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Controlling Regular and Chaotic Dynamics in the
Duffing-Ueda Oscillator

Lvis A. AGUIRRE and S. A. BiLLInGs

Abstract

This paper investigates the control of a toreed nonlinear oscillator which is com-
posed of a series-counected resouant cirenit with a nondinear indoctor commonly
known as Dutliug’s oscillator, Two contral strategios are sngeested. The Hrse is pri-
marily concerned wirh ~suppressing chaos by means of adding au exrernal weak force
to the impur deiving the oseiilaror. The second procedure ases a reference madel
to produce appropreiate pelerenee chaotic and nonchaotie siguals for the oseillator
to track. It s shown thar this controb scheme is ollective in hoth reeuiaring and
tracking problems. Althonel it s possible to dispense with the reference maodel in
many applications it is often leliy desizabie o ovtain aomodel of The svatem, A
practical and eifecrive pracedare for determining the model is therefore discussed.,
A diserete maodel of the oscitlitor, which had been previonsiv obramed from the
svatenm with vo o preoccinformation,is nsed i several simniared exangples provided

to illnstrate the main points ol the paper.

1 Introduction

It is now an accepted fact that chaotic dynamics are far from being a rare phenomenon
exhibited by a few pathological ad hoc models. On the contrary, chaos has been found in
virtually all the branches of science inn systems operating over wide ranges of conditions.

. v il i

In this respect, electrical circuits are no exception. see References :1.2,3,4, 35,6, 7, 8] %or

some examples.
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One of the most peculiar features of a chaotic system is the sensitive de endence on
1

i
\initial conditions caused by local divergence of trajectories in the state-space along the

‘directions’ associated with positive Lyapunov exponents’. Consequently, it is impossible
jto make accurate long-term predictions of a system exhibiting chaétic dynamics.

In many situations, it is desirable that the system under investigation be predictable.
Furthermore, the appearance of chaotic dynamics is sometimes associated with abnormal
behavior {11, 12]. On the other hand, some authors have suggested that chaotic dynamics
indicate a healthy state as opposed to the diseases which manifest as physiological periodic
signals {13, 14].

Consequently, techniques for controlling nonlinear dynamics are required in order to

provoke or suppress chaos or any other dynamical regime according to the particular

need at hand. Unsurprisingly, a number of papers have been published recently regarding
this matter. Some techniques were developed to bring a system which is in a chaotic

state to some non-specified periodic behavior 13, 16, 1h, 18 185 QOther methods aim at

v oy

stabilizing a chaotic system to a particular dynamical regime 112, 20, 21, 22]. Although it
has been argued that these approaches are fairly generai. the application of such methods
to electrical oscillators has not received due attention.

The only exception seems 1o be rhe recent paper by Rajasekar and Lakshmanan 23 m
which five of the aforementioned techniques were used o suppress chaos :n the Bonhoeter-
van der Pol oscillator. The methods :nvestigated were adeptive control {AC) 24, 25,
small parametric perturdation {SPP), addition of an external week jforce (AEWF) 16,
small parameter adjustment 'SPA} and addition of nowe (AN) 26

The AC method and related techniques assume that one may perturb a system param-
eter to perform the control (20i. In many practical situations, however, no such parameter
is available, see Reference 12! for an example. The SPP method also presents this def-
ciency. In this respect the AEWF, SPA and AN methods are more appropriate. However.
the AEWF and AN methods perform the control in open-loop {note that so does the SPP

method). This, of course, assumes that the equations which describe the dynamics are

known and that no unknown parameter perturbations occur,

'For an introduction to Lyapunov sxponents see 9, and Reference 10! for a more detailed exposition

on the subject.



Brown, Chua and Popp have recently shown that sensitive dependence on initial condi-
tions is equivalent to sensitive dependence on parameters (27). In other words, the basins
of attraction are fractal in both the state and the parameter spaces. Thusifa certaln sys-
tem presents regular motions for a particular parameter value p = j,, one cannot assume
that the dynamics will still be qualitatively similar if the system 1s disturbed to pu=p,+9.
It seemns that this assumption has been made in '20] and in all the open-loop techniques.
As a consequence, even if the equations which describe the dynamics of a potentially
chaotic system which is to be controlled were known. because such a system exhibits sen-
sitive dependence on the parameter values, the performance of open-loop schemes would
be totally uncertain.

This paver investigates the control of the electrical oscillator which is modeled by the
well known Duffing-Ueda equation. Two control schemes are suggested, namely, 1) the
addition of an external weak force operating in closed-loop, and i1) a model-based control
scheme (MBCS).

Unlike most of the aforementioned methods. this paper does not assume a) that the

model of the system is known®. bi that a particular parameter Is available for control,

1

o

¢) that only small adjustments are allowed. d) that local dynamics about a particular
orbit do not vary much when small changes in a parameter take place. and e) that the
system parameters are not subject to unknown disturbances.

Some of the advantages of the suggested control schemes are a) simplicity, b) ro-
bustness with respect to measurement noise and major parameter disturbances, c) the
oscillator can be controlled at specific regular dynamical regimes and d) the osciilator
dynamics can be constrained to lie on specific strange or non-strange attractors in the
state space (for the MBCS ouly).

The paper is organized as follows. In 52 the nonlinear circuit and the respective
differential equation are reviewed. In addition. a bifurcation diagram of the oscillator over

a wide range of operating conditions is presented and briefly described. In §3 a simple

procedure is proposed for suppressing chaos which is based on the addition of an external

2Although the MBCS uses a reference model, 1t will be argued that in many applications this model is
not absolutely necessary. Moreover, it wiil also be indicated how such a model can be gbtained directly

from the system with no a prior: knowledge, see 34 3.
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weak force in closed-loop. Three simulated examples are provided which illustrate the
suppression of chaos and also suggest that, in some cases. this technique can be used to
stabilize the oscillator at period-I motions where K may be specified by the practitioner.
Section 4 describes a model-based control scheme which can be used to drive the oscillator
to specific dynamical regimes, regular or chaotic. Four simulated examples are provided
which illustrate that this scheme is effective in regulating and tracking problems. Finally,

the main points of the paper are summarized in 5.

2 The Duffing-Ueda Oscillator

Over the yvears. a few systems have become bench tests in the study of nonlinear oscil-

lations. Two classical examples are the Durfing and van der Pol oscillators. Besides,

. several variants have also been suggested and investigated. This paper uses a version of

Duffing’s oscillator which has been studied by LUeda 28, 29, 30'. Hence this oscillator will
be referred to as the Duffing-Ueda oscillator to distinguish it from other popular version,
o o a

-

the Duffing-Holmes equation which s used to model mechanical vibrating systems 31

Other versions of Duffing and van der Pol's electrical osaillators can be found in Ret-
erences |32, 33].
2.1 The circuit
Consider the circuit in Fig. 1. The equations or this circuit are 30

Esin(wt) = ndt = R

R, :%fi,dt ' (L)
'L:?;,- - 1

where n is the number of turns of the inductor coil. and o is the magnetic flux in the core.

It is assumed that the saturation curve of the core can be expressed by ;30]

. _ 3 .l.)
1=ad; 12)
and that the effect of hysteresis is negiigibie. Denue he dimensioniess variable y as
)



where &, is an appropriate base for the flux which satisfies the following relation
nw’C®, = ad? (4)

After some algebraic manipulations, the following well known Duffing-Ueda equation

is obtained [30]

§+ky+v° =u(2) (5)
where
1
k= zx
u(t) = Acos(7) 5
(6)
r = wt — tan"tk
B =il F

Equation (35) has become a bench test for the study of nonhnear dynamics (28, 29.
30]. It has also been considered as a simpie paradigm for chaotic dynamics in electrical

science [34]. One of the main reasons for this 1s that in spite of being simple this model

can produce a variety of dynamical regimes.

2.2 The dynamics

The dependence of the dynamics of a system upon a certain parameter, usually called the

L

control parameter, 1s reveaied by hifurcation diagrams. For a fixed value of the control
parameter a cross section of the attractor can be obtained by appropriately sampling
the svstern trajectories in state-space. This technique is cailed Poincaré sampling and
y ! pung
the resulting cross section is a Poincaré section of the attractor. The computation of
P
bifurcation diagrams and Poincaré sections is now a fairly standard procedure in the
analysis of nonlinear systems and more details can be found elsewhere {34, 35].

Figure 2a shows the bifurcation diagram of the Duffing-Ueda oscillator with £=0.1.
w=1rad/s and u(t) = Acos{wr). This was obtaned simuiating equation {3) digitaily using
a fourth-order Runge-Kutta algorithm with an regration interval equal to 7:3000s. In

the figure, the horizontal axis corresponds to the controi parameter, 4. As can be seen.

it



varying this parameter in the range 45 < A < 12 drives the system into a number of
different dynamical regimes.

Beginning at A=4.86 the system undergoes a period doubling (flip) bifurcation. This
happens again at A = 5.41 and charactenzes the well known period doubling route to
chaos [36]. Another similar cascade begins at A = 9.67 preceding a different chaotic
regime. Two chaotic windows can be distinguished at approximately 5.55 < A <5.82 and
0.94< A<11.64. At Ax06.61 the system undergoes a supercritical pitchfork bifurcation
and at A=~9.67 it undergoes a subcritical pitchfork bifurcation. The bifurcation diagram
begins and ends with period-one regimes and displays period-three dynamics for 5.82 <
A<9.67.

Figure 2b shows a Poincaré section of thie attractor obtained by sampling y(t) at

\

t=jm, j=0,2,4,... and by plotting yit — T.) against y(t). In this figure T, = 200 =

7/3000s. This figure clearly reveals the ractal siructure of the chaotic (strange) attractor

obtained for this mnput.

3 Controlling the loss of chaos in closed-loop

The objective-of the following procedure is to drive a system originally operating in a
chaotic regime to a regular state DY means of an rzternal control action. This is an
important point since some methods assume that a system parameter is available to

perform the control (201, but. of course. this is not always so in practice {12].

3.1 The suggested control configuration

Braiman and Goldhirsch have shown that by adding a weak periodic perturbation to a
system operating in a chaotic regime, such a system can be driven to regular periodic
motions [16]. Kapitaniak has investigated the loss of chaos provoked by the addition of
a random perturbation {26]. In these papers the model of the system was assumed to ve
known and no disturbances were allowed to take place.

In order not to make the same restrictive assumptions, it 1s necessary to perform the
control in a closed-loop fashion. To achieve this consider the control configuration :n

Fig. 3.



The oscillator. The nonlinear oscillator is the circuit of Fig.1 whose dynamics are
governed by equation (5) which was simulated as before. It is assumed that the oscillator
is originally operating in a chaotic steady-state regime. Moreover, equation (5) is not
available to the controller.

The sensor. The sensor is composed of a fized-point counting algorithm (FPCA) in con-
junction with a Poincaré-sampling device (PSD). When the PSD is activated, a Poincaré
section, P, of the attractor is produced at the output. The FPCA then determines the
number of fized-points (N:,) in P. Further, the PSD is activated during N, forcing periods
at intervals of N, forcing periods during which it remains inactive.

In practice a tolerance ¢ is defined such that all the points, p,, of P satisfying

|pi—p;i<€e Ti=)

—

are considered a single fixed point. It is noted that more than one norm may be used In
equation (7) to quantify the distance between two points in P.

The controller. Based on N, the controller venfies if the dynamics are chaotic and
outputs a weak force computed according to a predefined law. If the system 1s 10 a chaotic
state P will have V, points. On the other hand. if the system is in a regular motion of
period K then, no matter how long V. mught be. P will have Kk fixed-points. This is

an extremely simple criterion which can be used to determine some of the topological

3

properties of the attractor and ultimately verity if the oscillator s undergoing periodic or
aperiodic motions.

The controller can be set to produce periodic or random outputs of small amplitude |16,
261, If the objective is to suppress chaos, the controiler increments the output amplitude
until Ny, < N,, which indicates that the output, yit}, is periodic.

One of the advantages of this procedure is that a deswred numoer of fized points (D)

can be fixed as a set-point. In this case the controller will operate until N;;=Dy,.

3.2 Simulation results

3.2.1 Simulation 1

1
i

In this simulation the control was performed

a1}

in upen-loop to ilustrate some of the pitialls

of this abproach. Assume that wit) = 1l 5cusitl. It is clear from Fig. 2a that the asaillator



exhibits chaotic dynamics when excited by this input. The objective is to drive the system
to a non-chaotic regime.

In this example the control signal is m(t) = Accos(wct) and A < A. Tt 1s noted
that m(t) is ezternal to the system unlike many schemes which actuate on the system
parameters.

According to the procedure outlined by Braiman and Goldhirsch, a Lyapunov table
can be obtained for various values of A. and w.. Any combination of these parame-
ters for which the respective largest Lyapunov exponent, A, is negative can be used to
compose m(t) and in this way guppress chaos [161. Following this procedure the control
signal m(t) =1.08cos(2.857142t) was applied to the oscillator in addition to the normal
input and, as expected, the system was driven to a regular (period-seven) attractor with
M =—6.53 x 1077

In a real application, however. the exact parameter values of the system will not be
available in order to compute the Lyapunov table. Thus suppose that the actual value of
k in equation (5) is 0.11 instead of 0.1 {which is already a fairly good approximation!).

If the same control is applied to the svstem with & = 0.11, the oscillator will still be

in a chaotic regime with an attracting set ‘or which the largest Lyapunov exponent is
o ] fo g k

—3 5 i) B i 1 % o = 1 X, & . .
X;=1.81 % 107%. This illustrates the need 10r ieeddack in real control applications.

3.2.2 Simulation 2

In this simulation, the perturbed and unperturbed oscillators of simulation ! were con-
trolled in closed-loop in order to suppress chaos.

The following parameter values were used: [K;=0.05, e=0.01. NV,=100 and N,=30. As
before, the oscillator was originaily operating with u(t) = 11.5cos(t) when the control was
switched on and the control signal action was m(t)= A.cos(2.857142t).

A, was initially set to zero and subsequently increased according to

A= A+ KB (3)

where K, £ IR 1s a constant gain and £ £ Z Is the error between Dy and N4 Iin

bl

specific periodicity is desired. D+ conld have any value such that Drp < Na, the controller

. ]



should be desactivated as soon as N:, < N, regardless the value of E. A similar procedure
was followed in Reference [17].

In the case of the unperturbed oscillator (k=0.1), the output was drived to a regular
(period-seven) orbit after four control cycles (note that each control cycle corresponds
to N, + N, input periods) with A.=1.2. For the perturbed oscillator (&= 0.1}, six
control cycles were necessary to drive the output to a period-seven motion with A.=1.6.
As expected, both unperturbed and perturbed systems were operating in a non-chaotic
motion after feedback control had been apphed.

It is interesting to note that the controiled outputs are period-seven motions with
respect to the input u(z}, that is the ourputs were sampled at the same frequency of uit!
in order to compose P. However, with respect to the total exciting signal u(tj—m(t) the
output is a period-one motion. It has been argued that in some situations stabilizing the

system at high

gh-period orbits might be advantageous 151

3.2.3 Simulation 3

The objective in this simulation was not ouly to suppress chaos but also to drive the

output to a period-eight motion.

T

-

The oscillator was originally set to operate with n{i}=5.0cosit) which corresponds to

the narrower chaotic window in Fig.2a. In this case w.=1rad;s and D;, =38 in addition
to the parameter values used in the previous simulation.

The experiment was carried out for the original oscillator {4 =0.1) and {or the per-
turbed oscillator (k=0.11}. Table I shows the main resuits.

Because of the disturbance in the system parameters, the control signal and also
the dynamics of the controlled oscillators are different. Nevertheless. in both cases the

controlled oscillators are driven to period-eight orbits.



Table 1. Dvnamical regimes for the perturbed and unperturbed oscillators
3 1 1

and respective control action m(t}= A.cos(2.857142¢)

L k=01 | k=011 |
i : ‘ —=
Step | Dynamuics | A, | Dynamics | A,
1 ‘ Chaos 0 Chaos | 0
2 1 Chaos = -3.5 <1072 J, Period-4 -3.5 %1072
3 | Period-12 7.0 «107  Period:3 15 x107%
l - I‘ Period-4 | -1.05 <107' ' Period-8 1.5 1073
1‘ 5 ‘ Period-3 .83 .07 . Pertod-8 -1.5 x 1072 !
5 Period-3 = -8.5 - 1077 Period-8 -1.3 1077

Figure 4 shows the sequence of Poincare sections. P. corresponding to steps two to
five in Table 1 for the unperturbed system.
1

It is noted that if the Anal control action of she perturhed system were applied to

the original oscillator the output would sull be chaotic. On the other hand, if the fina

o

control action of the unperturbed system were appiied to the nerturbed osciliator the

= §oF g 4 R .
oftput would dispiay a period-iour motion.

3.2.4 Remarks

The Poincaré section. P. can be obtained. as in Fig 1. using the output at two different

times, sav y(t) and y{¢ — Tp). instead of using yif} and yii} 37. 381 In this example
T,=200 x 7/3000s.

The control strategy suggested above does not guarantee that a specific period-K orbit
be finally attained because any period-I{ orbit will satisfy the requirement Dy =K.

In the three simulations described above, the spectral power of u(t) and of u(t)=mit)
were virtually the same. This illustrates the well known fact that a very weak signal may
be used to control a chaotic system. Moreover, this property has been described as a key
feature of chaos which has a promising potential use in control applications 21}

The value of w. used in simulations 1 and 2 was chosen based on Lyapunov tables of
the perturbed and unperturbed systems in order o :

ustrate that small perturbations in

2



the system parameters may lead to qualitatively different outputs and therefore justify
the need for feedback. An interesting point to note is that in simulations 1 and 2 w, was
close to the frequency of the third harmonic and in simulation 3 close to the fundamental
frequency. Braiman and Goldhirsch have used a simple relation to show that the addition
of a weak force reduces the value of the largest Lyapunov exponent and this result was
independent of the frequency [16i. However, in other situations chaos was suppressed
when the weak force was added at some resonant frequency {39].

The value of the control gain K, dictates how fast the control signal will react to
an error between D, and N:,. It is noted that large changes in the control signal can
drive the system across many different dynamical regimes and 1t 1s felt therefore that
small values of K are usually more appropriate. This seems to be in accordance with the
results in Reference (25:. A general rule-of-thumb for selecting this gain seems unlikely to
be effective because of the great variety of nonlinear systems to which this control scheme
could be applied.

The choice of N, should be based on the time required for the oscillator to reach
steady-state. Note that :f the ourpur is suill under the infuence of transients, even if the
system is undergoing regular motions, the number of points in P will tend to be equal to
N, thus giving a false indication of the actunal dynamics.

Finally, it is emphasized that because the sensor output is an integer number, this
procedure is particularly robust to noise. In this respect, the tolerance ¢ plays an impor-
tant role since ¢ is used to determine how many fixed pouts are in P. Thus robustness

with respect to noise is guaranteed ii

A=

maz { noise amplitude ; < e (

w

because, in this case, V;, will remain unchanged compared to the noise-free situation.
If the value of ¢ is too large, the FPCA might count two (or more) fixed points as a
single one. Conversely, if ¢ is extremely small the FPCA wll invariably return N, =V,

if the robustness condition of equation (9) is not satished.



4 Controlling Limit-Cycles and Chaos in the Duffing-

Ueda Oscillator

The control scheme proposed in §3 is very simple and robust but cannot be used if it
is desired to drive the oscillator to a specific orbit. Besides, a main drawback of that
procedure in a general application is that if there is no a priom knowledge concerning
how the dynamics of the system will be affected by the addition of the weak force, it cannot
be guaranteed in general that a particular weak force will effectively suppress chaos or
even drive the system to a periodic motion with the desired periodicity. Consequently

the controller may repeatedly increment the amplitude of the control action up to a point
J L 2 i it

where it would no longer be considered a “weak force. In what foliows a model-based

strategy is suggested which remedies these difficulties.

4.1 Model-based control strategy

Consider the block diagram in Fig. 3. It is initially assumed that a model of the actual
oscillator is known. This mode! can “hen be used to generate a desired dynamical orbit,

ya(t). (a desired attractor) to be tracked by the system output. y(t). Two different situ-

ations can be devised, namsiv i} the regulating problem. in which u(t) and consequently

y4(t) are fixed and it is desired that y(¢)j=yil(t)in the presence of unknown disturbances,
and ii) the tracking problem. in which y:(t) is changed via ult) and 1t is desired that y(t)

5.1 S > 3 CARE
tracks yz(t).

In what follows the following controiler was used

m(t) = u(t) = K lya(t) — y(t)] (10)

/

and the nonlinear oscillator was simulated as before.

If the model is an accurate representation of the system, then if the inputs to the
model and to the oscillator are similar, that is if mit)=wt) then y(t)=ys(t). This can
be readily verified from the coutroller equation.

In the simulations below the following discrete model was used

,A
[



va(t) = 2.1579y4(t — T) — 1.3203y.(t — 2T) + 0.16230y4(t — 3T)

.im

0.22480 x 107 2yu(t — 3T)® — 0.48196 x 107 yu(t — T)°

4+ 0.19463 x 107 %u(t — 2T) + 0.34160 x 107%u(t — T)

+ 0.35230 x 10 %yq4(t — T ) yalt — 27)

— 0.12162

b

107 ya(t — Tya(t — 2T )ya(t — 3T) (11)

which has a sampling period of T = 7,60s and which is valid over a wide range of
parameter values [40]. The derivation of nonlinear models identified directly from the
system with no a prior knowledge and which are usetul for control purposes will be
discussed briefly in §4.3.

Figure 6 shows the bifurcation diagram of the model in equation (11). This figure
indicates the values of A needed to drive the oscillator to a specific dynamical regime,
such as period-one, -two, -four, ..., chaos. period-three, -six, ..., chaos. period-one. etc.

In a regulating problem, since the disturbances affect only the system, y«(t) will remain
the same after the disturbances and consequently the osciliator will be forced to remain
on the same attractor. A typical tracking problem. would be to. given the oscillator oper-

ating on a certain attractor. drive the

o

ystem 10 operate at a quantitatively and possibly
qualitatively different dynamical regime. The relerence signal ys(t) can be generated by
the model by specifying the value of A corresponding to the desired dynamics according

to the bifurcation diagram of Fig. 6.

4.2 Simulation results

+

The following simulations aim at illustrating the main points of the procedure. In what

(1=

follows w=1rad/s.

4.2.1 Simulation 4

The objective of this simulation is anaiogous to the simulations one to three, namely to

suppress chaos. The main difference between the controi scheme described in 3.1 and the



one described in §4.1 is that in the latter the oscillator can be made to track a particular
orbit.

Figure 7 illustrates this. The unperturbed (k=0.1) oscillator was originally operating
in the chaotic regime corresponding to the Poincaré section of Fig. 2b. This was obtained
by setting 4 = 11. This was changed to A = 14 at ¢t = 100s and, after the transients had
died away, the oscillator tracked the new reference signal which is clearly a period-one
orbit. The controller gain was [, =8.

Tt is noted that the oscillator was controiled throughout the experiment and that the
‘set-point’ change began at ¢ = 100s bur the reference signal attained the final pernod-
one motion at t = 170s. The tracking between the oscillator and the desired signal is

remarkable.

4.2.2 Simulation 5

In this simulation the anplication of thie control strategy in a typical regulating problem
1s illustrated.

The unperturbed 1 A=0.1} oscillator was mitially operating in the period-one motion
obtained by setting A = 11.7. At t = 1005 the system was disturbed. This was simulated
by increasing the vaiue of the parameter & from 0.1 *0 0.2. The controiler gain was also
Iy =18

Figure 8a shows the desired signal and the oscillator output. These signals can hardly
be distinguished even after the disturbance. Figure 3b shows the error ys(t)—y(¢) seen by
the controiler. This signai aiso indicates that & fawiy tight control was achievea. Figure
8c shows the response of the oscillator when no controi was performed. This was obtained
by setting A, =0.

It is interesting to realize that multipiying the sign al shown in Fig. 8b by K, =38 one
obtains the second term in the controller equation (10) which can be interpreted as the
correction needed to alter the input to the modei (which would also be the input to the
unperturbed oscillator operating in open-icop to produce the desired output) in order to
attain the control objective. Thus the signal in Fig. 3b is related to the control efort.

A striking fact is that such a correction is smaller atter the disturbance has occurred.

A possible explanation for this can be conjectured by noting two things. Firstly, if the



perturbed oscillator (k= 0.2) were operating in open-ioop, this would be driveninto chaos
by the input w(t) = 11.7Tcos(t). Secondly. as it has been noted *... a chaotic motion is
highly structured and deterministic. It may be thougiht of as a combination of a possibly
infinite number of unstable periodic motions ... the key to con:rolling chaos is to cull out
only the periodic motion that you desire.” (Spano et al.) 411, ... a chaotic attractor has
a large number of unstable periodic orbits embedded in it. It should therefore serve as a
rich source of complex periodic wave forms, if an appropriate dynamical control technique
can be implemented to stabilize the system.” (Roy et al.) 18] and, most importantly,

“Chaotic systems exhibit extreme sensitivity to initial conditions. This characteristic is

[ai]

often regarded as an annoyance, yet it provides us with an extremely usetul capability
without counterpart in nonchaoric systems. In particular. the future state of a chaotic

\

system can be substantially aitered by a tiny perturbation.” {Shinbrot et al.) 211

be in a chaotic regime if no coentrol had heen performed (see Fig 3c}, then the control
effort required to stabilize the oscillator 0 a periodic motion is less when compared to

the unperturbed oscillator. The exploitation of this potential teature of chaotic system

o

appears to have been the chief motivation for the method of Reference 24,

4.2.3 Simulation 6

The control scheme of Fig. 5 can also be used ‘o track chaotic signals. This is illustrated
in Fig.9a. The oscillator was initially operating in a period-tiiree motion corresponding
to A=9. The controiler gain was K, =3. At :=100s a change in the reterence signal
occurred which forced the oscillator o track the reference model driven by u(t)=11lcos(?)
and from Fig.6 it is clear that the corresponding motion is chaotic. [t should be noted
that the Poincaré section ot the oscillator for A =11 and rhat of the mode! of equation (11}
are strikingly similar '40].
h Figure 9b shows the error yi{t}—y(t). An interesting thing to point out is that this
error was periodic while the reference signal was periodic. and random (perhaps chaotic)
when the reference signal was chaotic. This is illustrared m Figs. 10a-b where 200 cycles
have been represented in each pseudo-pnase plot.

5 v

Finally, the effect of noise is itlustrated i [gs. :la—c which show the tracking error



during experiments similar to the one of Fig. 9.

In the experiment corresponding to Fig. 11a, white noise with variance ¢°=0.021 was
added to y(t). Figure 11b illustrates the case where the noise had variance o°=0.084.
In both cases K,=8. It is noted that these noise levels are several times higher than
typical values considered by other authors (241, Clearly, an increase in the noise variance
produced an increase in the error which, as argued before, is proportional to the control
effort. Thus noise with too large a variance will induce large and somewhat random
control signals which would eventually prevent tight control. This can be observed in
Fig. 11b, where a burst in the error signal occurs between t = 170s and t= 330s. It is
noted that the magnitude of this burst is considerably larger n Fig. 11b than in Fig. 1la.

A way of reducing the erfect of noise is 1o reduce the gain K, which magnifies the
deviations of y(t) from y.(t). This is illustrated in Fig. 1lc where o°=0.084 and K,=2.

Note that the magnitude of the bursts i the error signal are considerably smaller and

(%

the duration of the bursts is also shorter than hetore.
The control scheme of Fig. 5 is very simple and erfective. Only one parameter, namely

K,, has to be chosen if the controller in equation 110} is used. It is noted that the choice

)
a

of this parameter is not critic l. Large values of K. usually result in tighter control in

noise-free environments. If noise is present. however, the valne of K, should iradeotd
i o

0

trackine capabilities and robustness, This was illustrated m Fios. lla-c.
2

4.3 The reference model

The ‘Model'in Fig. 5 plays an important roie n the model-based control strategy describea
in §4.1. It is therefore desirable to be able to obtain such a model directly from the
original system with no a prior knowledge. This problem has been successtully overcome.
The identification of NARMAX {nonlinear autoregressive moving average model with
exogenous inputs) models is now considered a standard problem in the 1dentification of
a large class of nonlinear systems 42, 43, 44, 45, 46, 47, 48, 491, In particular. the
identification of polynomial NARMAX models {or the Duting-Ueca oscillator has recently

been reported (50!

An important requirement which must be fuifilled bv the noniinear moaei of Fig. 3

V



is that the bifurcation diagrams of the unperturbed system and of the model should be
as close as possible. It is stressed that this requirement is usually overlooked in most
identification problems where the main objective is usually to obtain models which fit
the data records almost in a point-to-point basis at the expense of overparametrization.
In such cases an extremely good fit may be obtained but this has been shown to have
disastrous effects on the bifurcation structure of the identified models [50].

Therefore, for control purposes in particular. it is crucial that the reference model
bifurcates to qualitatively similar dynamical regimes at similar values of A when com-
pared to the original oscillator. The importance of capturing the underlying bifurcation
structure when identifving nonlinear models from data records has been illustrated in
reference [40].

Comparison of Fig. 6 and Fig. 2h shows that the mode!l of equation (11)1s appropriate
for control applications at least within the ranges of these bifurcation diagrams.

In the literature, some of the suggested schemes for controlling chaos also requre
a model [16. 21, 51} but no indication is given concerning how such a model can be
obtained in practical situations. On the other hand. other approaches do not require a
model but eigenvalues and eigenvectors of linear maps, estimated at each iteration, must
be repeatedly computed 20. 22

Although the identification and validation of NARMAX models for control purposes 1s
now well established and documented, and despite ail the benefits gained by the knowledge
of a model which reproduces the bifurcation pattern of the actual system, the reference
model in Fig. 3 may be dispensed with in many control appiications. This can be appreci-
ated by noticing that the model in the control scheme of Fig. 5 is only used to determine
an appropriate reference signal.

Consequently, in many applications, there i1s no need for the reference model as long
as a suitable reference signal yz(t) be provided. In regulating problems this is very simple
because a complete period of the oscillator output, y(t), can be recorded during normal
operation, that is hefore the disturbance occurs, and used thereafter indefinitely as the
desired signal irrespective of disturbances.

In tracking problems a collection of suitabie desired output periodic signals can be

stored in, say, digital memory and subsequently used as the signal to be tracked by the



oscillator.

It would seem natural to wonder why bother using a faithful reference model to gener-
ate the reference signal or even why bother storing such signals for later use if the reference
model is not available. Why not use a standard signal generator to produce ya(t)? The

next simulation aims at clarifying this relevant point.

4.3.1 Simulation 7

In this experiment the oscillator was initially operating in closed-loop with A = 5.5 and
K,=8. At t = 100s the reference signal was changed from the output of the reference
model excited with u{t} = 5.5cos({} to the cosine y(t) = 2.0cos(t). Figure 12a shows
the reference signal and the oscillator output and Fig. 12b shows the error between these
signals. Figure 12c shows the last 50 seconds of Fig.12a.

These figures clearly reveal that the guality of the tracking has degraded significantly
after t = 100s. The remarkable increase in the error signal can also be interpreted as an
increase in the control effort. Although the new reference signal is similar to the former
one, the tracking error is considerably greater after t = 100s.

This can be explained by noting that the latter reference signal, that is the cosine, 1s
not a ‘genuine: orbit of the oscillator in the sense that it is not reproducible by the system
and consequently the effors required to track such a signal is much greater. Besides. the
tracking quality is clearly not as good as when the reference signal was a natural orbit
of the oscillator. This suggests that the reference signal should be a genuine orbit and
highlights the importance of cbtaining faithiul reference models which can be used to

provide such signals.

b §

The fact that in simulations 4 to 6 the reference signal, yi(t), was always a genuine
orbit of the unperturbed oscillator {obtained using the discrete model of equation (11))
also serves as a justification for the high quality control achieved in each case. In this
respect, the model in Fig.5 can he viewed as a filter which yields a genuine reference
signal when excited by u(t),

Consider the reference and output signals plotted in Fig. 7. The *set-point’ change

began at ¢ = 100 when the vaiue of A was changed from 11 to 14, Note that although the

period-one motion was not established until ¢ = 1705, the tracking error was very small

L8



throughout the experiment. This 1s because the reference signal switched from a chaotic
attractor to a period-one attractor via ‘genuine transients’ which could be followed easily
by the oscillator. If the period-one signal had been imposed directly at ¢ = 100 s, that is

without using the reference model, larger tracking errors would have obviously occurred.

9 Conclusions

This paper has investigated the control of the Dutling-Ueda forced oscillator. Two closed-
loop schemes have been proposed. The first procecure aimed at suppressing chaos by
adding an external weak force 1o the driving signal. The sensor used in the loop enabled
the controller to decide if the dynamics were chaotic or periodic and, in the latter case
the sensor also determined the periodicity of the dynamics. Besides suppressing chaos, it
has been shown that, in some cases, this procedure is erfective in driving the oscillator to
orbits of specified periodicity,

In the second procedure & reference model has been used 1o generate 'genuine’ reference
signals to be tracked by the oscillator. It has been shown that this control strategy is
effective in tracking and regulating problems alike. It has been argued that although the
reference model plays an important role in this control procedure. in many applications
such a model may be dispensed with as long as genuine reference signals can be provided.
In this respect is has also been shown that the quality of the control and the control effort
required are considerably degraded if non-genwine reierence signals are used,

The proposed techniques do not make some of the assumptions commonly made in
other methods. Moreover. the suggested procedures are simple and. to a certain extent.
robust with respect to noijse.

Finally, it has been pointed out that aithough both procedures may be applied without
2 model, much can be gained if models which reproduce the bifurcation behavior of the
system are known. Because in practice such models will usually not be available, the
identification of nonlinear dynamic models obtained directly from the system without
any kind of a prior: knowledge has to be considered. Hence a procedure for identifying

such models based on the NARMAX (noulinear aUuloreyressive Moving average mode! with
{ autorey m ga g el witl

exogenous invuts) mode! has heen indicate along with references ‘or further reading. A

i



NARMAX model for the Duffing-Ueda oscillator, which had been previously obtaineq
with no a prior information, has been successfully used thus llustrating the feasibility

of the techniques employed.
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Captions

Fig.1. Series-resonance circuit with nonlinear inductance.

[ o]

Fig.

(a) Bifurcation diagram and (b) Poincaré section of the oscillator for A=11.

Fig. 3. Closed-loop control configuration.

Fig.4. Poincaré sections. P, during control, (a) chaos, (b) period-12, (c) period-4 and

(d) period-8.
Fig. 5. Model-based control configuration.

Fig. 6. Bifurcation diagram tor the discrere mocdel.

Fig. 7. Reference signal. y:(f}. and oscillator output. y{r) for simulation 4

S T

Fig.8. (a) Reference signal. yzit}, and oscilator output. yit), {b) error y4(t)—

y(t),

ya(t) and y(t) when no controi is appited

Fig. 9. {2) Reference signal, y:(t}, and osaillator output. yit}, {(b) error ya(t)—y(t).

Fig.10. Pseudo-phase plots of the error in Fig 9b (a) periodic, (b) random (probably

chaotic).

-

Fig. 11. Error signals y(1)—yif} (ai noise variance 5-=0.021 ancd controller

(b) 02=0.084 and N,=38. (c) ¢°=0.084 and K,=2.

Fig.12. (a) Reference signal. y.{¢), and oscillator outpur, y(¢). {b) error ya(t)—y(z), (¢)

last 50 seconds of {a). The reference signal after t = 100 1s not a ‘genuine’ orbit.

i



Disturhances Uncertainties

i l
D E it}
J;_ Q Controiler %—_*Q— Oscillator
[ |
|

_T

_____________________________________

it Disturbances Uncertainties
|
1 Y Y

e(t) Tt y(t)

O Controller Oscillator —

Model — u(t) = Acos(wt)

et

= o

96



Output amplitude

y(1-Ts)

L)

(8] ]
o}
T

~J

io
T

GF

(1)

“in

tn

) S e AT e Pt ERER S | B

6

[ A Y 10)

Maxmmum o nput amphiude, A

L
T

F U — |

J

B e = P




T ]
’ 00
L ; 48
s 1
—_
o =
=
i
(o]
Lo 1 P <
o s} cl Ol
] &=
indino padeagg
e e e e e €Y
s ]
_«- il
v
i
: 2
i
4,
| 1 4
o Vs ol el
ol =

indino pakeag

()

Output

¢)

{

Output

indino pake]o

ey

\‘_,-||d-
o
[ ]

’ S
| i
>
@

=
o1
Lo S 1
wy 1 v, O
1 —
indino pase]ag
ot
o P ci
b2
'
e B
[t ] 3
G
-\l.
(g |
U D D
Wy cl [Vaien |
o1 —

Y

SN SIS ISR EEES 1Lw“yhl‘\..i.....

vt
i £ S |
\ S

\

v, (o] vy

cl —

apnigdune nding

8

A

ok
2

)

Fla.

Maximam o input amphitude,

(&}







0 J
< ol o [ < ol — o — 1



y(t-10)

=

0.4r ‘

ol
IRHHHHAANAS
oF \'\\ E; ) (j_ |
B il






