which has the effect

of weakly specifying zero tangential velocity of the boundary nodes.

The nodal velocities V may be recovered from Φ by minimising the L2 norm of each

component of V −∇Φ, leading to the vector equation
∫

R(t)

Wi V dx =

∫

R(t)

Wi ∇Φ dx , (12)

for all nodes i. Having found V and Θ̇, the nodal positions X as well as Θ can be advanced

in time using any convenient time-stepping scheme, for example Heun’s scheme.
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The values of the solution U can then be recovered either by direct inversion of equation

(4) or, more generally, by the use of a conservative Arbitrary Lagrangian-Eulerian (ALE)

equation of the form

d

dt

[∫

R(t)

Wi U dx

]
=

∫

R(t)

Wi (LU + ∇ · (U V)) dx (13)

(cf. equation (7)), which gives the consistent form of the integral

∫

R(t)

Wi U dx (14)

prior to its inversion for U (but see equations (15) and (16) below).

So far, boundary conditions for the dependent variable U have not been discussed. In cir-

cumstances where the methodology is designed to conserve mass (with appropriate boundary

conditions on V), the numerical method should do the same with the discrete form of the

mass. However, the standard way of imposing Dirichlet boundary conditions in the finite

element inversion of (14) for U destroys mass conservation in general (since the test func-

tions corresponding to nodes on the Dirichlet boundary are not used and so the remaining

test functions no longer form a partition of unity). In [29] a modification is proposed which

retains mass conservation in the presence of strongly imposed Dirichlet boundary conditions,

and moreover is shown to improve the accuracy of the method. This is achieved by defining

a set of modified test functions W̃i used in the recovery of the nodal values of the dependent

variable U .

We shall therefore recover U values from modified partial masses Ψi(t), defined by (cf.

equation (4))

Ψi(t) =

∫

R(t)

W̃i U dx , (15)

using the discrete form of the ALE equation (cf. equation (13))

Ψ̇i =

∫

R(t)

W̃i (LU + ∇ · (U V)) dx (16)

(for those mesh nodes at which Dirichlet boundary conditions are not applied). Although

they both represent rates of change of partial masses associated with mesh nodes, CiΘ̇ and Ψ̇i

are different quantities in the discrete algorithm. The former are calculated to be consistent

with the velocity field represented by ∇Φ while the latter are consistent with the actual

nodal velocities V, as derived using (12). The rate of change of total mass of the system is

governed by the ALE equation (16) used to update the dependent variable so, from now on,

Ψ(t) =

∫

R(t)

U dx (17)

will be used to denote the total mass of the discretised system.
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2.2 Algorithm

The algorithm used in this paper for a single time-step can now be summarised as follows:

1. Given a set of mesh nodes with positions Xi and a distribution of the total mass Ψ,

defined by the masses Ψi of (15), to all those mesh nodes where Dirichlet boundary

conditions are not applied, invert (15) to recover the solution values U at these nodes.

(The Dirichlet conditions on U are imposed at the remaining nodes.)

2. Having found the nodal values Ui, solve the set of equations (10) and (11) for the

velocity potentials Φi and for Θ̇, imposing Φ at one mesh node. Note that the constants

Ci must be recalculated from (4) before this step can be carried out.

3. Use the resulting values of Φi to obtain the mesh node velocities Vi from (12) for all

mesh nodes, either with or without imposing boundary conditions on V.

4. Knowing V (= Ẋ), obtain the corresponding adjustments to the local masses (15)

using the ALE equation (16), thus computing the Ψ̇i values.

These four steps can be thought of as evaluating a vector function of the form ~F (~X, ~Ψ) (the

arrows indicating a vector which contains the values stored at all the nodes of the mesh)

which satisfies
d(~X, ~Ψ)

dt
= ~F (~X, ~Ψ) . (18)

This system of ordinary differential equations in time can then be integrated using any

convenient time-stepping scheme. Here, following the investigation presented in [29], Heun’s

scheme is used. Experiments recorded there demonstrated that Heun’s scheme ensures that

the error in the temporal discretisation is negligible compared to the error in the spatial

discretisation for almost any (stable) time-step which avoids mesh tangling.

2.3 Comparison

The moving-mesh finite element method presented above is essentially that presented in [6]

but with the following modifications:

• Instead of recovering the values of U on the new mesh directly from the conservation

principle (4), an ALE equation (16) is used prior to using (15) to update U . This

allows the extension of the method to more general monitor functions.

• The partial masses Ψi used to drive the mesh movement are updated using the ALE

equation (16), so the distribution of the mass defined by the coefficients Ci in (4) is

only preserved approximately at each time-step. This is a consequence of the previous

modification.
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• The rate of change of the conserved quantity Θ̇ is treated in equations (10) and (11)

as an unknown and calculated at each time-step (although now it is only ever used as

a means to find Φ). This provides additional generality since Θ̇ may not always be

available explicitly.

• Dirichlet boundary conditions are imposed strongly in a way which conserves mass

when the underlying system does, using the modified test functions W̃i of [29].

• To ensure that the system has a unique solution when solving for the mesh velocity

potentials, Φ is imposed at just one mesh node, whereas in the previous work Φ was

always specified over the whole boundary. This removes a potentially unnecessary

constraint on Φ.

• Heun’s scheme, an explicit, two-stage, second order, TVD Runge-Kutta method is used

to discretise the time derivative instead of the forward Euler scheme used in [6]. This

offers improved temporal accuracy [29].

3 Method Validation

Two sets of numerical tests have been carried out to validate the method, in one and two

space dimensions. The first set of tests is carried out on the porous medium equation, a

second order nonlinear diffusion problem for which mass is conserved globally. The second

set is on a linear diffusion equation with a source/sink term representing absorption, for

which mass is not conserved. The results are validated against exact solutions and can be

compared with those presented in [6].

Both sets of calculations have been carried out on meshes which are initially uniform,

and for which the representative initial mesh size is repeatedly halved to estimate orders of

accuracy. Mesh tangling is avoided by dividing the time-step by four with each refinement.

The initial conditions sample the exact nodal values of the dependent variable at the nodes.

In sections 3 and 4 it will be necessary to distinguish between different types of boundary.

Fixed parts of the boundary will be denoted by ΓF , at which the condition V · n = 0 is

imposed, where n is a normal to the boundary. Implicit moving parts of the boundary,

where no such condition is imposed, will be denoted by ΓM(t). In both cases the boundary

conditions imposed on U will depend on the problem being solved.

Furthermore, in all of the test cases presented, a condition for U ∇Φ ·n is given on every

boundary. Hence, Θ̇ is actually known explicitly, and it is only necessary to specify Φ at

one point. Nevertheless, for the sake of generality, we choose to treat Θ̇ as an unknown

when calculating the Φi and we thus specify Φ = 0 at one point. This point can be chosen

arbitrarily: it is taken here to be the first node listed in the array containing the mesh data.
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3.1 A Mass-Conserving Nonlinear Diffusion Problem

The porous medium equation, details of which can be found in [3, 41], is given by

∂u

∂t
= ∇ · (un∇u) in R(t) , (19)

where n > 0 is an integer exponent. A Dirichlet boundary condition u = 0 is imposed on

the moving boundary ΓM(t). For this problem it can be shown that mass, as defined by (2),

is conserved.

For this problem the operator Lu ≡ ∇ · (un∇u) and equation (10) gives

Ci Θ̇ +

∫

R(t)

U ∇Φ · ∇Wi dx =

∮

ΓF

Wi U
n∇U · n ds −

∫

R(t)

Un ∇Wi · ∇U dx (20)

since U = 0 on the moving boundary ΓM(t) and V · n = 0 on ΓF . Similarly, equation (11)

becomes

Θ̇ =

∮

ΓF

Un∇U · n ds . (21)

Equations (20) and (21) give Θ̇ and the velocity potential Φ, which is used in (12) to find

the mesh velocity V = Ẋ. The discrete ALE equation (16) becomes

dΨi

dt
=

∫

R(t)

W̃i {∇ · (Un∇U) + ∇ · (U V)} dx (22)

which, after integration by parts and imposition of the boundary conditions, gives

dΨi

dt
=

∮

ΓF

W̃i U
n∇U · n ds −

∫

R(t)

∇W̃i · (Un∇U + U V) dx . (23)

Heun’s method is used to update ~X and ~Ψ, and inversion of equation (15) to recover the

dependent variable U . In all of the following cases ΓF = ∅, so the boundary integrals in

equations (20)–(23) disappear and Θ̇ = 0 is known explicitly.

Equation (19) admits a family of exact compactly supported similarity solutions with

moving boundaries on which u = 0 [9, 35]. In d space dimensions a radially-symmetric

self-similar solution exists of the form

u(r, t) =





1
λd(t)

(
1 −

(
r

r0λ(t)

)2
) 1

n

r ≤ r0λ(t)

0 r > r0λ(t)

(24)

in which r ≥ 0 is the usual radial coordinate, and where

λ(t) =

(
t

t0

) 1
2+dn

and t0 =
r0

2n

2(2 + dn)
. (25)

The problem is parameterised by the initial front position r0 (at time t0) and the position

of the moving front is given by r0λ(t).
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Figure 1: Comparison of L2 errors in the solution and the magnitudes of the errors in the

boundary node positions for the porous medium equation in one space dimension with n = 1

(left) and n = 3 (right).

Two instances of (19) are considered here, one with exponent n = 1 (for which the slope

of the self-similar solution normal to the moving boundary is finite) and another with n = 3

(for which the slope normal to the boundary is infinite). The test cases are run until time

T = t − t0, as detailed below. Results have been computed in both one and two space

dimensions for each test case as follows.

• One dimension, n = 1, r0 = 0.5, t0 = 0.04167, run until T = 10 (when r ≈ 3.11154).

• One dimension, n = 3, r0 = 0.5, t0 = 0.075, run until T = 10 (when r ≈ 1.33231).

• Two dimensions, n = 1, r0 = 0.5, t0 = 0.03125, run until T = 0.1 (when r ≈ 0.71578).

• Two dimensions, n = 3, r0 = 0.5, t0 = 0.046875, run until T = 0.1 (when r ≈ 0.57673).

The values of various discrete error measures are shown in Figures 1 and 2. The results

exhibit approximately second order accuracy when n = 1, which reduces to first order when

n = 3, as in [6].

3.2 A Non-Mass-Conserving Diffusion Problem with a Source

The Crank-Gupta problem [11, 24, 36] provides an example of a problem where the total

mass of the system changes due to the presence of a source/sink term. The problem is

defined by the differential equation

∂u

∂t
= ∇2u − 1 in R(t) , (26)
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Figure 2: Comparison of L2 errors in the solution and boundary node positions for the porous

medium equation in two space dimensions with n = 1 (left) and n = 3 (right).

with boundary conditions u = 0 and ∂u/∂n = 0 on the moving boundary ΓM(t).

For this problem Lu ≡ ∇2u − 1 and, after integration by parts, equation (10) becomes

Ci Θ̇ +

∫

R(t)

U ∇Φ · ∇Wi dx

=

∮

ΓF

Wi ∇U · n ds −
∫

R(t)

∇Wi · ∇U dx −
∫

R(t)

Wi dx , (27)

since V · n = 0 on the fixed boundary and U = ∇U · n = 0 at the moving boundary.

Furthermore, summing (27) over the whole domain gives

Θ̇ =

∮

ΓF

Wi ∇U · n ds −
∫

R(t)

dx . (28)

The discrete ALE equation (16), after integration by parts and imposition of the boundary

conditions, gives

dΨi

dt
=

∮

ΓF

W̃i ∇U · n ds −
∫

R(t)

∇W̃i · (∇U + U V) dx −
∫

R(t)

W̃i dx. (29)

Heun’s method is again used to update X and Ψi, after which equation (15) is used to recover

U . The results summarised below are obtained with Ux specified at x = 0.

In [11] an exact solution to the one-dimensional equation on the interval [0, x(t)] with the

same boundary conditions at the moving boundary, but with ux(0, t) = −1 + et−1 at x = 0,

is given as

u(x, t) =

{
−x − t + ex+t−1 x ≤ 1 − t

0 x > 1 − t ,
(30)
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Figure 3: Comparison of L2 errors in the solution and the magnitudes of the errors in the

boundary node positions for the absorption-diffusion problem in one space dimension.

with initial condition u(x, 0) = −x + ex−1 for x ∈ [0, 1] at t = 0. Results for this test

case have been compared with the exact solutions at t = 0.6. The values of various error

measures are shown in Figure 3. The results match those of [6], giving second order accurate

approximations to both solution and boundary position.

Two-dimensional calculations are not presented here due to the lack of an analytical

solution to compare with. It is simply noted that the new scheme appears to be more robust

than the original one proposed in [6], since it is possible to run the numerical experiment

described there for a significantly longer time with the improved method, taking the solution

far closer to the point where the mass vanishes before mesh tangling occurs.

We now turn attention to the main purpose of this paper, which is to demonstrate that

the moving-mesh finite element method described here may be applied to problems with

change of phase at internal boundaries, in addition to the problems with exterior moving

boundaries already considered.

4 Stefan Problems and Changes of Phase

The two-phase problem will be presented first, for which the phase-change is modelled by

applying the Stefan condition at a moving internal boundary. The single-phase problem will

then be presented as a special, simpler, case, which can be used for validation purposes in

both one and two space dimensions since exact solutions are available for comparison.
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4.1 The Two-Phase Problem

Consider a domain divided into regions of solid or liquid phase, denoted respectively by RS(t)

and RL(t). This is illustrated for a domain split into two regions in Figure 4. As indicated,

the boundary of the solid region is divided into two components, the moving interface with

the liquid phase ΓM(t) and a fixed part ΓFS
, which in Figure 4 coincides with the external

boundary of the domain. The boundary of the liquid region is similarly divided between

ΓM(t) and ΓFL
. For simplicity, only two regions will be considered: all of the test cases

investigated here (in two dimensions) have one region completely inside the other, although

it should be noted that this is not a restriction of the method.

Solid Liquid

ΓFS

RS(t)
RL(t)

ΓFL

ΓM(t)
nS

nL

Figure 4: A representative domain, with our notation, for the two-phase Stefan problem.

The two-phase Stefan problem (described in detail in [23]) models the transition of some

substance between liquid and solid phases. This process takes place across an interface in

the interior of the problem domain which moves as time progresses. It is modelled by the

equations [13]

KS ut = ∇ · (kS ∇u) in RS(t)

KL ut = ∇ · (kL ∇u) in RL(t) , (31)

in which KS, KL represent the volumetric heat capacities, kS, kL the thermal conductivities

and u the temperature. The interface conditions are u = uM and, based upon an energy

balance across the phase-change boundary ΓM(t),

kS ∇uS · n− kL ∇uL · n = λv · n , (32)

where n = n(t) is a normal to the moving interface, λ is the heat of phase-change per unit

volume, and v · n is the normal velocity of the interface. All parameters are assumed here

to be constant within their respective phases. In the (Stefan) condition (32), the derivative

∇u ·n is discontinuous across the moving interface (although u is continuous) and subscripts

are used to indicate the phase in which the gradient is evaluated. The fixed boundaries are

treated appropriately, according to each individual test case.
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Note that the entire problem (including the evolution of the interface) is unchanged by

the addition of a constant value to u throughout the domain (as well as to uM and the

Dirichlet boundary conditions on ΓFS
and ΓFL

).

4.2 The Numerical Method

A moving polygonal approximation R(t) to R(t) = RS(t) ∪ RL(t) is set up, consisting

of a moving tessellation of simplices with piecewise linear fixed and moving boundaries

approximating ΓF = ΓFS
∪ΓFL

and ΓM(t), respectively. The individual stages of the method

can be described as follows.

4.2.1 Calculating the mesh velocity potential

Differentiating the weak form (4) with respect to time still results in (10), but substitution

for Lu from equation (31) leads to

Ci Θ̇ −
∮

ΓM(t)

Wi U ∇Φ · n ds +

∫

R(t)

U ∇Φ · ∇Wi dx

= κ

∮

ΓF

Wi ∇U · n ds − κ

∫

R(t)

∇Wi · ∇U dx (33)

after integration by parts, where κ = k/K takes a different value in each of the two phases.

We consider the solid and liquid phases separately. Dividing the domain between its

component phases leads to two discrete “masses” (cf. equation (3)),

ΘS(t) =

∫

RS(t)

U dx and ΘL(t) =

∫

RL(t)

U dx (34)

and, since V ·n = 0 on ΓF and U = UM on ΓM(t), the two corresponding equations (33) for

the velocity potentials are, in the solid region,

CS
i Θ̇S − UM

∮

ΓM (t)

Wi ∇Φ · nS ds +

∫

RS(t)

U ∇Φ · ∇Wi dx (35)

= κS

∮

ΓM (t)

Wi ∇US · nS ds + κS

∮

ΓFS

Wi ∇U · n ds − κS

∫

RS(t)

∇Wi · ∇U dx

and in the liquid region,

CL
i Θ̇L − UM

∮

ΓM (t)

Wi ∇Φ · nL ds +

∫

RL(t)

U ∇Φ · ∇Wi dx (36)

= κL

∮

ΓM (t)

Wi ∇UL · nL ds + κL

∮

ΓFL

Wi ∇U · n ds − κL

∫

RL(t)

∇Wi · ∇U dx .

In these equations n always represents the outward pointing normal to the relevant domain

and, as illustrated in Figure 4, nL = −nS. This implies that Φ is dual-valued on the moving

interface ΓM(t), but this is not a problem because the recovery of Ẋ from Φ in (12) in each

phase requires only integrals over mesh cells.
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The Stefan condition (32) has not yet been used. We shall write it in a distributed form,

consistent with the velocity potential equations (35) and (36), given by

kS

∮

ΓM (t)

Wi ∇US · n ds − kL

∮

ΓM (t)

Wi ∇UL · n ds = λ

∮

ΓM (t)

Wi ∇Φ · n ds , (37)

for each node i on the interface ΓM . Recall that ∇U is discontinuous across the interface,

the subscripts S and L being used to denote the limiting values on either side in the solid

and liquid phases respectively.

Provided that UM 6= 0 and the dependent variable U does not change sign at any point

in the whole domain (which may always be achieved by the addition of a suitable constant

to the whole system), it is possible to apply the boundary condition (37) by replacing the

terms involving ∇Φ · n in the integrals along the moving interface on the left-hand sides of

(35) and (36), giving

CS
i Θ̇S +

∫

RS(t)

U ∇Φ · ∇Wi dx

= κS

∮

ΓM (t)

Wi ∇US · nS ds + κS

∮

ΓFS

Wi ∇U · n ds − κS

∫

RS(t)

∇Wi · ∇U dx

+
UM

λ

∮

ΓM (t)

Wi (kS ∇US − kL ∇UL) · nS ds (38)

for the solid region and

CL
i Θ̇L +

∫

RL(t)

U ∇Φ · ∇Wi dx

= κL

∮

ΓM (t)

Wi ∇UL · nL ds + κL

∮

ΓFL

Wi ∇U · n ds − κL

∫

RL(t)

∇Wi · ∇U dx

+
UM

λ

∮

ΓM (t)

Wi (kS ∇US − kL ∇UL) · nL ds (39)

for the liquid region.

Equations (38) and (39) can each be summed to obtain two additional equations, giving

the rate of change of the total mass in each phase:

Θ̇S = κS

∮

ΓM (t)

∇US · nS ds + κS

∮

ΓFS

∇U · n ds

+
UM

λ

∮

ΓM (t)

(kS ∇US − kL ∇UL) · nS ds , (40)

Θ̇L = κL

∮

ΓM (t)

∇UL · nL ds + κL

∮

ΓFL

∇U · n ds

+
UM

λ

∮

ΓM (t)

(kS ∇US − kL ∇UL) · nL ds . (41)

Following the procedure used for a single domain, the values of Φi and Θ̇S can be found by

solving (38) and (40) with the assumption that Φi = 0 at an arbitrary node i in the solid

region. Similarly, (39) and (41) can be solved for Φi and Θ̇L with the assumption that Φi = 0

at an arbitrary node i in the liquid phase.
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4.2.2 Calculating the mesh velocity

The simplest way to recover the mesh velocities is to solve (12) for V, exactly as for a single

domain, except with V = 0 imposed on ΓF . While this procedure produces good approx-

imations, it is significantly more accurate to impose the Stefan condition (32) explicitly in

the recovery of V in (12). A single system is solved over the whole domain and, as before,

an equation of the form (12) is constructed for each interior node, and Vi = 0 imposed at

all nodes on the fixed boundary, but for those nodes on the moving interface the equations

(12) are replaced using (37), which gives the normal components of the velocity directly. It

is assumed also that U = UM is constant along the moving interface, so ∇U is parallel to

n, and that the boundary nodes can only move in a direction perpendicular to the bound-

ary. Under these circumstances, the resulting equations solved at the nodes on the moving

interface take the form

λ

∮

ΓM (t)

Wi V ds = kS

∮

ΓM (t)

Wi ∇US ds − kL

∮

ΓM (t)

Wi ∇UL ds . (42)

4.2.3 Recovering the dependent variable

The dependent variable U is recovered separately in each of the regions of the domain,

RS and RL, since they are decoupled by the Dirichlet boundary condition imposed on the

interface. A robust algorithm is obtained by using the ALE equation given by (16) to recover

the nodal values of the dependent variable. If ΨS
i and ΨL

i are the local masses in the solid

and liquid phases (cf. equation (15)) we obtain

dΨS
i

dt
=

∮

ΓM (t)

W̃i (κS ∇US + UM V) · nS ds + κS

∮

ΓFS

W̃i ∇U · n ds

−
∫

RS(t)

∇W̃i · (κS∇U + U V) dx ,

dΨL
i

dt
=

∮

ΓM (t)

W̃i (κL ∇UL + UM V) · nL ds + κL

∮

ΓFL

W̃i ∇U · n ds

−
∫

RL(t)

∇W̃i · (κL∇U + U V) dx , (43)

where W̃i are the modified test functions of section 2 which allow U to be specified strongly

on Dirichlet boundaries. The values of ΨS
i (t) and ΨL

i (t) are then updated to the new time

level by the time-stepping scheme, after which they can be substituted into∫

RS(t)

W̃i U dx = ΨS
i and

∫

RL(t)

W̃i U dx = ΨL
i (44)

(cf. equation (15)) to find the new values for the dependent variable.

4.3 The One-Phase Problem

The single-phase Stefan problem is simply a special case of the two-phase problem described

above, in which there is a single domain and it is assumed that u = uM everywhere in the

15



region adjacent to the moving interface. This simplifies the equations considerably since only

the liquid or the solid phase exists. For example, if the solid phase is being modelled then

the equations to be solved for the mesh velocity potentials are given by (38) with ∇UL = 0.

Regardless of whether a solid or a liquid phase is being modelled, in the single-phase case

the interface condition (32) reduces to

k∇u · n = λv · n on ΓM(t) . (45)

(Note however that the sign of k/λ will depend on the phase being modelled.) This leads to

the following equations:

k

∮

ΓM (t)

Wi ∇U · n ds = λ

∮

ΓM (t)

Wi ∇Φ · n ds (46)

in place of (37),

Ci Θ̇ +

∫

R(t)

U ∇Φ · ∇Wi dx (47)

= κ

∮

∂R(t)

Wi ∇U · n ds − κ

∫

R(t)

∇Wi · ∇U dx +
k UM

λ

∮

ΓM (t)

Wi ∇U · n ds

in place of (38)/(39),

Θ̇ = κ

∮

∂R(t)

∇U · n ds +
k UM

λ

∮

ΓM (t)

∇U · n ds (48)

in place of (40)/(41), and

dΨi

dt
=

∮

ΓM (t)

W̃i (κ∇U + UM V) · n ds + κ

∮

ΓF

W̃i ∇U · n ds

−
∫

R(t)

∇W̃i · (κ∇U + U V) dx (49)

in place of (43).

5 Numerical Experiments

Throughout this section, unless stated otherwise, a constant value of δ = 2 is added to

the initial and boundary conditions to allow the Stefan boundary condition to influence the

evolution and ensure that the solution is positive throughout the whole domain.

5.1 Single-Phase Results

5.1.1 One dimension

The first case considered is the one-dimensional single-phase example discussed in detail in

[1]. As in all of the single-phase results presented here, it is assumed that K = k = |λ| = 1.
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The single-phase problem permits each of the following analytic solutions on the domain

indicated which satisfy the Stefan condition at x = V t (the point at which ui = uM) when

λ = −1:

u(1)(x, t) = −1 + e−V (x−V t) for x ≤ V t

and u(2)(x, t) = −1 + e−V (x−V t) for x ≥ V t . (50)

Clearly V is the (constant) interface velocity and, in this case, UM = 0. Two situations are

examined here, both of which use a value of V = −1.

• Given the initial domain of [−1, 0] and initial conditions given by u(1) at t0 = 0, a

contracting domain is modelled with u ≤ 0 in the whole region. The choice k/λ < 0

implies that this is modelling the liquid phase, so it actually represents a supercooled

liquid, which is freezing at the moving interface, since V < 0.

• Given the initial domain of [0, 1] and initial conditions given by u(2) at t0 = 0, an

expanding domain is modelled with u ≥ 0 in the whole region. Again k/λ < 0 implies

that this is modelling the liquid phase, which is melting the adjacent solid at the

moving interface, since V < 0.

In each case ux = −V e−V (x−V t) is imposed as a Neumann condition on the fixed boundary in

the calculation of the mesh velocity potentials. Note that there are analogous exact solutions

for the case where k/λ > 0.

The results shown in Figure 5 and Table 1 clearly show that the overall method is second

order accurate for the one-dimensional problem. Note that, for this one-dimensional problem,

the “mesh error” (i.e. the error in the position of the moving interface at the final time) is

the same in each of the norms considered since the interface is just a single point.

Table 1: Numerical estimates of the orders of accuracy of the scheme applied to the single-

phase Stefan problem.

Solution errors Mesh errors

L1 L2 L∞ L1 L2 L∞

1D Contracting 2.00 2.00 2.00 2.01

1D Expanding 1.99 1.99 1.99 1.99

2D 1.80 1.83 1.81 1.86 1.84 1.29
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Figure 5: Accuracy of the approximate solutions on a sequence of meshes at T = 0.5 with

a contracting domain (left) and with an expanding domain (right). The solution and mesh

errors shown are both L2 approximations.

5.1.2 Two dimensions

The radially-symmetric two-dimensional test case used here is known as the Frank spheres

problem [27] and has been studied in some detail in [1, 22]. The exact solution is given by

u(r, t) =

{
u∞

(
1 − E1(s2/4)

E1(S2/4)

)
s ≥ S

0 s < S ,
(51)

in which s = rt−
1
2 and E1(z) is the exponential integral

E1(z) =

∫
∞

z

e−ξ

ξ
dξ . (52)

The problem is parameterised by the quantity S, where R(t) = St
1
2 is the radius of the

expanding interface. Its value is calculated from u∞ by solving

u∞ =
E1(S

2/4)

E1
′(S2/4)

. (53)

Here u∞ = −0.5, giving S ≈ 1.5621239, and the initial conditions were set at time t0 = 1.

The initial domain for this test case was taken to be an annulus made up of a moving

inner circle (initially at r = S) and a fixed outer circle at r = 2S (the boundary condition

imposed on this fixed outer boundary is simply a Dirichlet condition given by (51)). Unlike

the one-dimensional case, the value of ∇U ·n was not specified on the fixed boundary during
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the calculation of the mesh node velocity potentials. Instead a one-sided approximation

was used and the value of U was fixed at the boundary when the dependent variable was

recovered. As in the one-dimensional test cases, λ = −1 so, since U ≤ 0 and the inner

boundary is moving outwards, which represents the freezing of an under-cooled liquid.

The results shown in Figure 6 and Table 1 suggest that the method gives an approx-

imation which is second order accurate. The evolution of the boundary is shown on the

right-hand side of Figure 6, confirming the convergence of the approximation to the exact

solution as the mesh is refined. Time T = 3 is the point at which the moving inner boundary

should coincide with the fixed outer boundary. A sample solution profile is shown in Figure

7 which is at a much later experiment time than was possible with the original version of

the method presented in [6].
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Figure 6: Accuracy of the approximate solutions on a sequence of meshes at T = 0.5 for the

two-dimensional one-phase Stefan problem (left) and the evolution of the average distance

of the inner boundary nodes from the centre of the domain (right). The solution and mesh

errors shown are both L2 approximations.

5.2 Two-Phase Results

5.2.1 One dimension

An exact solution to the one-dimensional two-phase Stefan problem is given in [21] as

uS = u∗

(
1 − erf (x/(2

√
κS t))

erf φ

)

uL = u0

(
1 − erfc (x/(2

√
κL t))

erfc (φ
√

κS/κL)

)
, (54)
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Figure 7: Snapshots of the solution with the mesh projected on to it for the two-dimensional

one-phase Stefan problem at T = 0 (left) and T = 1 (right).

where φ is the root of the transcendental equation

e−φ2

erf φ
+

kL

kS

√
κS

κL

u0e
−κSφ2/κL

u∗ erfc (φ
√

κS/κL)
+

φ λ
√

π

KS u∗
= 0 , (55)

and erf and erfc are the standard error and complementary error functions, respectively.

The position of the moving interface is given by

s(t) = 2 φ
√

κS t . (56)

In order to compare with previous solutions [28, 33], the parameters are chosen to be

kS = 2.22 , kL = 0.556 , KS = 1.762 , KL = 4.226 , λ = 338 ,

(57)

with u∗ = −20 and u0 = 10, which gives φ ≈ 0.20542692937650. In order to avoid the

singularity at t = 0, the initial time of the experiment is taken at t0 = 0.0012. For this

case a value of δ = 25 was added to the initial and boundary conditions to ensure that the

solution remained positive throughout the domain.

The results shown in Figure 8 and Table 2 (sampled at T = 0.001) clearly show the

method to be second order accurate. Note that, in order to represent the interface accurately,

the initial meshes have been adjusted so that half of the total number of mesh cells are in

the left-hand region where they are of uniform width. The widths of the remaining cells, in

the right-hand region, are calculated using a geometric progression, setting the width of the

cell adjacent to the moving interface to be equal to that of its neighbour, on the opposite

side of the interface, and fixing the final node at x = 1.

Figure 9 shows a series of results at T = 0.288, which can be compared with those

presented elsewhere in the literature [28, 33]. The main points to note are that the results
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Figure 8: Comparison of L2 errors in the solution and the magnitudes of the errors in the

boundary node positions for the two-phase Stefan problem in one space dimension.

are considerably more accurate than those presented in [33] but that, due to the explicit

time-stepping scheme that is used here, they require significantly smaller (and therefore

many more) time-steps to be taken. Figure 10 shows a similar series of results for the same

experiment, run until the mesh tangles. The exact and approximate graphs of the boundary

position and the solution at x = 0.2 remain indistinguishable for the whole time (until the

final few time-steps prior to mesh tangling, which are not shown).

Table 2: Numerical estimates of the orders of accuracy of the scheme applied to the two-phase

Stefan problem.

Solution errors Mesh errors

L1 L2 L∞ L1 L2 L∞

1D 2.00 2.00 2.01 2.00

Before moving on to the two-dimensional, two-phase case, for which we have no ana-

lytic results against which quantitative comparisons may be made, we consider a final one-

dimensional example based upon a radially-symmetric problem. This may then be used as

the basis for a qualitative assessment of the two-dimensional scheme in the following section.

Problem (31) and (32) is solved with initial conditions given by

u(r, 0) =

{
1 − 4r2 r ≤ 1

2

1 − 2r r > 1
2

(58)

in which r ∈ [0, 1] is the usual radial coordinate. This represents liquid in the inner region,
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Figure 9: Comparison of exact and approximate solutions to the one-dimensional two-phase

Stefan problem for a 41 node mesh: node trajectories (top left), snapshots of the solution

(top right), interface position (bottom left) and solution value at x = 0.2 (bottom right).
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Figure 10: Comparison of exact and approximate solutions to the one-dimensional two-phase

Stefan problem for a 41 node mesh: node trajectories (top left), snapshots of the solution

(top right), interface position (bottom left) and solution value at x = 0.2 (bottom right).
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surrounded by solid which is held at a fixed temperature (below freezing point, uM = 0) at

the outer boundary: KL = KS = kL = kS = λ = 1 is assumed. The outer boundaries are

treated as Dirichlet boundaries with u = −1 fixed throughout the experiment.

The results obtained for the one-dimensional problem with initial conditions given by (58)

are illustrated by Figures 11 and 12. Varying the mesh resolution produces results which are

almost indistinguishable: in all cases the peak value in the interior decreases steadily, while

the interface initially moves outwards until the point where the gradient of the dependent

variable is the same on both sides, after which it starts to move inwards. Note that, as

the solution flattens in the inner region, the mesh cells get smaller and eventually (shortly

after the final snapshot shown in Figure 11) the mesh tangles and cells with negative lengths

appear.
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Figure 11: Evolution of the solutions to the one-dimensional two-phase Stefan problem for

a symmetric initial profile and an 81 node mesh: snapshots of the solution profile (left) and

node trajectories (right).

A non-symmetric solution is illustrated in Figure 13. The initial conditions were obtained

by shifting the liquid region by 0.25 to the left and assuming linear variation of u in the

remaining solid regions, with the same outer boundary value as before. These results exhibit

features that are very similar to those of the symmetric test case.

5.2.2 Two dimensions

The first two-dimensional test case presented here also uses (58) to define the initial con-

ditions, giving a radially-symmetric situation. Snapshots of the solution at four different

times are given in Figure 14 for an unstructured mesh of 1589 nodes and 3050 cells. The

evolution of the solution is very similar to the one-dimensional case already considered, in
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Figure 12: Evolution of the value of U at the centre of the domain (left) and the position of the

moving interface (right) for the one-dimensional two-phase Stefan problem with symmetric

initial profile.
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Figure 13: Evolution of the solutions to the one-dimensional two-phase Stefan problem for

a non-symmetric initial profile and an 81 node mesh: snapshots of the solution profile (left)

and node trajectories (right).
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that the interface moves outwards until the point where the component of the gradient of

the dependent variable normal to the interface is the same on both sides, after which it

starts to move inwards (see the right-hand side of Figure 15). Figure 15 also illustrates the

convergence of the scheme on a succession of meshes for the evolution of the problem up to

t = 0.2. Mesh tangling starts to occur beyond t = 0.21, when the values of U in the interior

region have all dropped well below 10−4.
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Figure 14: Solution profiles for the two-phase Stefan results approximating a two-dimensional

radially-symmetric problem at times t = 0.0, 0.05, 0.1, 0.15.

Finally, the method is used to illustrate the behaviour of the moving-mesh finite element

method for a non-radially-symmetric problem. The initial conditions used are simple per-

turbations of the radially-symmetric case and are shown in Figure 16 along with the solution

profiles and meshes shortly before the mesh tangles.
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Figure 15: Evolution of the value of U at the centre of the domain (left) and the average

distance of the moving interface from the centre of the domain (right) for the two-dimensional

two-phase Stefan problem.
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Figure 16: Solution profiles for the two-phase Stefan results approximating a two-dimensional

non-radially-symmetric problem at times t = 0.0, 0.09.
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6 Discussion

In this paper we have described a generalised form of the multidimensional moving-mesh

finite element algorithm introduced in [6] and demonstrated its effectiveness in simulating

the solutions of moving boundary problems. The improved robustness and flexibility of the

method has been achieved through a series of modifications, which have then been validated

on a number of test problems with moving boundaries. These modifications include the abil-

ity to impose Dirichlet boundary conditions strongly, the use of an ALE approach to update

the solution values (rather than recovering them directly from (4)) and a generalisation of

the way in which the velocity potential (Φ) and rate-of-change of mass (Θ̇) are calculated.

However, the method still requires no mesh smoothing.

The generalised method has been described in detail in sections 2 and 2.2, with the algo-

rithm given and compared with its predecessor in section 2. Its accuracy and robustness have

been illustrated through comparison with analytic solutions of a number of moving boundary

problems, in particular a two-phase problem with an internal moving boundary, treated for

the first time by this method. The other moving boundary problems studied here include

a mass-conserving nonlinear diffusion problem and a non-mass-conserving diffusion problem

with a sink term in section 3, and a single-phase Stefan problem included in section 4, both

of which have a moving boundary as an implicit part of the solution (both expanding and

contracting domains are tested). In all these problems the generalised method successfully

reproduces analytic solutions to second order accuracy.

However, the main advance presented in this paper has been the application of the

algorithm to multiphase Stefan problems in section 4, involving a weak implementation of the

Stefan condition which models the change of phase across a moving interface in the interior of

the domain. Comparison with analytic solutions to one-phase and two-phase Stefan problems

have demonstrated that the scheme is second order accurate in its approximation of both

the solution and the interface position in one and two space dimensions. Further results

show that the moving-mesh finite element algorithm can be reliably applied to phase-change

problems approximated on genuinely unstructured multidimensional meshes.

The benefits of the strong imposition of the Dirichlet boundary conditions are illustrated

in detail in [29]. However, the solution of (10) and (11) for the velocity potentials Φi and for

Θ̇, imposing Φ = 0 at one point, and the reliance on the ALE equation do perhaps require

further comment. Although the ALE approach appears to yield about the same accuracy as

recovering the solution values directly from (4) and both approaches allow conservation of

mass to be guaranteed, for some of the test problems considered, such as the two-dimensional

two-phase examples, the ALE approach shows significant benefits: without it the solutions

obtained can show small non-physical oscillations and the mesh tangles significantly earlier

in the simulation. Other approaches to recovering the mesh velocity potentials have been

investigated. In particular, it is possible to construct methods which allow UM = 0 on the

moving interface in the Stefan problem and which solve for Φ over the whole computational

28



domain, instead of splitting it into its component phases. However, the approach presented

here has proved to be the most robust.

As with all moving-mesh methods, there are a number of limitations to the scheme

presented here that it is important to discuss. As described, in this work the number of

degrees of freedom and the connectivity of the finite element mesh remain fixed throughout

each simulation. Clearly this is a restriction that can, and does, lead to mesh tangling

when the solution evolves very significantly. Consequently, it makes sense to combine this

approach with some form of discrete remeshing that would permit the topology of the mesh

to be adapted on occasions. It would of course be important in this approach to address

the issue of mass conservation (both local and global) when interpolating between meshes

following such an adaptive step.

Another significant constraint on the method, as implemented here, is the explicit time

integration scheme that is currently used. This leads to a non-trivial stability restriction on

the maximum time-step that may be taken, and thus reduces the overall efficiency of the

implementation. This may be overcome by the use of an implicit time-stepping strategy,

based upon a multi-step scheme such as BDF2 for example [5], possibly combined with

adaptive time-step selection as in [37]. Other generalisations (that are the subject of current

work) include the use of different monitor functions to control the mesh evolution and the

use of different ALE schemes to update the solution values on the moving grid (see, for

example, [8]).

The technique generalises naturally to three-dimensional problems using tetrahedral

meshes and to problems exhibiting features such as blow-up in finite time (see e.g. [16]).

Its capability of simulating multidimensional moving boundary problems and problems with

evolving discontinuities suggests that it can be a powerful tool in predicting multidimensional

behaviour of nonlinear problems and providing conjectures for further analysis.
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