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Abstract

A commonly used approach for the engineering analysis of structures subjected to explosive loads is to approximate

the problem as an equivalent Single-Degree-of-Freedom (SDOF) system and to use elastic-plastic response spectra.

Currently, the response spectra that exist in the literature do not take into account the fact that blast wave clearing

will occur if the target is not part of a reflecting surface that is effectively infinite in lateral extent. In this article,

response spectra for equivalent SDOF systems under cleared blast loads are obtained by solving the equation

of motion using the linear acceleration explicit dynamics method, with the clearing relief approximated as an

acoustic pulse. The charts presented in this article can be used to predict the peak response of finite targets subject

to explosions, and are found to be in excellent agreement with a finite element model, indicating that the response

spectra can be used with confidence as a first means for predicting the likely damage a target will sustain when

subjected to an explosive load. Blast wave clearing generally serves to reduce the peak displacement of the target,

however it is shown that neglecting clearing may be unsafe for certain arrangements of target size, mass, stiffness

and elastic resistance.
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Nomenclature

A - panel area

b - waveform parameter (decay of exponential pressure time curve)

c - damping coefficient

d - thickness

E - Young’s Modulus

F - force

Fe - equivalent force

Fe,max - peak equivalent force

Fe,min - peak negative phase equivalent force

H - scaled target height

ir - reflected positive phase specific impulse

I - second moment of area

k - stiffness

ke - equivalent stiffness

KL - load factor

KM - mass factor

KS - spatial load factor

L - span

m - mass

me - equivalent mass

Mm - moment capacity at mid-span

p - pressure

pr,max - peak reflected pressure

R - range from charge centre (stand-off),

Ru - elastic resistance

t - time

ta - time of arrival of blast wave

td - positive phase duration

t−
d

- negative phase duration

td,lin - positive phase duration (linear approximation)

T - natural period

W - explosive mass

x - length along beam

z - displacement

zE - elastic limit

zmax - peak displacement

zmax,in f - peak displacement under exponential (non-cleared) load

zmax,lin - peak displacement under linear load

ż - velocity

z̈ - acceleration

Z - scaled distance (R/W1/3)

ρ - density

σy - yield strength

φ - normalised deflected shape
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1. Introduction

The intense loading produced from a high explosive detonation can cause significant damage to structural

elements, potentially resulting in failure, structural collapse and loss of life. In order to best protect civilian and

military infrastructure from explosions, it is important to understand and be able to predict the performance of key

components subjected to blast loads.

Numerical analysis methods can be used to model the dynamic response of structures subjected to explosive

loads. Finite element (FE) simulations, for example, can model the detonation process, blast wave propagation

through air and subsequent interaction with the target [1, 2, 3, 4], as well as complex geometries and material

nonlinearities [5, 6]. Whilst these methods often produce results that are in excellent agreement with experimental

observations, high levels of complexity and long analysis times often render such simulations unsuitable, especially

during the early stages of design.

Alternative analysis methods may be used, particularly when assessing the approximate level of damage a target

will sustain before more refined analyses are undertaken. The Unified Facilities Criteria Design Manual (UFC-

3-340-02), Structures to Resist the Effects of Accidental Explosions [7], recommends the use of the equivalent

Single-Degree-of-Freedom (SDOF) method [8]. The SDOF method is often favoured because of its ease of use,

relatively few input requirements and available guidance in the literature [7, 9, 10], and is usually presented as

design charts in the form of response spectra.

In these response spectra, the peak dynamic displacement of the target can be obtained from knowledge of

the magnitude of the applied load and the ratio of the load duration to response time of the target. These charts

were first produced by Biggs [8] and are based on the assumption of a linearly decaying blast load, rather than

the exponential ‘Friedlander’ decay used in the well-established empirical load prediction method of Kingery and

Bulmash [11] and ConWep [12]. This limitation has been addressed by Gantes and Pnevmatikos [13], where

response spectra are provided for exponential loading, under the assumption that the target is part of a reflecting

surface that is infinite in lateral extent.

In the case of reflecting surfaces that cannot be said to be infinite, it is well known that blast wave clearing

can significantly reduce the late-time pressure acting on the target face [14, 15, 16, 17], reducing the total reflected

impulse by up to 50% [18, 19]. The influence of clearing on the response of elastic targets subjected to blast

loads has recently been investigated by the current authors [20, 21], however the effect of target plasticity remains

un-quantified. The purpose of this paper is two-fold: firstly, to develop a complete set of response spectra for finite

targets subjected to blast loads, and secondly, to compare these spectra to existing guidance to quantify the effect

of blast wave clearing.

2. Elastic-plastic SDOF systems

2.1. The SDOF method

The dynamic equation of motion of a distributed system, for example a simply supported beam with a tran-

siently varying, spatially uniform load (as in Figure 1) is given as

mz̈ + cż + kz = F(t), (1)

where m, c and k are the mass, damping and stiffness of the system, z̈, ż and z are the acceleration, velocity and

displacement, and F(t) is the externally applied force. The equivalent SDOF method ‘transforms’ the distributed

properties of the real life system into equivalent single-point properties, where the displacement of the single-

degree system is equated to the point of maximum displacement in the distributed system, i.e. displacement at

midspan of a simply supported beam.
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Figure 1: (a) Distributed and (b) equivalent SDOF systems

Ignoring damping, the dynamic equation of motion of the equivalent system is

mez̈(t) + kez(t) = Fe(t), (2)

where me, ke and Fe(t) are the equivalent mass, stiffness and force. Equating the work done, kinetic energy and

internal strain energy of the two systems, the dynamic equation of motion for the SDOF system now becomes

KMmz̈ + KLkz = KLF(t). (3)

where the mass factor, KM , and load factor, KL, are used to transform the distributed properties into the single

point equivalent values. The transformation factors for various support conditions and loading distributions, based

on the assumption of the normalised deflected shape, φ, can be found in the literature [7, 8, 9, 10].

2.2. Elastic-plastic response spectra

In the analysis performed by Biggs [8], elastic-plastic SDOF systems are subjected to a linearly decaying

uniform load

Fe(t) =



















Fe,max

(

1 − t
td,lin

)

, t ≤ td,lin

0, t > td,lin

(4)

where Fe,max is the peak force and td,lin is the duration of the triangular load. The SDOF system has a bilinear

elastic-perfectly plastic resistance function as shown in Figure 2. This comprises linear elastic behaviour with

spring resistance kez until the elastic limit, zE , is reached, followed by plastic behaviour with constant spring

resistance, Ru, thereafter. After the peak displacement, zmax, is reached, the displacement decreases and the system

begins to rebound. When rebounding, the system again behaves elastically until a spring force of −Ru is attained,

whereby the system returns to plasticity.

In this article, the equation of motion (3) is solved using the linear acceleration method [8]. Typically, it is only

the peak displacement that is of interest to the engineer – by varying the ratio of Ru/Fe,max, and the ratio of td,lin/T ,

where T is the natural period of the target

T = 2π

√

me

ke

, (5)

the response spectra of elastic-plastic SDOF systems subjected to triangular loads can be presented, as in Figure

3, where the peak response is normalised against the elastic limit, i.e. zmax/zE . Providing the mass, stiffness,
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Figure 2: Resistance-deflection function of an Elastic-Plastic SDOF system

resistance and load-time history are known, the peak displacement can be read from the response spectra. The time

ratio, td/T , gives an indication of the response time of the target with respect to the load duration – low values of

time ratio indicate impulsive conditions where the loading is completed during the early stages of displacement,

whereas high values of time ratio indicate quasi-static conditions where the target can be expected to reach peak

displacement long before the loading is complete.
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Figure 3: Maximum deflection and of an elastic-plastic SDOF System under a triangular load (after Biggs [8]). Numbers next to curves are

Ru/Fe,max

3. Elastic-plastic response to exponential blast loads

A more accurate description of blast pressure-time history is an exponential decay from peak pressure, pr,max,

to ambient pressure at time td (known as the positive phase duration). Following this is a period of ‘negative’
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(below atmospheric) pressure known as the negative phase, the duration of which is given as t̄d. This is shown

schematically in Figure 4. The positive phase can be described by the ‘modified Friedlander Equation’ [22],

p(t) = pr,max

(

1 −
t

td

)

e−bt/td , (6)

where b is the coefficient that describes the rate of decay of the pressure-time curve.
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Figure 4: Exponential pressure-time profile for a blast wave with triangular approximations of the positive phase

The triangular load model does not capture the correct decay of the pressure-time curve and it neglects the

negative phase. Teich and Gebekken [23] and Krauthammer and Altenberg [24] have shown this to be an inaccurate

assumption, particularly if the scaled distance is large. Gantes and Pnevmatikos [13] address this limitation by

providing response spectra for exponential loading where the Friedlander equation (6) is simply extended to t → ∞

to capture the negative phase and compare this to the triangular response spectra of Biggs. In the current study, the

negative phase is modelled using the cubic expression from the Naval Facilities Engineering Command manual

Blast Resistant Structures [25], as this has shown to be in better agreement with experimental observations [20].

The piecewise force-time function applied to the SDOF model is given in equation 7

Fe(t) =











































Fe,max

(

1 − t
td

)

e−bt/td , t ≤ td

Fe,min

(

6.75(t − td)
t−d

) (

1 −
(t − td)

t−d

)2

, td < t ≤ td + t−
d

0, t > td + t−
d

(7)

where Fe,max and Fe,min are given by the peak overpressure and peak negative pressure multiplied by the target

area and load transformation factor. These parameters, along with the positive phase duration, td, negative phase

duration, t̄d, and waveform parameter, b, are found using the Kingery and Bulmash [11] empirical predictive

method. This method is based on curves fit to a database of experimental records of blast loading parameters from

a wide range of explosive events, and forms the core of the widely used blast loading predictive tool ConWep

[12]. Given the scaled distance, Z = R/W1/3, where R is the distance from the point of interest to the charge
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centre (called the range or stand-off ) and W is the mass of explosive, expressed as an equivalent mass of TNT, the

relevant blast parameters can be read and used to construct the applied blast pressure-time history.

Figure 5 shows as an example the response spectrum for an elastic-plastic SDOF system under an exponential

blast load at Z = 8 m/kg1/3 and Ru/Fe,max = 0.5. The triangular response spectrum is also shown, with td,lin =

2ir/pr,max to preserve positive phase impulse (Figure 4). Dashed regions of the exponential response spectrum

indicate regions where the peak displacement is in rebound.
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Figure 5: Response spectra for Z = 8 m/kg1/3 and Ru/Fe,max = 0.5 under triangular and exponential loads. Peak displacements from the

examples in Figure 6(a-d) are shown with corresponding values of td/T

With reference to Figure 5, the exponential load response spectrum for Ru/Fe,max = 0.5 is defined by four

distinct regions:

a. Elastic deformation only, td/T < 0.15

Figure 6(a) shows the SDOF response at td/T = 0.1 (force-time history shown on the minor y axis). In this

region of the response spectrum, zmax < zE and no plastic deformation occurs. As the system reaches peak

displacement on the first cycle, the velocity of the system becomes negative whilst the negative phase load is

still applied, increasing deflection in the negative (‘rebound’) direction and causing the peak displacement to

occur during rebound. This behaviour continues with increasing values of td/T until the rebound is sufficient

to cause plasticity in the negative direction.

b. Plastic deformation in rebound only, 0.15 ≤ td/T < 0.22

Figure 6(b) shows the SDOF response at td/T = 0.2. It can be seen that the only permanent plastic defor-

mation is in the negative direction, i.e. towards the blast. As the ratio of td/T increases, the magnitude of

positive displacement on the first cycle increases until the elastic limit is reached.

c. Plastic deformation in both directions, 0.22 ≤ td/T < 0.35

Figure 6(c) shows the SDOF response at td/T = 0.3. The system undergoes plastic deformation on the first

positive cycle of displacement and undergoes further plastic deformation in rebound. The system still reaches

peak displacement in rebound in this region of the response spectrum, with the positive plastic deformation

increasing relative to the negative with increasing td/T .

d. Peak plastic deformation during the first half cycle of displacement, td/T ≥ 0.35

Figure 6(d) shows the SDOF response at td/T = 0.8. The positive phase of the load is sufficient to cause

gross plastic deformation (zmax >> zE). Little or no rebound plasticity occurs.
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Figure 6: Normalised displacement-time history of elastic-plastic SDOF systems under an exponential blast load at Z = 8 m/kg1/3

The discontinuities in the response spectrum are caused by the transitions between these regions. Whilst the

bounds of each region will change with different values of Ru/Fe,max, the behaviour within each region will be

similar.

By comparing the triangular and exponential response spectra, it is apparent that the loading assumption has a

significant impact on the response of the SDOF system, and that the triangular load model is over-conservative for

impulsive scenarios (low values of td/T ). The triangular load model is also non-conservative for particular ranges

of td/T where the exponential load response spectrum is in regions b. and c. and peak displacement occurs during

rebound.
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4. Elastic-plastic response to cleared blast loads

The assumption of an exponential ‘Friedlander’ decay, however, is only valid if the target is part of a reflecting

surface that is large in dimensions perpendicular to the direction of travel of the blast wave. When a blast wave

reaches the edge of a finite target, diffraction of the shock front around the target edge causes an expansion wave

to travel inwards along the loaded face. This expansion wave reduces the pressure acting at any point that the wave

propagates over in a process known as blast wave clearing.

Current methods for treating blast wave clearing that exist in design guidance [7, 12] cannot account for early

negative pressures associated with blast wave clearing, an effect which has been shown both experimentally [14,

15, 16, 17] and numerically [19, 26], and can increase peak displacement when it coincides with target rebound

[20].

The Hudson method [27], based on approximation of the relief wave as an acoustic pulse, enables blast wave

clearing to be predicted to a high level of accuracy [14, 20] and forms the basis of the numerical analysis in this

study. The dimensionless formulation of the Hudson method ensures that, for a given value of Z, any target with

the same scaled height H = L/W1/3 will be subjected to the same distribution of pressure regardless of the span,

L. Henceforth the dimensionless ratio of Z/H is used to indicate target size.

The distribution of blast pressure, p(x, y, t), that arises from blast wave clearing is given by discretising the

target into 100 × 100 nodes and applying the Hudson clearing corrections to the ConWep reflected pressure-time

history at each point. The distribution of pressure is converted into a uniform pressure at each time step using the

time-varying spatial load factor, KS [20], such that

Fe(t) = KLKS (t)F(t), (8)

where F(t) is the total force acting on the plate and Fe(t) is the energy equivalent load that takes into account

both the standard SDOF load transformation and the non-uniformity of the load.

The spatial load factor is given such that the non-uniform load acting on the assumed deflected shape, φ, has

the same work done as an equivalent uniform load,

KS (t) =

∫

A

p(x, y, t)φ(x, y) dA

∫

A

p(x, y, t) dA

∫

A

φ(x, y) dA

, (9)

where the expression is numerically integrated over A, the panel area. It is assumed that the panel deforms in

the first mode of vibration only, i.e. that the blast pressure distribution changes sufficiently quickly to not influence

the deformation profile of the panel, which has been shown to be valid through finite element analysis [20] and

experimental work [21]. The normalised deflected shape of a simply supported beam under a uniform load is given

as

φ(x) =
16x

5L4

(

L3
− 2Lx2 + x3

)

, (10)

where x is the length along the beam and L is the total length. For a one-way spanning member, φ(x, y) = φ(x).

Figure 7 shows the normalised equivalent force acting on simply supported, one-way spanning square plates

of different scaled target size. Z/H = 0 indicates a target that can be assumed to be infinite in lateral extent and is

subjected to the full reflected pressure for the entire duration of loading.

Response spectra for Z = 8 m/kg1/3 and Z/H = 0, 4, 8 and 16 are shown in Figures 8(a-d) respectively, showing

the peak response of elastic-plastic SDOF systems subjected the normalised cleared forces shown in Figure 7.

Response spectra for Z = 2, 4 and 16 m/kg1/3 are provided in the Appendix.
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Figure 7: Normalised force-time acting on finite targets of differing size, (a) positive phase only, (b) entire duration

5. Discussion

5.1. The influence of scaled distance and target size

Rose and Smith [19] and Tyas et al. [14] observed an increasing significance of clearing with larger scaled

distances. Table 1 shows the comparison of peak displacements under the non-cleared blast load for H = ∞ and

the cleared blast load for H = 1, over a range of resistance ratios and time ratios. The results are in agreement with

this observation of more complete clearing occurring at increased distance from the blast source – the difference
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(c) Z/H = 8
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(d) Z/H = 16

Figure 8: Response spectra for Z = 8 m/kg1/3. Dashed lines indicate regions where the peak displacement is in rebound

in response due to the non-cleared and cleared blast load is greater in almost every case at Z = 16 when compared

to Z = 4.

From inspection of Figure 8, it is also apparent that the rebound regions of the response spectra (regions b. and

c., as indicated by the dashed lines) are larger for smaller scaled target sizes. This can be justified by the fact that as

the expansion wave propagates over the target face, the magnitude of the relief pressure decreases and the pressure

pulse becomes more rounded and longer in duration [27]. With smaller targets, therefore, a sharper drop-off in

pressure occurs more uniformly across the loaded face, making smaller targets more susceptible to the dynamic

effects that cause increased displacement in rebound.
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Ru/Fe,max td/T zmax/zE

Z = 4 Z = 16

H = ∞ H = 1 % diff. H = ∞ H = 1 % diff.

0.2 0.2 1.96 1.66 15 2.75 3.32 -21

0.5 8.78 4.91 44 13.9 6.69 52

1.0 31.1 17.0 45 51.2 22.2 57

0.5 0.2 1.09 0.71 34 1.90 1.19 37

0.5 1.68 1.27 25 2.59 1.82 30

1.0 3.83 2.87 25 6.62 3.40 49

1.0 0.2 0.54 0.36 34 0.84 0.59 30

0.5 0.84 0.83 1 1.35 1.03 24

1.0 1.14 1.07 6 1.46 1.11 24

Table 1: Comparison of peak displacement for H = ∞ and H = 1 at Z = 4 and Z = 16

5.2. Comparison against exponential and triangular load response spectra

A number of observations on the influence of clearing can be made when the cleared response spectra are

compared with the triangular load response spectra. Figure 9 shows the spectra for Ru/Fe,max = 0.5 from Figures

8(a-d), as well as the linear load response spectrum from Figure 3. Towards the impulsive end of the response

spectra (low values of td/T ), the reduction in net impulse associated with clearing and the negative phase can

be seen to significantly reduce the peak displacement of the SDOF system under the cleared load relative to the

triangular load. The influence of target size can be seen to further reduce peak displacement. For example, at

td/T = 0.2, the displacement of the cleared plate with Z/H = 16 is 0.9zE , whereas the displacement under the

exponential load (Z/H = 0) is 1.7zE . Furthermore, the peak displacement under the cleared load at Z/H = 16 is

around 33% of the peak displacement under the exponential load at large values of td/T . Clearing is therefore an

important consideration for elastic-plastic systems, even at large values of td/T where it is unimportant for elastic

systems [20].
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Figure 9: Response spectra for Z = 8 m/kg1/3 and Ru/Fe,max = 0.5 for different scaled target sizes, normalised against elastic limit
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Figure 10(a) shows contours of peak displacement, zmax, normalised against the peak displacement of the

SDOF under the triangular load, zmax,lin. The dashed line indicates the time ratio at which the system begins

deform plastically (i.e. when zmax/zE > 1 in Figure 8), with elastic behaviour to the left and plastic behaviour to

the right of the curve. It can be seen that peak values of displacement occur between 0.3 < Ru/Fe,max < 0.7, when

the system undergoes plastic deformation in rebound only. Figure 10(b) shows the normalised response spectra at

select values of Ru/Fe,max. If the temporal characteristics of the loading relative to the response of the target are

such that greater displacement is caused in rebound (td/T ≈ 0.25), and the resistance of the target is such that it

enters plasticity in rebound (as, for example Ru/Fe,max = 0.5), then an amplification in displacement will occur.

It is apparent that blast wave clearing can serve to adversely affect target response when the magnitude of load

is comparable to the resistance of the target, and can serve to severely lessen the peak displacement when the

magnitude of load far exceeds the elastic resistance. For elastic SDOF systems subjected to cleared blast loads,

Ru/Fe,max ≥ 2.0, the normalised response spectra approach 1.0 as td/T increases [20] 1. Elastic-plastic systems,

however, experience gross plastic deformation at higher time ratios (region d. of the response spectra) and hence

the time taken to reach peak displacement increases, allowing time for the effects of clearing to decelerate the

SDOF system.

5.3. The influence of clearing

Normalising the peak displacement of the SDOF under the cleared load against the peak displacement of the

SDOF under the exponential load, zmax,in f , as in Figure 11(a), allows the influence of clearing to be isolated and

further quantified. The assumption that blast wave clearing is beneficial is clearly not always a valid or conservative

assumption to make. For the elastic response spectrum there is a region between 0.47 < td/T < 0.80 where

‘clearing resonance’ occurs and peak displacement is in the order of 10% greater than the SDOF under the full

reflected pressure [20]. When plasticity is included in the model, this resonance can cause displacements over

25% greater than if clearing were neglected. Figure 11(b) shows an expanded view of the adverse region (note the

linear x-axis), which can be seen to occur at time ratios as low as 0.2. Whilst it requires specific conditions for

this to occur, it is worth noting that the phenomenon exists and blast wave clearing should not be neglected on the

assumption that it is conservative.

The influence of clearing is complex and dependant on many parameters, however the response spectra pre-

sented in this article provide an effective method for quantifying this effect.

6. Application

The following section details the practical application of the response spectra using numerical and graphical

examples and compares the results to both an explicit FE model and current design methods.

A square, simply supported, one-way spanning light cladding panel, shown schematically in Figure 12 – with

Young’s Modulus, E = 65 GPa, Density, ρ = 2000 kg/m3 and Yield strength, σy = 20 MPa – is subjected to a 1

kg hemispherical TNT burst at a distance of 8 m. The panel has a span, L, of 1 m and thickness, d, of 10 mm.

The dynamic SDOF properties of the panel, i.e. the equivalent mass, equivalent stiffness, elastic resistance, elastic

limit and natural period, are determined using expressions shown in equations 11-15, after Biggs [8]

me = KMρL
2d (11)

1When td/T is large, the natural frequency of the system is sufficiently high to ensure that the target reaches its peak displacement before

the onset of clearing, i.e. there is no difference between the triangular, full reflected and cleared blast load, hence clearing has no effect.
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Figure 10: (a) Contours of peak displacement normalised against peak displacement under the triangular load for Z = 8 m/kg1/3 and Z/H = 4.

The dashed line indicates the time ratio at which the system begins to deform plastically. (b) Response spectra for select values of Ru/Fe,max

ke = KL384EI/5L3 (12)

Ru = 8Mm/L (13)

zE = Ru/ke (14)

T = 2π
√

me/ke (15)

where I is the second moment of area and Mm is the moment capacity at midspan. Elastic load and mass
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Figure 11: Contours of peak displacement normalised against peak displacement under the exponential load for Z = 8 m/kg1/3 and Z/H = 4,

(a) entire region, (b) expanded view of adverse region. The dashed line indicates the time ratio at which the system begins to deform plastically

factors (KL = 0.64, KM = 0.50) are used as response is assumed to be predominantly elastic. The relevant loading

parameters and dynamic properties are summarised in Table 2.

The SDOF equation of motion was solved for three load cases;

• ‘Cleared’ – blast load for Z/H = 8

• ‘Exponential’ – blast load for reflected pressure on an infinite surface, Z/H = 0

• ‘Triangular’ – linear decaying force with the same peak force and positive phase impulse as the exponential
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Figure 12: Dimensions and properties of the light cladding panel

Parameter Symbol Value (unit)

Peak reflected pressure pr,max 44.11 (kPa)

Positive phase duration td 4.454 (ms)

Young’s modulus E 65 (GPa)

Density ρ 2000 (kg/m3)

Yield strength σy 20 (MPa)

Load factor KL 0.64 (-)

Mass factor KM 0.50 (-)

Span L 1 (m)

Thickness d 10 (mm)

Equivalent stiffness ke 266.2 (kN/m)

Equivalent mass me 10 (kg)

Elastic resistance Ru 2.67 (kN)

Elastic limit zE 10.01 (mm)

Natural period T 38.5 (ms)

Time ratio td/T 0.116 (-)

Resistance ratio Ru/Fe,max 0.094 (-)

Table 2: Loading parameters and dynamic properties for a 1 × 1 m elastic-plastic, one way spanning, simply supported panel.

load.

For the FE analysis, the panel was discretised using 100 × 100 shell elements using the *mat plastic kinematic

material model in LS-DYNA [28], with the cleared loading applied as force-time curves at every node using the

method detailed in [21]. The Hudson method has been shown to accurately capture the spatial variation of cleared

blast pressure loading [14] and can, when combined with an FE model, predict the dynamic deflection of finite

plates to a good level of agreement with experimental results [21]. The FE model can therefore be considered as

an accurate representation of how the panel would perform in real life.

Figure 13 shows the transient displacement of the SDOF models and FE simulation, with the bottom & left

axes showing the real displacement-time history and the top & right axes showing the normalised history. The

values of peak displacement are summarised in Table 3, where it can be seen that the peak SDOF displacement
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under the cleared load is within 13% of the FE model on the first rebound.
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Figure 13: FE and SDOF response under different loading conditions for a 1 m square cladding panel

Ru/Fe,max td/T zmax (mm)

LS-DYNA Clearing Exponential Triangular

0.094 0.116 15.3 17.3 28.1 47.7

% diff. 13 83 211

Table 3: Maximum response for FE and SDOF model from numerical analysis and percentage difference between FE and SDOF displacements

It is possible to determine the peak displacement without the need for numerical analysis, simply by using

the response spectra provided in Figure 8. Taking Ru/Fe,max and td/T as 0.10 and 0.12 respectively, the peak

displacement for Z/H = 8 can be read off Figure 8(c) to give zmax = 1.7zE , which compares well with 1.53zE

determined from the FE analysis. If clearing is neglected and the peak displacement under the exponential load is

read from Figure 8(a), the peak displacement would be estimated at 2.6zE . If the loading is further simplified as

a triangular load with no provision for clearing or the negative phase, the peak displacement would be estimated

from Figure 3 as 5.0zE . These correspond to over-predictions of 70% and 230% respectively, demonstrating the

need to take blast wave clearing into account, especially during the early stages of design.

Peak displacements obtained using the graphical response spectra method are summarised in Table 4.

Ru/Fe,max td/T zmax/zE

LS-DYNA Clearing Exponential Triangular

Fig. 8(c) Fig. 8(a) Fig. 3

0.1 0.12 1.53 1.7 2.6 5.0

% diff. 11 70 230

Table 4: Normalised maximum response for FE and SDOF model using graphical method and percentage difference between FE and SDOF

displacements
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7. Summary and Conclusions

The objective of this study has been to quantify the effect of blast wave clearing on elastic-plastic systems via

rigorous analysis of elastic-plastic one degree systems.

The equivalent Single-Degree-of-Freedom method is often favoured for use in preliminary design because of

its non-specialist requirements, low computational cost and relatively few input parameters. Literature guidance

[7, 9] recommends using response spectra based on elastic-perfectly plastic SDOF response to a linearly decaying

blast load. Gantes and Pnevmatikos [13] provide response spectra for more realistic exponential loads, however

neither method takes clearing into account.

In this study, the dynamic equation of motion is solved using explicit dynamics for equivalent SDOF systems.

Normalised target sizes of Z/H = 0, 4, 8 and 16 are subjected to cleared blast loads determined using Hudson

clearing predictions [27] with the equivalent SDOF force calculated using the spatial load factor, KS , developed in

[20].

Blast wave clearing generally serves to reduce the peak displacement of the target, particularly when the magni-

tude of the load is large relative to the resistance of the target, and the load duration is large relative to the response

time of the target. It has also been shown that neglecting clearing may be unsafe for certain configurations of target

size, mass, stiffness and elastic resistance. It is therefore important that blast wave clearing is considered at all

stages of blast resistant design.

A numerical example has shown that the response spectra can be used to predict the peak response of a finite

target to within 11% of an explicit finite element model, compared to a 230% over-prediction when simplifying

the load as a triangular pulse and reading off the response spectra provided in current design guidance.

The results presented in this article can be used with confidence as a first means for predicting the likely damage

a target will sustain when subjected to an explosive load.
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Appendix A. Response spectra for Z = 2, 4 and 16 m/kg1/3

Figures A.1, A.2 and A.3 show elastic-plastic response spectra for Z = 2, 4 and 16 m/kg1/3 respectively.
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(a) Z/H = 0

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

t
d
/T

z m
ax

/z
E

 

 

0.1
0.2
0.5
1.0
1.5
2.0

R
u
/F

e,max

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

t
d
/T

z m
ax

/z
E

 

 

(b) Z/H = 4
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(c) Z/H = 8
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(d) Z/H = 16

Figure A.1: Response spectra for Z = 2 m/kg1/3. Dashed lines indicate regions where the peak displacement is in rebound
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(b) Z/H = 4
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(c) Z/H = 8

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

t
d
/T

z m
ax

/z
E

 

 

0.1
0.2
0.5
1.0
1.5
2.0

R
u
/F

e,max

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

t
d
/T

z m
ax

/z
E

 

 

(d) Z/H = 16

Figure A.2: Response spectra for Z = 4 m/kg1/3. Dashed lines indicate regions where the peak displacement is in rebound
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(d) Z/H = 16

Figure A.3: Response spectra for Z = 16 m/kg1/3. Dashed lines indicate regions where the peak displacement is in rebound
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